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Abstract

The Self-Modifying Finite Automaton (SMFA) is a model of computation
introduced in [RS93, RS94, RS95b]. Formal de�nitions appear in [RS95a].
This paper further investigates the computational power of the model, and
introduces the concepts of path determinism and register complexity.
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1 Introduction

The Self-Modifying Finite Automaton (SMFA) is a model of computation introduced
in [RS93, RS94, RS95b]. SMFAs are similar to standard �nite automata, but changes
to the transition set are allowed during a computation. Formal de�nitions appear in
[RS95a]. A weakly restricted form of SMFAs has been shown to be Turing powerful
[RS95a], and strongly restricted forms have been shown to accept the class of metalin-
ear languages, as well as some other classes of context-free and even non-context-free
languages [RS94, RS95b].

This paper further investigates the computational power of SMFAs. Results pre-
sented establish lower or upper bounds on the computational power of various classes
of SMFAs. Of particular interest are results concerning the important class of �-
normal single-addition single-register �rst-order SMFAs without deletion; the com-
putational power of this class is bounded below by the ultralinear languages, and
above by a pumping lemma. Other important developments including the property
of path determinism, and the consideration of number of registers as a complexity
measure.

2 Preliminaries

All the de�nitions and conventions of [RS95a] are assumed here without repetition.
For any alphabet X, X� = X [ f�g.

The following additional de�nitions and conventions are adopted henceforth.

Convention 2.1 (�-normal)
All SMFAs are assumed �-normal except where explicitly otherwise stated. 2

For example, a theorem that explicitly addresses \SMFAs with self-delete" is under-
stood to concern SMFAs with �-normal addition and self-delete (since self-deletion is
not �-normal).

Convention 2.2 (Without deletion)
All SMFAs are assumed without deletion except where explicitly otherwise

stated. 2
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So a theorem that explicitly addresses \SMFAs" is understood to concern �-normal
SMFAs without deletion.

Convention 2.3 (Order of SMFAs with self-delete)
When an SMFA is stated to be with self-delete, any statement about the order

of the machine refers only to the addition function. Similarly, the order of an action
of such a machine is its order in the addition function. 2

For example, a \�rst-order SMFA with self-delete" has a �rst-order addition function.
Self-deletion is unordered, so there is nothing more to be usefully said about the order
of the deletion function. The need for this convention did not arise in [RS95a] because
SMFAs with self-delete were only peripherally mentioned there.

Note particularly that the above conventions pertain to SMFAs, not SMAs. Any
de�nition or result that explicitly addresses \SMAs" entails no implicit assumptions
about the properties of modi�cation functions.

De�nition 2.4 (Register complexity)
Suppose C is a set of SMAs, and L is a language accepted by someM 2 C. Then

the register complexity of L (in C) is the smallest number of registers of any N 2 C
that accepts L. 2

3 Determinism

Among the most universally applicable distinctions between classes of automata is
that between deterministic and nondeterministic: Does the machine always have to
proceed in a certain way, or is there sometimes more than one way to go?

Interestingly, even the de�nition of determinism for SMFAs | conspicuous by
its absence from [RS95a] | is not altogether straightforward. An ordinary �nite
automaton, or even an ordinary Turing machine, is deterministic i� its transition
function is single-valued. Since the transition function is both �xed and �nite, it is
always immediately obvious whether or not the machine is deterministic. But an
SMFA doesn't have a transition function per se; and its transition set is neither �xed
nor, in general, bounded.

3.1 Basic criteria

One deceptively obvious way to proceed would be to say an SMFA is deterministic
i� at each computation step there is at most one transition that can be taken at any
point in a computation.

De�nition 3.1 (Path determinism)
An SMA M is path-deterministic i� for each reachable con�guration c of M

there is at most one transition allowed from c. 2
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A shortcoming of path determinism is illustrated by the following machine.
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This machine is a �nite automaton, accepting the language a�. And, like all �nite
automata, it could equally well be considered a zeroth-order SMFA.

As an �nite automaton, it is obviously nondeterministic; there are two di�erent
transitions on input a from state q1. But as an SMFA, it is path-deterministic. (One
might object that q1 is a useless state; but in general, the halting problem will make
it impossible to decide which states of an SMFA are useless.) This suggests a stronger
de�nition of determinism.

