
The cord approach to Extensible

Concurrency Control�

George T. Heineman

Worcester Polytechnic Institute

Department of Computer Science

Worcester, MA

heineman@cs.wpi.edu

Gail E. Kaiser

Columbia University

Department of Computer Science

New York, NY

kaiser@cs.columbia.edu

WPI-CS-TR-96-1

Abstract

Database management systems (DBMSs) have been increasingly used for advanced application do-

mains, such as software development environments, network management, workow management systems,

computer-aided design and manufacturing, and managed healthcare. In these domains, the standard cor-

rectness model of serializability is often too restrictive. We introduce the notion of a Concurrency Control

Language (CCL) that allows a database application designer to specify concurrency control policies to tailor

the behavior of a transaction manager. A well-crafted set of policies de�nes an extended transaction model.

The necessary semantic information required by the CCL run-time engine is extracted from a task manager,

a (logical) module by de�nition included in all advanced applications. This module stores task models that

encode the semantic information about the transactions submitted to the DBMS. We have designed a rule-

based CCL, called cord, and have implemented a run-time engine that can be hooked to a conventional

transaction manager to implement the sophisticated concurrency control required by advanced database

applications. We present an architecture for systems based on cord and describe how we integrated the

cord engine with the Exodus Storage Manager to implement Altruistic Locking.

keywords: Extended Transaction Models, Extensible Concurrency Control, Transaction Manager
Component, DBMS architecture

c1996, George T. Heineman and Gail E. Kaiser

�This paper is based on work sponsored in part by Advanced Research Project Agency order B128 monitored by
Rome Lab F30602-94-C-0197, in part by National Science Foundation CCR-9301092, and in part by the New York
State Science and Technology Foundation Center for Advanced Technology in High Performance Computing and
Communications in Healthcare 94013. Heineman was also supported in part by an AT&T Fellowship. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing the
o�cial policies, either expressed or implied, of the government, ARPA, NSF, NYSSTF, or AT&T.

1 Introduction

Advanced database applications (henceforth applications) require more sophisticated concurrency

control mechanisms than the standard ACID transaction model provides [4, 29, 11]. For this reason,

many extended transaction models (ETMs) have been developed [14, 31, 23] that rely on special

semantic information about the transactions and their operations. There is no consensus, however,

as to which ETM is appropriate for advanced applications; most likely, there never will be, since each

ETM is optimized for a particular behavior. Therefore, a database management system (DBMS)

cannot implement an ETM suitable for all applications. One possible goal is to design a DBMS whose

transaction manager (TM) can be tailored to provide the desired ETM for a given application. An

even better direction is to show how to extend the TM for existing DBMSs to provide such ability.

Advanced applications include software development environments, network management, work-

ow management systems, computer-aided design and manufacturing, and managed healthcare.

These diverse applications have one feature in common { they have a task manager that stores

rich semantic information about the transactions submitted to DBMS. The FlowMark Workow

system [26], for example, stores a workow process as a directed acyclic graph of activities. In the

Oz Process-Centered Environment [5], a process engine interprets task models encoded in planning-

style rules. Since the actual implementation of the task manager changes from one application to the

next, we do not present details for any particular task manager, nor do we cover situations where the

semantic information is implicit and/or arbitrarily spread across multiple parts of the application.

We also focus our attention on concurrency control, rather than recovery issues.

Extensible concurrency control is the ability for the TM of a DBMS to alter its decisions regarding

how transactions are allowed to behave. It is commonly accepted that semantic information about

the transactions is necessary to realize extensible concurrency control. This paper investigates

how the TM can acquire semantic information from the task manager of an application, and how

to exibly direct TM to incorporate this information when making concurrency control decisions.

This research is performed in the context of showing how to augment existing TMs to support the

necessary advanced transaction behavior.

In an application for a large bank, for example, a user's Withdrawal transaction should not

be forced to wait while the bank runs a long-duration Balance transaction. The bank application

designers could directly modify the existing TM of their DBMS (including rewriting it) to implement

the behavior in Figure 1a, but this e�ort would be costly and have to be repeated for each such

scenario. Alternatively, the application could be tightly integrated with the TM (e.g., transactional

workows [15]), granting the application �ne-grained control over transaction behavior. The original

1

if (Conict between Balance and Withdrawal) then if (Read/Write conict) then
if (Total-O� + Withdrawal Amount < 1 Million) then if (can tolerate increase in inconsistency) then

Total-O� += Withdrawal Amount Update inconsistency totals
Ignore Conict Ignore conict

� else
� Abort conicting transaction

�
else if (Write/Write conict) then

Abort conicting transaction
�

(1a) Simple Case for Bank Policy (1b) ESR CCL speci�cation

reason for introducing transactions, however, was to avoid such solutions that often reduce to low-

level concurrent programming; also for practical reasons, the application and TM should remain

separate entities.

Motivating Example

Consider solving this banking example to allow the Balance transaction to observe temporarily

inconsistent data. If the TM has a sophisticated interface, such as Encina [12], it might be possible

to modify and reimplement the application for an individual case. As more and more special cases

arise, however, some model is needed to reduce complexity; as an example, Epsilon Serializabil-

ity [30] (ESR) is an ETM that increases concurrency by allowing bounded inconsistencies to occur.

The TM could be reimplemented to support ESR, but if the behavior changed yet again, more

reimplementation would be necessary. The goal of our research is to provide a solution whereby the

application designer need only produce a speci�cation, such as the simpli�ed ESR speci�cation in

Figure 1b, that tailors the behavior of the TM.

This paper introduces a component used by the TM to tailor its behavior based upon an ETM

speci�cation written in a concurrency control language (CCL). Because supporting an ETM requires

semantic information from the application, this component employs a generic interface to extract

the semantic information; a mediator layer of special-purpose code insulates the CCL engine from

the application. An application designer can thus extend a TM by providing an ETM speci�cation

and mediator code, as needed, to extract the necessary semantic information from the target appli-

cation. We envision that such CCL engines can be attached to existing DBMSs (with only slight

modi�cations to the DBMS) to provide immediate extensibility.