De�nition 3.2 (State determinism)
Suppose M is an SMA. A con�guration c of M is state-deterministic i� for

each con�guration c0 of M with the same transition set as c, there is at most one
transition allowed from c0. M is state-deterministic i� every reachable con�guration
of M is state-deterministic. 2

In other words, on any given input there is at most one transition allowed from each
state of each reachable con�guration.

A �nite automaton is deterministic if and only if, interpreted as a zeroth-order
SMFA, it is state-deterministic. Note that state determinism implies path determin-
ism.

De�nition 3.2 imposes determinism on each state of a reachable con�guration, but
only to a depth of one computation step. This suggests yet another, even stronger
criterion, as follows.

De�nition 3.3 (Strong state determinism)
Suppose M is an SMA. Let . be the following binary relation on con�gurations

ofM : c . c0 i� there exists a con�guration c00 of M with the same transition set and
register function as c such that c00 M̀ c0. A con�guration c of M is strongly state-

deterministic i� for all con�gurations c0 ofM , c.� c0 implies c0 is state-deterministic.
M is strongly state-deterministic i� every initial con�guration ofM is strongly state-
deterministic. 2

Note that strong state determinism implies state determinism.
As the following theorem demonstrates, strong state determinism is exceedingly

di�cult to satisfy; in fact, almost none of the SMFAs in the literature to date have
been strongly state-deterministic.
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Theorem 3.4 (Strongly state-deterministic SMFAs)
If M is a strongly state-deterministic SMFA, then L(M) is regular. 2

Proof. Suppose M is an SMFA.
Suppose there are only �nitely many reachable states (that is, current states of

reachable con�gurations). Between �nitely many states, there are only �nitely many
possible transitions. Therefore, it is possible to construct a �nite automaton that
simulates M , and thus accepts the same language. So L(M) is regular.

On the other hand, suppose there are an in�nite number of reachable states. Then
there must be a reachable state of the form hr; ki with k � 1. Let c1 = hhr; ki; �; �; yi
be a reachable con�guration with current state of this form. Let c0 = hq0; �0; �0; xyi
be an initial con�guration of M from which c1 is reachable.

Let c00 = hq0; �; �; xyi, the con�guration constructed from c1 by replacing its cur-
rent state with the initial state, and rewinding the input. Let c01 be the con�guration
computed from c00 by following the same transition path that was used in the compu-
tation c0 M̀

�

c1. Traversing this path from c00 reads input x, and performs a sequence
of actions that creates a path from q0 to state hr; 2ki. Since k � 1, hr; 2ki 6= hr; ki.
So in the transition set of c01 there are two di�erent paths from q0 that read the same
input but end in di�erent states. So c01 is not state-deterministic. But c1 is reachable,
c00 has the same transition set and register function as c1, and c00 .

� c01. So M is not
strongly state-deterministic. 2

The above proof relies on Conventions 2.1 and 2.2. The contradiction in the
proof stems from the fact that the transitions that created the path to c1 are still
available for reuse. If some or all of these transitions had been self-deleting, strong
state determinism might have been maintained. (See x3.3, below.)

3.2 Quali�ed criteria

It will be of particular interest to note how the imposition of path determinism a�ects
the register complexity of various languages (in various classes). In this regard, there
are also several criteria related to determinism, but weaker than those of x3.1 above,
whose e�ect on register complexity may also sometimes be of interest.

De�nition 3.5 (Lookahead determinism)
Suppose M is an SMA. A con�guration c of M is a dead end with lookahead 0

i� c is nonaccepting, and there are no transitions allowed from c. c is a dead end

with lookahead n + 1 i� c is nonaccepting, and c M̀ c0 implies c0 is a dead end with
lookahead n.

M is lookahead 0 path-deterministic i� M is path-deterministic. M is lookahead
n+1 path-deterministic i� for every reachable con�guration c ofM , there is at most
one transition d such that step(c; d) is not a dead end with lookahead n. 2
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If c is a dead end with lookahead n, then c is also a dead end with lookahead m for
all m > n.

No lookahead variant of state determinism will be de�ned. The obvious formula-
tion of such a variant would su�er from the same anomaly that befalls strong state
determinism (Theorem 3.4).