The basic building block of an ETM is a concurrency control policy (henceforth, policy) that de-

�nes how a TM should react to non-serializable access exhibited by two conicting transactions. The

ETM speci�cation enumerates the di�erences from serializability, the standard correctness model

for most DBMSs. We view approaches that model every database access by all transactions (such

2

CCL
Dictionary

CCL
Translator

Dynamic
State
Information

Application−specific
Code

Stored
Database

Task Manager ETM
Specification

TM−specific
Code

Transaction Manager

TASK MODEL
App

lic
ati

on

CCL
Engine

Generic Interface

Lock Manager

Figure 1: CCL extension to DBMS architecture

as pattern machines [32] or Relative Serializability [1]) as impractical since each transaction that

wishes to relax atomicity would �rst have to analyze the operations of all other potentially a�ected

transactions.

We present the features of a rule-based CCL called cord (for COoRDination) and its cord

engine, and show how to implement Altruistic Locking (AL) [31], a well-known ETM from the

literature. We then discuss our experience integrating the cord engine with the Exodus Storage

Manager [9] to implementAL within Exodus. Finally, we evaluate our e�orts and related work, and

summarize our contributions.

2 Architecture

Figure 1 shows the integration of a CCL engine into a DBMS used by an application. A well-

de�ned task manager module stores semantic information about the transactions submitted to the

TM. The ETM speci�cation is �rst translated into a machine-readable format that is loaded by

the CCL engine upon initialization. We assume that the DBMS is dedicated entirely for use by

the application. All operations submitted to the TM that remain serializable are processed without

invoking the CCL engine. When serializability conicts occur, the TM invokes the CCL engine

to locate a policy (if any) that matches the observed conict. The CCL engine employs a generic

interface to extract semantic information from the application using special mediator functions

provided by the application designer (shown in dashed boxes).

The CCL engine places certain requirements on the TM, which we assume already has a well-

de�ned API of primitive operations, such as Begin and Commit. First, we must modify the TM to

invoke the CCL engine when it detects a conict (typically by modifying the TM's lock manager).

Second, we need before- and after- callback functions for each API operation so that the CCL

3

Stored
Data

Transaction Manager

Begin Commit LockAbort

Stored
Data

Transaction Manager

Begin Commit Abort

API to Transaction Manager

Lock

CCL
Engine

API to CCL Engine

CCL
Dictionary

Dynamic
State
Information

Figure 2: CCL engine integrated with Transaction Manager

forward function resolve conict (in obj list, out resolved, out info) : lock list
type service status = (service ok, service deny, service override)

function Lock(in t, in obj list, in mode) : boolean
rc := lock before(t, obj list, mode);
if (rc = service override) then return (true); �
if (rc = service deny) then return (false); �
if Lock can be granted then

Normal transaction behavior
else

CS := construct scenario (t, obj list, mode);
locks := resolve conict (CS, resolved, cord info);)Interface to CCL Engine
if (resolved = false) then return (false); �

�
lock after (t, obj list, mode);
return (true);

end

Figure 3: Modi�ed Lock(t; obj list;mode)

engine can alter and extend the functionality of the TM. When the TM is requested to lock an

object, for example, the lock before callback can invoke a mediator function to determine if the

ETM allows the transaction to access the desired objects, and possibly deny the primitive operation.

Similarly, a lock after callback can trigger other actions as required by the ETM. These changes

are represented by the thin black rectangles in Figure 2; Figure 3 shows the modi�ed Lock primitive

in more detail. We feel these two features should be part of any DBMS that provides extensible

transaction management; in fact, this interface is already very similar to Encina [12]. In Section 5

we describe how we modi�ed the Exodus Storage Manager to include these features. Our success at

being able to modify a foreign system leads us to believe that DBMS designers themselves would be

able to modify their systems accordingly.

3 ETM Speci�cation

A cord ETM speci�cation contains a preamble and a set of cord rules that the cord engine loads

when initialized by the TM. The cord language is a rule-based CCL inuenced by Barghouti's

4

type attribute
transaction tid, lockset, parent, subtransactions, top level
object oid, name, lockset, class
lock lock mode, tid, object

Figure 4: Default cord semantics

Control Rule Language [3]. The preamble de�nes mediator functions in an objectcode �le that will

be dynamically linked with the cord engine to extend its functionality. Each cord rule consists of

a sequence of policies de�ned as condition/action pairs that contain the knowledge of how the TM

should behave under certain circumstances; cord rules are thus similar to planning-style rules.

When a conict is detected between two accesses to an object, the TM invokes the cord engine

to resolve the conict, constructing a scenario containing the object's unique identi�er (oid) and

class name, and the unique transaction identi�ers (tid) of the two conicting transactions (i.e., if

three transactions conict with each other, the conicts are handled in pairwise fashion; [19] presents

an approach for handling sets of conicts at once). The cord engine acts like an expert system,

reacting to conicts by invoking the appropriate policy. If no suitable policy is found, the TM

responds to the conict in its usual fashion.

The cord language de�nes an extensible set of data types to model the dynamic state information

needed by the policies. The standard data types, shown in Figure 4, model information from the

TM: transaction, object, and lock. For clarity of presentation, we assume the TMs are lock-based.

For a given transaction T17, for example, the TM may keep a large data structure storing log

records, lock sets, and other pertinent information that it needs. The cord engine maintains

its own dynamic state information about T17, separate from the TM, by instantiating an object

from its transaction type; since the tid is the same, the engine can communicate with the TM to

extract detailed information about, and perform actions on, transactions. These data types can be

extended to store additional information needed to support a set of policies. The ETM speci�cation,

for example, might specify that each transaction has a task attribute; the cord engine would then

store this task information within its transaction type.

Each cord rule is parameterized by the class of object (within the DM) to which it applies,

since conicts occur on individual objects (entity applies to all classes). These cord rules can

be viewed as concurrency control methods that an object employs to resolve conicts (similar to

an approach suggested by [18]). Multiple rules de�ned for the same class are di�erentiated by a

selection criterion, allowing the cord engine to select at run-time the most applicable cord rule.

Each cord rule can optionally bind variables (shown as ?var) that refer to semantic infor-

5

mation required by its policies. There are �ve default variables describing the conict scenario:

?ConflictObject, ?Lconflict (i.e., the conicting lock being requested), ?Tconflict, ?Lactive

(i.e., the existing lock), ?Tactive. For example, if a policy needs to refer to the parent of the trans-

action causing the conict, the following variable would be de�ned within the cord rule: ?Tpar =

?Tconflict.parent.

The condition for a policy speci�es logical expressions on the rule's variables to determine which

one is valid. It can perform simple comparisons of attribute values, such as checking whether the

lock mode requested by the active transaction is in read mode. The cord engine can dynamically

load in new code, as determined by the ETM speci�cation, to introduce new functions to be used

when evaluating these conditions; as we will see, this is a powerful mechanism.

3.1 Cord Actions

Most TMs can only suspend or abort a transaction to resolve serializability conicts. In contrast,

cord policies can perform arbitrary actions on transactions as needed to implement a particular

ETM. There are two ways that a conict can be resolved: �rst, it can be ignored, because it is only

a serializability conict, not a conict according to the speci�ed ETM; second, the TM can take

action, such as suspending or aborting transactions, creating dependencies between transactions to

maintain integrity, or dynamically restructuring transactions. In addition to cord's default actions,

described next, new actions can be implemented and dynamically linked with the cord engine.

The most basic cord action, ignore(), allows non-serializable accesses as directed by the ETM.

This action, for example, allows transactions to share partial results with one another or commuting

operations to be performed. If there are side-e�ects of the non-serializable accesses (as determined

by the ETM designer), then the cord engine can maintain dependencies between the conicting

transactions. The cord language allows commit and abort dependencies to be formed between

transactions. Briey, if Ti has an abort dependency on Tj , then if Tj aborts, Ti must also abort.

If Ti has a commit dependency on Tj , then Ti cannot commit until Tj �nishes (either commits or

aborts). The add dependency (?Tconflict, ?Tactive, abort) action, for example, ensures that

if the TM ever aborts ?Tactive, the cord engine will abort ?Tconflict. Removing dependencies

between transactions, for example, allows a sub-transaction to be treated as top-level. Acta [10]

de�nes twelve types of dependencies between transactions, but we limit cord to these two since most

of the Acta dependencies are the domain of the database application, and too tightly bind the TM

with the task manager. suspend (?t1, ?t2) blocks transaction ?t1 until ?t2 has either committed

or aborted, abort (?t) aborts a particular transaction, while notify (?t1, msg) action delivers

6

a message to the application on behalf of transaction ?t1. Other actions are de�ned in [19].

The DBMS engineers are responsible for integrating the TM with the cord engine. In addition

to the e�ort outlined in Section 2, this means that mediator functions need to be written for each

of cord's default actions to interface to the speci�c TM. For example, the cord engine must map

its suspend action to speci�c capabilities in the TM, as shown by example in Appendix B. The

mediator for the notify cord action is written by the application designer to interface TM with

the application. Appendix B contains an example of this mediator function. These examples of

mediation show how the cord engine is insulated from the details of the other system components.

3.2 Motivating Example Revisited

To return to our opening example, we now present a cord implementation ofESR [30]. Each Epsilon

Transaction (ET) has a speci�cation (called an �-spec) of its allowed import and export inconsistency.

A transaction imports inconsistency by reading the uncommitted results of an update transaction;

this update transaction is then considered to have exported inconsistency. Separate from these �-

spec values, each data item has its own data-�-spec for the amount of inconsistency it allows. Note

that ESR is equivalent to Serializability if all transaction-�-spec values are 0. In this paper, we

implement a restricted form of ESR that does not allow update transactions to import consistency;

a more general form of ESR has been implemented in [19].

Each ET maintains a �xed ImpLimit (ExpLimit) as part of its �-spec that determines the bounded

amount of inconsistency it can import (export). Each ET also maintains a running import (export)

accumulator that it updates whenever it imports (exports) inconsistency. When an ET attempts

to read and write a data item x, the inconsistency inherent in x is added to the ET's inconsistency

counters. Each data item maintains an accumulator of inconsistency used to check against its data-

�-spec. Summing up, the cord engine must store four new pieces of information with each ET

(ImpLimit, ExpLimit, import accumu, export accumu) and two new pieces of information with each

data item (data-�-spec and data accumu). We assume here that the data-�-spec value is stored in

the DBMS itself (as an optional attribute for each object).

The cord engine maintains this state information about ETs and enforces the inconsistency

limits. Using callback functions, the task manager (that is requesting the locks) can be queried

to �nd out how much each ET will alter the data item's value. For example, ESR::lock after in

Figure 6 is invoked to create a cord data structure of type ESR accumu to store the inconsistency

introduced for each object as ETs proceed. The DBMS:: functions in Figure 6 retrieve the necessary

information using the API of the underlying DBMS.

7

cord rules
object code esr.so
condition valid tolerance (object, transaction, transaction) Preamble
action increment accumu (object, transaction, transaction)

epsilon extension [ESR ENTITY]
selection criterion: Rules

lock.lock mode: W, R
body:

Conict between an update (that requests the lock) and a query (that has the lock).
Verify that the resulting increase in inconsistency will be tolerated.
if (and (?Lconict.lock mode = W)

(valid tolerance(?ConictObject, ?Tconict, ?Tactive))) f
increment accumu(?ConictObject, ?Tconict,?Tactive)
ignore()

g

Conict between ?Tconict (requesting query lock) and ?Tactive (has update)
if (and (?Lactive.lock mode = W)

(valid tolerance(?ConictObject, ?Tactive, ?Tconict))) f
increment accumu(?ConictObject, ?Tactive, ?Tconict)
ignore()

g

The following conditions match when inconsistency is too much
if (?Lconict.lock mode = W) f abort(?Tconict) g
if (?Lactive.lock mode = W) f suspend(?Tconict, ?Tactive) g

end body

Figure 5: cord rule for Epsilon Serializability

procedure ESR::lock after (in t, in obj list, in mode)
for oid in obj list do

if (DBMS::get att value (o, \d espec", d espec)) then
DBMS::get att value (o, \value", d value);
if (not ESR globals::member (oid)) then

one = ESR accumu::new (obj id:oid, consistent value:d value, espec:d espec, accumu: 0);
ESR globals::insert (one);

�
�

end

Figure 6: ESR::lock after mediator algorithm

To complete our ESR implementation, the epsilon extension cord rule (in Figure 5) contains

four policies to allow a query ET and an update ET to conict if the transaction �-spec values of the

involved ETs are satis�ed. The mediator functions referenced in this cord rules are dynamically

loaded from esr.so and are shown in pseudo-code in Appendix D. The TM does not to be reimple-

mented to support the ESR behavior; only special-purpose mediator code needs to be written that

extends its behavior as desired.