De�nition 3.6 (Determinism up to trivial transitions)
Suppose M is an SMA. A transition d over M is trivial i� d is a zeroth-order

�-transition. Let . be the following binary relation on con�gurations of M : c . c0 i�
there exists a trivial transition d such that step(c; d) = c0.

A con�guration c of M is path-deterministic up to trivial transitions i� there
is at most one allowable pair hc0; di such that c .� c0 and d is nontrivial. M is
path-deterministic up to trivial transitions i� every reachable con�guration of M is
path-deterministic up to trivial transitions.

A con�guration c of M is state-deterministic up to trivial transitions i� every
con�guration with the same transition set as c is path-deterministic up to trivial
transitions. M is state-deterministic up to trivial transitions i� every reachable
con�guration of M is state-deterministic up to trivial transitions. 2

State determinism can be safely varied to allow trivial transitions, where it could
not for lookahead, because the anomaly of Theorem 3.4 was caused by reusing tran-
sitions that modi�ed the machine; trivial transitions present no such di�culty.

It is also possible to combine lookahead with trivial transitions, in the case of
path determinism (though not, of course, state determinism, which has no lookahead
variant). The resulting de�nition is particularly labyrinthine.

De�nition 3.7 (Lookahead determinism up to trivial transitions)
Suppose M is an SMA. Let . be the relation de�ned in the previous de�nition.
A con�guration c of M is a dead end with lookahead 0 up to trivial transitions

i� c .� c0 implies both that c0 is nonaccepting and that only trivial transitions are
allowed from c0. c is a dead end with lookahead n+1 up to trivial transitions i� c.� c0

implies both that c0 is nonaccepting and that, if d is a nontrivial transition allowed
from c0, then step(c0; d) is a dead end with lookahead n up to trivial transitions.

A con�guration c of M is lookahead 0 path-deterministic up to trivial transi-

tions i� c is path-deterministic up to trivial transitions. c is lookahead n+ 1 path-

deterministic up to trivial transitions i� there is at most one allowable pair hc0; di
such that c .� c0, d is nontrivial, and step(c0; d) is not a dead end with lookahead n
up to trivial transitions.

M is lookahead n path-deterministic up to trivial transitions i� every reachable
con�guration of M is lookahead n path-deterministic up to trivial transitions. 2
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3.3 Turing power

In [RS95a], it was proven that SMFAs are Turing powerful. Speci�cally, given a
deterministic Turing machine M , an SMFA was constructed that simulates M . The
register complexity of the construction was not particularly remarked on.

This result is repeated below, with register complexity speci�cally noted. The
proof is also repeated here, because subsequently it will be modi�ed to construct
SMFAs with various kinds of determinism.

Theorem 3.8 (SMFAs)
Suppose language L is accepted by a deterministic Turing machine with n states.

Then there exists an SMFA with 2n + 1 registers that accepts L. 2

Proof. Suppose language L is accepted by a deterministic Turing machine M =
hQ;Z; T; �; q0i, where

� Q is the set of states.

� Z is the tape alphabet, including the blank symbol #, but not symbols L;R;H.

� T � Z � f#g is the input alphabet.

� � : Q� Z ! (Q� Z � fL;Rg) [ fHg is the transition function.

� q0 2 Q is the start state.

Here, L;R;H mean \move left", \move right", and \halt".
Con�gurations are indexed by nonnegative integers j 2 IN. Tape cells are indexed

by integers k 2 ZZ. Let zj;k 2 Z be the symbol at cell k, pj 2 ZZ the head position,
and qj the machine state, in con�guration j. In the initial con�guration, with input
string w = w1 � � �wn, wk 2 T ,

p0 = 0

z0;k =

8<
:
wk if 1 � k � n

# otherwise

An SMFA will now be constructed that simulates M , hence accepts L.
Each con�guration j is represented by a path of �-transitions with actions aj;k,

for �j � k � n+ 1 + j, where

aj;k =

8<
:
hqj ; zj;ki if k = pj

zj;k otherwise

Traversing this path constructs a path representing the next con�guration (except
for the �rst and last transitions of the new path, which are constructed by prede�ned
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z : old0
�=z
�! new 0

old0
�=hq;zi
�! new q;L 8q 2 Q

old q;R
�=hq;zi
�! new 0 8q 2 Q

hq; zi : old0
�=z0

�! new q0;R if �(q; z) = hq0; z0; Ri

old q0;L
�=z0

�! new 0 if �(q; z) = hq0; z0; Li

old0
�

�! qf if �(q; z) = H

begin : qL
�=#
�! new 0

qL
�=hq;#i
�! new q;L 8q 2 Q

end : old0
�=#
�! qR

begin 0 : qL
�=hq0;#i
�! new 0

Figure 1: Actions of an SMFA to simulate a DTM

transitions using the special actions begin and end). The following set of 2 jQj + 1
registers is used in the construction:

R = fr0g [ frq;L j q 2 Qg [ frq;R j q 2 Qg

When constructing con�guration j from con�guration j � 1, the transitions for the
old and new head positions (pj�1 and pj) are connected through register rqj;d, where
d is the direction moved by the head between con�gurations j � 1 and j. All other
consecutive pairs of transitions are connected through r0.

In order to guarantee that all of the registers will be updated by every action of
the machine, every action adds trivial transitions

new r
�

�! new r 8r 2 R

Additional transitions are added by various actions, as shown in Figure 1. Here, qf
is the �nal state, and qL; qR are other prede�ned states.

The entire SMFA is shown in Figure 2. qs is the start state, and qf the �nal state.
During computation, the entire input string must be read while in state q1; otherwise,
the remainder of the input will never be read, and by de�nition the string will not be
accepted. Traversing from qs to q2 creates the initial con�guration path from qL to
qR. Thereafter, traversing any loop from q2 to q2 creates another con�guration path
from qL to qR. There is no requirement that this loop always use the most recently
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�=end
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��6
z=z; 8z 2 Z

6

�=end
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'$
qR &%

'$
��
��
qf

Figure 2: SMFA to simulate a DTM

added con�guration path, but repeating an earlier con�guration path only creates
a redundant copy of some other existing path. The �nal state is reachable i� some
accepting con�guration path can be created, i� that con�guration is reachable from
the given initial con�guration. 2

The SMFA in the above proof violates determinism (path or state) in four ways:

1. There is nothing to keep the machine from leaving state q1 prematurely, i.e.
before all the input has been read.

2. All of the con�gurations start at qL, so after the �rst simulated Turing ma-
chine step, each time the SMFA passes through qL it can take any existing
con�guration path.

3. Register updates are forced by means of trivial transitions new r
�
�! new r.

4. From each intermediate state within a particular con�guration path, there are
n+ 1 transitions, all but one of which lead to dead ends.

The �rst violation is really a consequence of setup rather than any fundamental
theoretical shortcoming of SMFAs versus Turing machines: Turing machines have
the advantage of a blank symbol marking the end of the input, while SMFAs have
no such end marker unless explicitly speci�ed. The di�culty is trivially resolved by
a new de�nition.

De�nition 3.9 (Language accepted with end-marker)
Suppose M is an SMA, and L is a language. L is accepted with end-marker by

M i� L(M) = Lf$g for some symbol $ that does not occur in any string of L. 2
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The third and fourth violations of determinism in the above theorem are allowed
for in the quali�ed criteria for determinism (x3.2).

The second violation is more serious. It is inimical to every form of determinism
considered here. However, it also turns out to be easily eliminated with just two extra
registers. (The path-nondeterministic trivial transitions can be eliminated with no
extra registers, which saves repetitions of the words \up to trivial transitions".)

Theorem 3.10 (Lookahead 1 path-deterministic SMFAs)
Suppose language L is accepted by a deterministic Turing machine with n states.

Then there exists an SMFA with 2n + 3 registers that accepts L with end-marker,
and is lookahead 1 path-deterministic up to trivial transitions. 2

Proof. The construction is just the same as for Theorem 3.8, except for the
speci�c alterations described below.

The trivial transitions are eliminated by simply replacing each addition

new r
�

�! new r

for register r by

q0
�

�! new r

This has the same e�ect of forcing an update of the register value, and since the
start state q0 is never revisited, it doesn't interfere with path determinism. (State
determinism is another matter, though.)

Instead of using prede�ned states qR, q2, and qL to connect each con�guration
path to the next, two additional registers are introduced for this purpose, called rR
and rL.

The two additional registers are not updated by every action (unlike the previously
described 2n + 1 registers). The begin 0 action is renamed to �rst ; the begin and end

actions are eliminated, and replaced by a new action next . The transitions added by
next are as follows:

next : q0
�

�! new r 8r 2 R � frL; rRg

old 0
�=#
�! new rR

new rR

�=next
�! new rL

new rL

�=#
�! new 0

new rL

�=hq;#i
�! new q;L 8q 2 Q

The entire SMFA is shown in Figure 3. 2

In the SMFA constructions of the preceding theorems, one path was built for
each DTM con�guration, with transitions incident to each state of r0 going forward
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Figure 3: SMFA to simulate a DTM

to states of rq;L and backward to states of rq;R. The forward transitions caused the
lookahead quali�cation on path determinism.

The following construction will eliminate this problem by building two parallel
paths for each DTM con�guration: one enumerating the tape contents from left to
right, with backward transitions to states of rq;R; and one enumerating the tape
contents from right to left, with backward transitions to states of rq;L.

This considerably complicates the construction. Interestingly, though, the increase
in register complexity is fairly modest, because registers of the form rq;d do not have
to be duplicated for both paths: registers rq;R are only used by the left-to-right path,
and rq;L by the right-to-left.

Theorem 3.11 (Path-deterministic SMFAs)
Suppose language L is accepted by a deterministic Turing machine with n states.

Then there exists a path-deterministic SMFA with 2n + 6 registers that accepts L
with end-marker. 2

Proof. The construction is like that for Theorem 3.10, but with the extensive
alterations described below.

Registers that are associated with tape enumeration in just one direction are
superscripted with an R (for rightward, i.e. left-to-right) or an L (leftward, right-to-
left). Registers r0 and rL are each doubled, producing four registers rR0 , r

L
0 , r

R
L , and

rLL. Registers rq;d are not doubled, but are superscripted; and since the superscript
is always identical to the second subscript, the latter is omitted, hence rdq . The only
registers not superscripted are rR, and an additional register r2 (corresponding to
state q2 of the nondeterministic construction). The entire register set is:

R = frR; r2g [ frd0; r
d
L; r

d
q j d 2 fL;Rg; q 2 Qg

The subset of registers that must be incremented by each enumeration step is:

R0 = frd0; r
d
q j d 2 fL;Rg; q 2 Qg

Actions associated with tape enumeration are also doubled by direction super-
scripts, and the addition function handles them di�erently depending on superscript.
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A rightward enumeration builds the next rightward enumeration forward and the
next leftward enumeration backward, while a leftward enumeration builds the next
leftward enumeration forward and the next rightward enumeration backward. Action
next is replaced by actions begind and end d. The only action not superscripted is �rst.
The entire action set is:

A = f�rstg [ fbegind; endd; zd; hq; zid j d 2 fL;Rg; z 2 Z; q 2 Qg

R-superscripted registers and actions are only used to construct a rightward enu-
meration of the tape; L-superscripted, only to construct a leftward enumeration. The
superscripts of the source/destination state registers and action of a transition al-
ways agree. The direction of enumeration for every non-initial con�guration is the
same as the direction of head movement into that con�guration from its predecessor;
this is what maintains path determinism. For the initial con�guration, however, the
direction of enumeration is arbitrary; the machine described here enumerates initial
con�gurations rightward, as if in an initial con�guration the head has just completed
a move right.

During the inception of a new pair of parallel enumeration paths (by an action
begind), registers rR, r2, and both rdL are incremented. The old value of rR is the
termination point for the previous enumeration (the one that is about to be traversed
in order to build the new enumerations). This old value is connected to the new value
of r2; the new value of rR immediately becomes the termination point from which
one of the new enumerations grows backward, and to which the other grows forward.
The additional register r2 is needed because the connection to one of the rdL cannot
be made until the direction of head movement is known, which doesn't happen until
the head position of the previous enumeration (action hq; zid) is traversed.

In order to guarantee that all of the registers that need to be incremented by every
enumeration step will be, every action adds trivial transitions

q0
�

�! new r 8r 2 R0

Additional transitions added by the various actions are shown in Figure 4. If d is a
direction, that is, d 2 fL;Rg, then the opposite direction is denoted d = (if d = L
then R else L endif).