3.3 Extracting Semantics

The novel feature of the cord language is that it allows the application designer to model the desired

semantic information in the application. For each piece of semantic information, an access mediator

8

AL1 Two transactions may not simultaneously hold conicting locks on the same object
unless one of the transactions �rst donates the object.

AL2 If Ta is indebted to Tb, then it must be completely in the wake of Tb until Tb performs its
�rst Unlock operation.

d(a) The set of transactions that have donated (and not unlocked) a.
in(a) The set of transactions that readers of a must be in the wake of.
W (T) The set of transactions whose wakes T is completely within.
J(T) The set of transactions whose wakes T must be completely within (based on AL1 and AL2).

Figure 7: AL requirements

is implemented (by the application designer) that will extract the information at run-time if needed

by the cord engine. At startup, the cord engine dynamically loads in the code for the access

mediators from the ETM speci�cation. The cord engine employs a generic mediator interface to

extract the desired semantic information (as shown in Figure 2). If either the application or the

TM is replaced, only the speci�c mediator functions need to be rewritten; the cord engine remains

unchanged.

4 Example Extended Transaction Model

We now present a full cord solution to extending a TM for Altruistic Locking (AL) ETM [31]. AL

is an extension to two-phase locking (2PL) [13] that accommodates long-lived transactions. Under

2PL, short transactions will encounter serious delays since database resources can be locked for

signi�cant lengths of time. In AL, several transactions can hold conicting locks on a data item

if constraints AL1 and AL2 in Figure 7 are satis�ed. In this example, read and write locks have

the usual semantics. Using the Donate operation { a new TM primitive operation { a transaction

announces to the database that it will no longer access a given data item, thus allowing other

transactions to access it (constraint AL1). A donate is not an unlock and the transaction must

still explicitly unlock data items that it has donated (typically at the end of the transaction) { the

transaction is free to continue locking data items even after some have been donated.

A transaction enters the wake of transaction Ti when it locks an object that has been donated

(and not yet unlocked) by Ti. A transaction is completely in the wake of Ti if all the objects it

locks are donated by Ti. If Tj locks an object that has been donated by Ti, Tj is indebted to Ti if

and only if the locks conict or an intervening lock by a third transaction Tk conicts with both.

Even though two read locks are compatible, the second read becomes indebted to the �rst when an

intervening write occurs. Initially, for all a and T , J(T) = d(a) = in(a) = ;. By default, as each

9

'

&

$

%
procedure AL::begin after (in T)

W (T) := ActiveSet;
ActiveSet := ActiveSet [fTg;

end'

&

$

%

procedure AL::complete tx (in T)
// T can no longer impact any transaction, so update the appropriate W (t) sets
ActiveSet := ActiveSet �fTg;
foreach t 2 ActiveSet do

if (T 2W (t)) then W (t) := W (t)� fTg;
end' $
function AL::lock before (in T, in a, in mode) : service status

// If a hasn't been donated, service ok is returned if T is not completely within the wake of another
// transaction. Otherwise, service ok is returned if T remains completely in the wake of J(T).
w :=W (T) \ d(a);
i := J(T) [in(a);
if (i � w) then return (service ok); �
return (service deny);

end& %

' %

� �
procedure AL::lock after (in T, in a, in mode)

// Now that lock is assure, we update the appropriate sets. Cannot do this in lock before
J(T) := J(T) [in(a);
W (T) :=W (T) \ d(a);
return (service ok);

end& %
' �

� �
function AL::unlock before (in T, in a, in mode) : service status

// Removes downstream transactions from wake of T, and maintains in(a) and d(a)
d(a) := d(a)� fTg;
in(a) := in(a)� fTg;
foreach t 2 ActiveSet do

if (T 2 J(t)) then J(t) := J(t)� fTg;
return (service ok);

end& %

' �

'

&

$

%
procedure AL::donate (in T, in a)

// New operation in DBMS API
d(a) := d(a) [fTg;

end'

&

$

%
function AL::is donated (in a) : boolean

// New cord condition
return (not empty (d(a)));

end'
&

$
%

procedure AL::update in set (in a, in Lact)
// New cord action
if (Lact.lock mode = R) then in(a) := in(a) [f Lact.tid g; �

end

Transaction Manager

Begin Commit Abort

CORD
Interpreter

Lock

Donate

Unlock

AL−mediators

Figure 8: Mediator extensions for AL

10

cord rules
object code alt.so # Dynamically linked mediator code
condition is donated (object) # New AL conditions here Preamble
action update in set (object,lock) # New AL actions here

AL rw [ENTITY]
selection criterion: lock.lock mode: W, R Rules
body:

Allow conict on donated object; maintain indebted relationship
if (is donated (?ConictObject)) f

add dependency(?Tconict, ?Tactive, abort)
update in set(?ConictObject,?Lactive)
ignore()

g
end body

AL ww [ENTITY]
selection criterion: lock.lock mode: W, W
body:

Allow conict on donated object
if (is donated (?ConictObject)) f

add dependency(?Tconict, ?Tactive, abort)
ignore()

g
end body

Figure 9: cord rule to support AL

transaction begins, it enters the wake of all active transactions; elements are removed and inserted

into W (T) based upon the behavior of T .

The cord engine maintains dynamic state information about the wakes of transactions (i.e.,

W (T) and J(T)) and enforces the indebted constraint AL2. W (T) is calculated by tracking

the set of active transactions with the begin after mediator AL::begin after. We extend the

Lock(T; obj list;mode) primitive operation (shown in Figure 3) by binding the lock before me-

diator to AL::lock before. The J(T) and W (T) sets are updated by the lock after mediator,

AL::lock after. These sets cannot be updated in the lock before mediator, otherwise a locking

conict that failed to set a lock would incorrectly update this information. The Unlock opera-

tion is extended by binding its unlock before mediator to AL::unlock before; this mediator and

the new AL::donate primitive operation manage d(a). When transactions commit (abort), the

commit after (abort after) mediator, bound to AL::complete tx, updates ActiveSet. The AL

protocol presented in [31] upgrades read locks to write locks solely to preserve the indebted rela-

tionship between transactions. Instead of altering the locks held by the lock manager, our solution

maintains several sets for each database object a and transaction T , as shown in Figure 7.

Our implementation is completed by two cord rules. The AL rw cord rule in Figure 9 is invoked

for all read/write conicts on any object. The policy of this rule handles situations when a write

lock is requested on an object that ?Tactive previously read and donated; this carefully maintains

11

the indebted relation, AL2. The policy in AL ww allows multiple writers if the conicting object was

donated �rst. Figure 8 shows the interaction between TM and the cord engine. As transactions

request primitive operations from the TM's API, the various mediator functions (encapsulated by

ovals) are invoked through callbacks. When the cord engine evaluates its policies, it employs the

new AL::is donated condition and AL::update in set action as de�ned in the preamble. Neither

the TM nor the cord engine were altered in any way; only the ETM speci�cation and mediator

code (included dynamic code) were added for this solution.

5 Example Integration with DBMS

We next integrated the cord engine with the Exodus Storage Manager [9]. In Exodus, client

applications share memory pages from a virtual \volume" residing on a storage manager server. A

locking conict, therefore, occurs on a particular page and volume. Objects in Exodus can be small

enough to �t several to a page, or one object can be spread across many pages. Client applications

requests objects from the server by page location.

We modi�ed the Exodus lock manager (LM) to invoke the cord engine when it detects a lock

conict. The cord engine then uses the available semantics (in this case, only the lock modes being

requested) to determine if a cord rule matches the conict scenario. LM had twelve individual

locations where it checks a lock matrix to determine if two lock modes are compatible; for example,

if (!LM_Compat[lockEntry->lockMode][requestMode]) was replaced with:

if (!cord_compatible(lockEntry->headerList.transRec, lockEntry->lockMode,

transRec, requestMode, lockEntry->lockHeader))

The extra parameters refer to the actual transaction structures in Exodus. Five such expressions

were replaced with calls to cord compatible(), listed in Appendix A. Five others were changed

to call a similar function, cord compatible upgrade(), used when the client upgrades its lock; the

last two points were changed to cord compatible list().

In cord compatible(), a conict scenario is created, with the two conicting locks lock1 and

lock2. Note how the necessary information for cord is extracted from the TRANSREC, LOCKID,

and LOCKHEADER Exodus data structures, an example of directly inspecting the data structures of

the TM. The entry point to the cord engine is the resolve conflict() function, which takes a

conict scenario and returns two values: resolved determines whether the conict was successfully

resolved, and cord info records the actions cord performed to resolve the situation.

To complete the infrastructure, we augmented the interface for each primitive operation in the

transaction API to allow callback functions. At various points in Exodus, calls were inserted:

12

if (lock_before (transRec, lockid->page.pid.page, requestMode) != 1)

return (esmFAILURE);

that allowed before- and after- mediators to be invoked.

5.1 Altruistic Locking in Exodus

To complete the AL implementation in Exodus, we extended the communication protocol between

the client and server to provide a new DonatePage operation. Exodus allows client programs to scan

through a collection of objects (called a �le) in the storage manager, guaranteeing that all objects in

the �le will be accessed exactly once during the traversal. Since several objects can reside on a page,

we need to be careful to donate a page only when it is no longer needed by the client: whenever

the scan iterator retrieves a new page from the server, the client application calls a new Exodus

operation, DonatePage, directing the server to donate the previous page which will no longer be

used by that client. When the scan iterator is complete, the client donates the last page in the scan

before committing. In conjunction with this new function, the same cord rule from Figure 9 is used

to allows particular behavior in the TM.

We encountered two \feature interaction" problems. The �rst, which we call the double-bu�ering

problem, occurs when a client donates a page it has updated. Recall from Section 4 that under

AL, the transaction that donates a page does not unlock it. If the transaction only ushes its

pages onto durable storage when it commits, future transactions that read this page will see the

old value. This problem could have been foreseen since AL does not guarantee failure-atomic

transactions and Exodus implements log-based recovery based on the ARIES algorithm [27]. We

therefore need to ush these pages to storage whenever a page is donated. Also, since the client

forces pages to the server when a transaction commits, we must not force already donated pages.

Thus, implementing the Donate operation itself required some e�ort. In [31], the authors discuss

other problems, related to recovery, that AL might introduce. The second problem reveals a subtle

interaction between granularity locking [17] and AL. When scanning a �le, Exodus acquires a �le

lock instead of acquiring a separate lock for each page in the �le. The transaction scanning a �le,

however, cannot donate this �le lock until it completes the scan. To work around this problem, we

programmed a client application to mimic a scan by manually requesting each page in order.

6 Evaluation

In a previous paper [20], we presented an architecture for integrating a TM component into environ-

ment frameworks. We described how a mediator architecture allowed us to implement distributed

13

ETM Number of cord rules Number of mediators (and length)
strict ESR in Oz 1 8 (325 lines)
general ESR in Oz 2 10 (446 lines)
AL in Exodus 2 10 (429 lines)

Figure 10: Statistics on implementing ETMs

two-phase commit on top of a set of centralized (but extensible) TMs. In this paper, we have shown

how to extend a TM to tailor its behavior using our cord engine. The statistics shown in Figure 10

summarize our e�ort to use the cord engine to support a particular ETM. The size and number

of mediator code is reasonable, especially considering the extra bene�ts of being able to tailor an

ETM on top of an existing DBMS. The ESR cord experiment was implemented and tested within

Oz [5], a rule-based process-centered environment. The AL solution was �rst designed and tested

for a small demonstration environment and then was reproduced within Exodus. The same cord

engine was used for all experiments: only the mediator code and ETM speci�cations changed.