The entire SMFA is shown in Figure 5. 2

The only violation of state determinism in the above path-deterministic construc-
tion is that multiple trivial transitions out of q0 are added to force register update.

Theorem 3.12 (State-deterministic SMFAs)
Suppose language L is accepted by a deterministic Turing machine with n states.

Then there exists a state-deterministic SMFA with 2n + 7 registers that accepts L
with end-marker. 2

12



zd : old d
0

�=zd

�! new d
0

old d
q

�=hq;zid

�! new d
0 8q 2 Q

new d
0

�=zd

�! old d
0

new d
q

�=hq;zid

�! old d
0 8q 2 Q

hq; zid : old d
0

�=z0d

�! new d
q0

new d
0

�=z0d

�! old d
q0

old2
�=begind

0

�! old d0

L if �(q; z) = hq0; z0; d0i

old2
�

�! qf if �(q; z) = H

begind : oldR
�=endd

�! new 2

new d
L

�=#d

�! new d
0

new d
0

�=#d

�! newR

new d
q

�=hq;#id

�! newR 8q 2 Q

q0
�

�! new d
L

end d : old d
0

�=#d

�! oldR

oldd
q;d

�=hq;#id

�! oldR 8q 2 Q

oldd
L

�=#d

�! old d
0

�rst : q2
�=beginR

�! newR
L

newR
L

�=hq0;#iR

�! newR
0

newL
0

�=#L

�! newR

newL
q

�=hq;#iL

�! newR 8q 2 Q

q0
�

�! newL
L

Figure 4: Actions of an SMFA to simulate a DTM
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'$
q1 -

$=endR
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'$
q2
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z=z; 8z 2 Z

&%
'$
��
��
qf

Figure 5: SMFA to simulate a DTM

Proof. The construction is just the same as for Theorem 3.11, except for the
speci�c alterations described below.

Introduce one further register rx; and for each register r 2 R that needs to be
forcibly incremented, introduce a new symbol �r into the alphabet.

Whenever the previous construction calls for the addition of a transition

q0
�

�! new r

add instead a transition

new x
�r�! new r

Instead of an unbounded number of trivial transitions from q0, the new machine
has a bounded number of transitions from each hrx; ki; and each of these transitions
is labeled with a di�erent input symbol, so state determinism is maintained. 2

It was shown by Theorem 3.4 that strong state determinism severely over-con-
strains SMFAs. There may be a way for strongly state-deterministic SMFAs with

self-delete to achieve Turing power; however, since strong state determinism is of
only minimal interest, and constructing strongly state-deterministic machines is very
exacting work, the proof is left to the student.

Conjecture 3.13 (Strongly state-deterministic SMFAs with self-delete)
Suppose language L is accepted by a deterministic Turing machine with n states.

Then there exists a strongly state-deterministic SMFA with self-delete and 2n + 7
registers that accepts L with end-marker. 2

The concept of state determinism (let along strong state determinism) will not be
carried further in this paper.

Convention 3.14 (Path determinism)
Hereafter to the end of the paper, determinism without the pre�x quali�er

\state" will always mean \path determinism", and similarly for the variants of
path determinism. 2

So a \lookahead 1 deterministic SMFA" is lookahead 1 path-deterministic, etc.

14



4 SMFAs without �-transitions

Theorem 4.1 (Deterministic SMFAs without �-transitions)
IfM is a deterministic SMFA without �-transitions, then L(M) is deterministic

context-sensitive. 2

Proof. Suppose M is a deterministic SMFA without �-transitions. It will be
shown that L(M) is accepted by some deterministic Turing machine N in linear
space.

Throughout the construction, uk denotes the kth symbol in a string u, and for
j � k, u(j;k) denotes the substring of u from uj to uk inclusive. (Thus, u(k;k) = uk.)
For j > k, u(j;k) = �.

Let the tape alphabet of N consist of the input alphabet, prede�ned states, reg-
isters, and actions of M , and a blank symbol. One can always use disjoint union to
force all these symbols to be distinct; so assume distinctness WLOG.

Suppose v is a string of actions of M , and c = hq; �; �; wi is a con�guration of M
that can be reached (from some initial con�guration) while performing actions v. If q
is a prede�ned state, then c will be represented in N by the string vqw. If q = hr; ki,
then c will be represented in N by a string v(1;j)rv(j+1;jvj)w for some 0 � j � jvj,
where k was the current value of register r after the jth step of the computation.

When c is not an accepting con�guration, machine N uses the algorithm shown
in Figure 6 to �nd a transition of M allowable from c. The result of the algorithm

consists of the transition q
s=a
�! p to be taken (using �-relative notation for created

states), and an integer k indicating the computation step at which the transition was
added. If the transition is in the initial transition set of M , k = 0; otherwise, the
transition was added by action vk.

Given transition d = (q
w1=a
�! p) and integer k returned by the algorithm of Figure 6,

machine N computes step(c; d) as follows.

if p is
prede�ned: return vapw(2;jwj)

old r: return v(1;k�1)rv(k;jvj)aw(2;jwj)

new r: return v(1;k�1)rv(k;jvj)aw(2;jwj)

The top-level algorithm of N is:

prepend the start state q0 of M to the input;
while the input has not been exhausted,
advance the computation by one M -step;

if the last non-blank symbol is a �nal state of M then
accept

else
reject
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if q is prede�ned then

for all transitions d = (p0
s=a
�! p) in the initial transition set of M ,

if p0 = q and s = w1 then
return d; 0;

for each integer k from 1 to jvj,

for all transitions d = (p0
s=a
�! p) added by action vk,

if p0 = q and s = w1 then
return d; k

else
let r be the register of q;
for each integer k from jxj+ 1 to jvj,

for all transitions d = (p0
s=a
�! p) added by action vk,

if p0 = old r and s = w1 then
return d; k;

if action vk increments register r then
break; (i.e. terminate the for loop)

for each integer k from jxj downto 1,

for all transitions d = (p0
s=a
�! p) added by action vk,

if p0 = new r and s = w1 then
return d; k;

if action vk increments register r then
break; (i.e. terminate the for loop)

for all transitions d = (p0
s=a
�! p) added by action vk,

if p0 = old r and s = w1 then
return d; k;

reject (i.e. halt N in a nonaccepting state)

Figure 6: Algorithm to �nd an allowable transition
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Prepending the start state to input w yields tape content q0w, which is the rep-
resentation of the initial con�guration of M on input w. Advancing the computation
by one step can be accomplished via the previously given algorithms without any

additional storage. If M reaches a dead end before exhausting the input, the M -step
algorithm will reject. Otherwise, the top-level algorithm will accept i� M accepts.
Hence L(N) = L(M). Since N is deterministic and uses exactly jwj+ 1 tape cells on
input w, L(N) is deterministic context-sensitive. 2

Theorem 4.2 (SMFAs without �-transitions)
If M is an SMFA without �-transitions, then L(M) is context-sensitive. 2

Proof. The construction is just the same as for Theorem 4.1, except that, in the
algorithm to �nd a transition, wherever the deterministic construction says to return
values d; k, the modi�ed N will nondeterministically choose to return, or continue
searching for matching transitions. 2

Theorem 4.3 (SMFAs with self-delete without �-transitions)
If M is an SMFA with self-delete and without �-transitions, then L(M) is

context-sensitive. Moreover if M is also deterministic, then L(M) is determinis-
tic context-sensitive. 2

Proof. The construction is just the same as for Theorem 4.1, except for the
speci�c alterations described below.

For each action a ofM , let T (a) be the set of all transitions added by a (expressed
in �-relative form, of course).

Remove the actions ofM from the tape alphabet, and add in their stead, for each
action a of M , tape symbols �a;t for everyt � T (a). The intent is that t indicates
which of the transitions added by action a are still present.

When an action a is performed, instead of appending a to the string of actions on
the tape, append the symbol �a;T (a), indicating that a was performed and the added
transitions are present.

In the algorithm to select an allowable transition, when iterating over all tran-
sitions added by an action a, skip over all the ones that have been deleted. When
a transition is selected, if it was added by an action and is self-deleting, change the
corresponding action symbol to indicate that that transition is no longer present.

Since there are only a �nite number of prede�ned transitions, the �nite state of
N can be used to keep track of which of them are still present. When iterating over
all prede�ned transitions, skip over all the ones that have been deleted; and if a
self-deleting prede�ned transition is selected, remember that it is no longer present.