6.1 Support for Locking

The TM can detect serializability conicts using either locking, timestamp ordering (TO) [7], op-

timistic concurrency control (OCC) [24], or any other equivalent method. In addition to being

the most popular, we feel that locking is most suitable for extensible concurrency control. OCC is

inappropriate for several reasons. First, OCC determines conicts after they occur, when a trans-

action, T , attempts to commit. If T conicts with a previous transaction, Tc, that has already

committed, it might not be possible for the TM to extract any semantic information about Tc, since

the information for the task that employed Tc might no longer be available. Second, if negotiation

were used to resolve the conict, such interaction must occur as the conict occurs, not (possibly)

long after the transactions conict. A timestamp-based protocol would not be as e�cient, either.

If the cord engine needs to inspect the objects a transaction has accessed, for example, locking

already provides lock sets for each transaction, but there is no similar concept in TO; the cord

engine would have to duplicate this information. As much as possible, we want the cord engine to

only maintain dynamic state information that is not already managed by the TM. One limitation of

our approach is that it does require changes within the TM, but the API changes are minimal and

in-line with standard APIs (as in Encina).

6.2 E�ects on application

The cord actions necessarily a�ect the advanced database application. In client/server architec-

tures, the client typically waits synchronously for a reply from the server; to suspend a transaction,

14

the TM can simply delay its response. If the TM is bundled together with the database appli-

cation in one single-threaded operating system process (for example, a workow engine combined

with a database), suspending a transaction is not easy at all, since multiple contexts need to be

carefully maintained and restarted at the correct times. In the context of Barghouti's Control Rule

Language, we successfully implemented the cord suspend action in the Marvel process-centered

environment [25], but this required signi�cant portions of process engine (i.e., Marvel's task man-

ager) to be reimplemented to be aware that a process task could be suspended at any point during

its execution. General solutions to the problem of how an application should react to ETMs are

outside the scope of this paper.

The actions in the cord language must be matched to the capabilities present in the TM and

the task manager. When attaching the cord engine to an existing TM, the cord primitive actions

(i.e., abort, suspend) are parameterized to invoke corresponding primitives from the API for the

TM. If the TM cannot suspend transactions, for example, no cord rule can use this primitive.

7 Related Work

The Acta framework [10] constructs a theoretical model that helps reason about and compare dif-

ferent ETMs. An ETM can be completely characterized by a list of axiomatic de�nitions. This

speci�cation, however, cannot readily be used by a DBMS to implement an ETM for an applica-

tion. Inspired by Acta, Asset [8] allows users to de�ne custom transaction semantics for speci�c

applications. It provides transaction primitives that can be composed together to de�ne a variety of

ETMs. Asset still needs some higher layer, however, to appropriately organize its primitives based

upon the available semantic information.

The Transaction Speci�cation and Management Environment (TSME) [16] is closest to our ap-

proach. TSME provides a transaction speci�cation language and a programmable transaction man-

agement mechanism (TMM) that con�gures a run-time environment to support a speci�ed ETM.

TMM translates a transaction model speci�cation into a set of instructions and assembles run-time

support from a transaction processing toolkit. One drawback is that all the components of the

resultant system appear to be built from scratch, and there seems to be no way to integrate a TMM

with an existing DBMS.

Barga and Pu have designed a Reective Transaction Framework to implement extended trans-

action models [2]. Using transaction adapters, add-on modules that are built on top of an existing

TM, they show how to extend the underlying functionality of the TM. In their case, they extended

15

the Encina [12] transaction processing monitor by capitalizing on the callback functionality provided

by Encina. This is very similar to our approach at utilizing the mediator architecture of our TM

component. The primary di�erence as compared to our work is that we have designed the cord

language for specifying the extensions to TM, while they still followed a programming approach.

We foresee that our engine can be easily integrated with Barga and Pu's framework.

In lock-based TMs, the most common means of extension is to provide additional lock modes,

or allow new ones to be de�ned. Most lock-based systems use a matrix to record lock compatibility

information (e.g., Exodus and ObServer [21]). Modifying this information would be di�cult in

systems where there is either no de�ned \matrix" of locks (e.g., the logic for compatible locks is

spread throughout the system), or the de�ned matrix is not meant to be altered (e.g., the matrix is

stored in a C header �le and lock modes are pre-de�ned constants). If new lock modes can be added

to a matrix table, the core functionality of the system will be a�ected when new lock modes are

requested. To use these new lock modes, however, the application designer might have to modify

and rebuild parts of the system.

Some DBMSs provide support for de�ning new lock modes as needed, without any recompilation.

The TM in the Marvel process-centered environment [6], for example, determines its lock modes

from a fully-con�gurable lock matrix �le; each Marvel task encodes the lock modes it will request

from the TM. A con�gurable lock-matrix, however, is not powerful enough to provide �ne-grained

control; for example, AL could not be implemented solely by a complex matrix (as in Papyrus [28]).

The TM could always be modi�ed to acquire semantic information when determining lock conicts.

Barghouti [3] designed a TM that employed a special-purpose language for programming concurrency

control policies for rule-based software development environments (RBDEs). His TM extracted seven

pieces of semantic information from RBDEs and had a language for specifying concurrency control

policies. This approach was hard-wired in that the TM directly inspected data structures from

the RBDE and the language was specially designed for RBDE. Our work generalizes and extends

Barghouti's ideas for wider applicability.

An alternative to serializability as a correctness model is the checkout model. In checkout,

transactions operate on private copies of data that are checked out from a repository. The only

contention for shared objects occurs when a transaction checks in/out an object. We view checkout,

versions, and con�gurations as the domain of the application rather than something to be imposed

by the TM. See [22] for a survey of extended checkout models.

16

8 Contributions and Future Work

Advanced database applications use databases to store information but they require more sophis-

ticated concurrency control policies than standard DBMSs provide. Fortunately, such applications

contain semantic information that describes their transactional needs. The transaction manager

needs to incorporate such semantic information to provide the appropriate services to these ad-

vanced database applications.

Our main contributions are:

� A mediator architecture that allows generic extraction of semantic information from an ad-

vanced database application, as needed to support an extended transaction model.

� The cord language, a sample Concurrency Control Language that speci�es the extensions to

serializability needed for an extended transaction model.

� A cord run-time engine that incorporates the semantic information to extend the transaction

manager for a DBMS. The cord engine uses the semantic information extracted from the

application to match concurrency control policies in a cord speci�cation.

� Successful application of the cord approach to implementing AL within Exodus.

For future work, we plan on carrying out more experiments with cord and existing DBMSs.

Once a particular set of cord rules becomes �xed for an ETM, the run-time support would be more

e�cient if the rules could be compiled into native code, thus avoiding the cost of interpretation; we

are currently investigating such an approach. We have focused our attentions on the concurrency

control aspects of ETMs, but have not discussed the interaction and relationship that concurrency

control has on recovery. In the same way that cord rules can tailor concurrent behavior, it seems

likely that a similar language-based approach can be used to program the recovery of ETMs.

References

[1] D. Agrawal, J. L. Bruno, A. El Abbadi, and V. Krishnaswamy. Relative serializability: An ap-
proach for relaxing the atomicity of transactions. In ACM-SIGMOD/PODS 1994 International
Conference on Management of Data, pages 139{149, Minnesota, USA, May 1994. ACM.

[2] Roger Barga and Calton Pu. A practical and modular method to implement extended transac-
tion models. In 21st International Conference on Very Large Data Bases, Zurich, Switzerland,
1995.

[3] Naser S. Barghouti. Concurrency Control in Rule-Based Software Development Environments.
PhD thesis, Columbia University, February 1992. CUCS-001-92.

17

[4] Naser S. Barghouti and Gail E. Kaiser. Concurrency control in advanced database applications.
ACM Computing Surveys, 23(3):269{317, September 1991.

[5] Israel Z. Ben-Shaul and Gail E. Kaiser. A Paradigm for Decentralized Process Modeling. Kluwer
Academic Publishers, Boston, MA, 1995.

[6] Israel Z. Ben-Shaul, Gail E. Kaiser, and George T. Heineman. An architecture for multi-
user software development environments. Computing Systems, The Journal of the USENIX
Association, 6(2):65{103, Spring 1993.

[7] P. A. Bernstein and N. Goodman. Timestamp-based algorithms for concurrency control in dis-
tributed database systems. In Lochovsky and Taylor, editors, Proceedings of the 6th Conference
on Very Large Databases, Montreal, Canada, October 1980. Morgan Kaufmann Publishers.

[8] A. Biliris, S. Dar, N. Gehani, H.V. Jagadish, and K. Ramamritham. ASSET: A system for
supporting extended transactions. In 1994 ACM SIGMOD International Conference on Man-
agement of Data, pages 44{54, Minneapolis MN, May 1994. Special issue of SIGMOD Record,
23(2), June 1994.

[9] M. Carey, D. DeWitt, G. Graefe, D. Haight, J. Richardson, D. Schuh, E. Shekita, and S. Van-
denberg. The exodus extensible dbms project: An overview. In Stanley B. Zdonik and David
Maier, editors, Readings in Object-Oriented Database Systems, chapter 7.3, pages 474{499.
Morgan Kaufman, San Mateo CA, 1990.

[10] Panos K. Chrysanthis and Krithi Ramamritham. Synthesis of Extended Transaction Models
using ACTA. ACM Transactions on Database Systems, 19(3):450{491, September 1994.

[11] Umesh Dayal, Hector Garcia-Molina, Mei Hsu, Ben Kao, and Ming-Chien Shan. Third gener-
ation TP monitors: A database challenge. SIGMOD Record, 22(2):393{397, June 1993.

[12] Encina Product Overview, Transarc Corp, Pittsburgh, PA. http://www.transarc.com.

[13] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and
predicate locks in a database system. Communications of the ACM, 19(11):624{632, November
1976.

[14] Hector Garcia-Molina and Kenneth Salem. Sagas. In Umeshwar Dayal and Irv Traiger, editors,
ACM SIGMOD 1987 Annual Conference, pages 249{259, San Francisco CA, May 1987. Special
issue of SIGMOD Record, 16(3), December 1987.

[15] Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of workow manage-
ment: From process modeling to workow automation infrastructure. Distributed and Parallel
Databases, 3:119{153, 1995.

[16] Dimitris Georgakopoulos, Mark Hornick, Piotr Krychniak, and Frank Manola. Speci�cation
and management of extended transactions in a programmable transaction environment. In 10th
International Conference on Data Engineering, pages 462{473, Houston TX, February 1994.

[17] J. Gray, R. Lorie, and G. Putzolu. Granularity of locks and degrees of consistency in a shared
database. In International Conference on Very Large Data Bases, pages 428{451. Morgan
Kaufmann, 1975.

[18] Thanasis Hadzilacos and Vassos Hadzilacos. Transactions synchronization in object bases.
Journal of Computer and System Sciences, 43:2{24, 1991.

[19] George T. Heineman. A Transaction Manager Component Supporting Extended Transaction
Models. PhD thesis, Columbia University, 1996. Forthcoming.

18

[20] George T. Heineman and Gail E. Kaiser. An architecture for integrating concurrency control
into environment frameworks. In 17th International Conference on Software Engineering, pages
305{313, Seattle WA, April 1995.

[21] Mark F. Hornick and Stanley B. Zdonik. A shared, segmented memory system for an object-
oriented database. ACM Transactions on O�ce Automation Systems, 5(1):70{95, January
1987.

[22] Gail E. Kaiser. Cooperative transactions for multi-user environments. In Won Kim, editor,
Modern Database Systems: The Object Model, Interoperability, and Beyond, chapter 20, pages
409{433. ACM Press, New York NY, 1994.

[23] Gail E. Kaiser and Calton Pu. Dynamic restructuring of transactions. In Ahmed K. El-
magarmid, editor, Database Transaction Models for Advanced Applications, chapter 8, pages
265{295. Morgan Kaufmann, San Mateo CA, 1992.

[24] H. T. Kung and John Robinson. On optimistic methods for concurrency control. ACM Trans-
actions on Database Systems, 6(2):213{226, June 1981.

[25] Programming Systems Lab. Marvel 3.1.1 administrator manual. Technical Report CUCS-038-
93c, Columbia University Department of Computer Science, 1993.

[26] F. Leymann and D. Roller. Business processes management with FlowMark. In 39th IEEE
Computer Society International Conference (CompCon), Digest of Papers, pages 230{233, San
Francisco, March 1994.

[27] C. Mohan, D. Haderle, B. Lindsay, H. Piradesh, and P. Schwarz. ARIES: A transaction recovery
method supporting �ne-granularity locking and partial rollbacks using write-ahead logging.
ACM Transactions on Database Systems, 1991.

[28] Marie-Anne Neimat and Kevin Wilkinson. Extensible transaction management in Papyrus.
In Bruce Shriver, editor, 23rd Annual Hawaii International Conference on System Sciences,
volume II, pages 503{511, Kona HI, January 1990.

[29] Erich Neuhold and Michael Stonebraker (editors). Future directions in DBMS research. SIG-
MOD Record, 18(1):17{26, March 1989.

[30] Calton Pu. Generalized transaction processing with epsilon-serializability. In Proceedings of the
1991 International Workshop on High Performance Transaction Systems, 1991.

[31] Kenneth Salem, Hector Garcia-Molina, and Jeannie Shands. Altruistic locking. ACM Transac-
tions on Database Systems, 19(1):117{165, March 1994.

[32] Andrea Helen Skarra. A Model of Concurrency Control for Cooperating Transactions. PhD
thesis, Brown University, May 1991.

19

A Exodus Mediator Code

*begin***/
int

cord_compatible(TRANSREC *transActive, int activemode, TRANSREC *transConflict,

int conflictmode, LOCKHEADER *thelock)
*

*end**/
{

int resolved, rc;
DS_PTR (conflict_list, PERN_OBJ_LIST) = NULL;

DS_PTR (results, PERN_LM_LIST);

DS_PTR (lock_active, PERN_LM_LOCK);
DS_PTR (lock_conflict, PERN_LM_LOCK);

LOCKID *exodus_lock;
void *cord_info;

/* Original Exodus check for compatible locks */
if (LM_Compat[activemode][conflictmode])

return (TRUE);

/* If we are here, then Exodus thinks a conflict has occurred. */
exodus_lock = &(thelock->hashList.lockid);

conflict_list = DS_instantiate (PERN_OBJ_LIST, NULL);

/* use the Exodus lockid as the object identifier */

lock_active = DS_instantiate(PERN_LM_LOCK,
"mode", activemode,

"tid", transActive->tid,
"obj_id", exodus_lock, NULL);

lock_conflict = DS_instantiate(PERN_LM_LOCK,
"mode", conflictmode,

"tid", transConflict->tid,
"obj_id", exodus_lock, NULL);

(void) add_conflict_to_list (conflict_list, lock_active, lock_conflict, (int) exodus_lock);

/* Resolve the conflict: results is a list of un-resolved conflicts */
results = resolve_conflict (conflict_list, &resolved, &cord_info);

return (resolved);

}

B Cord Action Mediator

The suspend(?t1, ?t2) operation in cord suspends transaction ?t1 until ?t2 completes. This me-
diator function interfaces the cord engine with an underlying TM. In this example, cord interfaces
with the Pern transaction manager component [19].

/* Function in Pern's API */
extern void tx_SUSPEND (int tid1, tid2);

/*begin**/

int

CORD_suspend(DS_PTR (scenario, CORD_CONFLICT), DS_PTR (t1, PERN_TX_LIST), DS_PTR (t2, PERN_TX_LIST)
/*

The first parameter is always the conflict scenario. Return TRUE on success
*end***/

{

20

int tid1, tid2;

tid1 = DS_get_int (t1, "tid");

tid2 = DS_get_int (t1, "tid");

tx_SUSPEND(tid1, tid2);

return (TRUE);
}

The notify(?t1, msg) operation in cord sends a message to the user controlling the task that
is responsible for the given transaction. In this case, the task manager has a function in its API to
send a message to the client application. This mediator function retrieves the \client id" attribute
from the cord base type and uses that as the �rst argument to the API invocation.

/* Function in task manager API */

extern void send_client_message (int client_id, char *buf);

/*begin**/
int

CORD_notify(DS_PTR (scenario, CORD_CONFLICT), DS_PTR (pern_tx, PERN_TX_LIST), char *buf)
/*

The first parameter is always the conflict scenario. Return TRUE on success

*end***/
{

send_client_message (DS_get_int (pern_tx, "client_id"), buf);
return (TRUE);

}

C Cord Extensible Action

update in set(?object, ?lock) �rst checks that the conicting lock is a read. In this case, an
intervening write has just been allowed, so the indebted set in(a) is updated accordingly.

/*begin**/

int
update_in_set (DS_PTR (conflict, CORD_CONFLICT), int oid, DS_PTR (lock, PERN_LM_LIST))

/*

Increment obj.in if this lock is a read.
*end***/

{
int tid;

DS_PTR (tidrange, PERN_TID_RANGE);

if (DS_get_int (lock, "mode") == READ_MODE)

{
obj = Hashtable_member (GLOBALS, "ID_HASH", oid);

if ((tidrange = DS_get (obj, "in")) == NULL)
{

tidrange = DS_instantiate (PERN_TID_RANGE, NULL);
DS_set (obj, "in", tidrange);

}

tid = DS_get_int (lock, "tid");
(void) Range_reserve_integer (tidrange, "tids", tid);

}
}

21

D Cord ESR mediators

function ESR::valid tolerance(in oid, in UET tx, in QET tx) : integer
delta := ESR::TM get delta(UET tx);
new exp := delta + UET tx.export accumu;
if (new exp > UET tx.ExpLimit) then return (false); �
new imp := delta + QET tx.import accumu;
if (new imp > QET tx.ImpLimit) then return (false); �
obj := ESR accumu::member(oid);
if (obj.accumu + delta > obj.espec) then return (false);�
return (true);

end

procedure ESR::increment accumu(in conict, in oid, in UET tx, in QET tx)
delta := ESR::TM get delta(UET tx);
UET tx.export accumu := UET tx.export accumu + delta;
QET tx.import accumu := QET tx.import accumu + delta;
obj := ESR accumu::member(oid);
obj.accumu := obj.accumu + delta;

end

22