The resulting machine N accepts L(M) in linear space, hence L(M) is context-
sensitive. Also, ifM is deterministic, modifying N to always select the �rst allowable
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transition found does not alter the language accepted or the space complexity, but
does render N deterministic, hence L(M) is deterministic context-sensitive. 2

5 Finite-order SMFAs

Recall from [RS95a] that, formally, an SMA is de�ned as a 9-tuple, while practically,
when the SMA is without deletion, the deletion function is usually omitted, leaving
an 8-tuple.

In the special case of �nite-order SMFAs, the action set and addition function can
also be omitted as follows, leaving a 6-tuple.

De�nition 5.1 (Normal form of actions)
Suppose M is an SMA, A the action set of M . For each a 2 A, let norm(a) be

the closed-form standard representation of a (de�ned in [RS95a] Convention 3.7),
if any. Then an action a 2 A is in normal form i� a = norm(a).

M is in normal form i� all a 2 A are in normal form. 2

In a �nite-order SMFA, every action has a standard representation in closed form;
but in a general SMA (or even an unordered SMFA), this may not hold.

The standard representation of each action a 2 A encapsulates the behavior of the
addition function of M on a, and on the actions of transitions directly or indirectly
created by a. Therefore, ifM is known to be in normal form, the e�ect of every action
can be determined without further reference to the addition function. Moreover, the
action set doesn't even have to be explicitly stated either, because the minimum set
of actions needed can be deduced from the initial transition set.

These observations can also be extended to �nite-order SMFAs with self-delete (see
Convention 2.3), if a standard representation is provided for self-deleting actions.

Convention 5.2 (Notation)
The conventional representation of �-normal actions ([RS95a] Convention 3.7)

is extended to actions of SMAs with self-delete, as follows.
Suppose M is an SMA with self-delete, and a a self-deleting action of M . If a

has order zero in �, then a is represented by

SD

Otherwise, let nd(a) be the representation that would be given to the non-deleting
variant of a. Then a is represented by

nd(a) , SD

2
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For example, the following is the representation of a non-deleting action that adds a
self-deleting action.

add new r
s=SD
�! old r

Convention 5.3 (Finite-order SMFAs with self-delete)
Hereafter to the end of the paper, all �nite-order SMFAs with self-delete are as-

sumed to be in normal form unless explicitly stated otherwise; and when expressing
a �nite-order SMFA with self-delete as a tuple, the action set and addition function
are usually omitted, so that the automaton is a 6-tuple M = h�; Q0; R; S; F; �0i
rather than an 8-tuple M = h�; Q0; R;A; S; F; �0; �i. 2

In [RS95b], the tuple representation of SMFAs also omits the register set, leaving
a 5-tuple. The explicit register set will be retained here, because in all but single-
register machines, the registers are explicitly named in the normal-form actions.

Note that still another convention (5.5) is imposed at the end of x5.1.

5.1 Single-addition SMFAs

Theorem 5.4 (Single-addition �nite-order SMFAs with self-delete)
Given any nth-order m-register SMFA with self-delete M , a single-addition nth-

order (2m+ 1)-register SMFA with self-delete N can be constructed such that

� L(N) = L(M).

� If M is without deletion, then N is without deletion.

� If M is deterministic, then N is deterministic up to trivial transitions.

2

Proof. Suppose M = h�; Q0; R; S; F; �0i is a �nite-order SMFA with self-delete.
A �nite-order SMFA with self-delete N = h�; QN ; RN ; S; F; �Ni is constructed by
successively altering M , as follows.

For each register r 2 R, add a new register r0; and add one other new register rx.
The resulting set is RN = R [ fr0 j r 2 Rg [ frxg, and jRN j = 2jRj + 1.

For each transition d 2 �0, add an in�nite collection of prede�ned states qd;k. Call
the resulting set Q0

0 = Q0 [ fqd;k j d 2 �0 and k 2 INg. The prede�ned states of N
will be a �nite subset of these, QN 2 P!(Q0

0).

The heart of the construction of N is a function f that maps each action a of M
to a nonempty string f(a) of single-addition actions of N . Note that f is de�ned only
on actions of M , hence a cannot involve states in Q0

0 �Q0, or registers in RN �R.
Suppose a has the form add fd1; � � � dkg. If k = 0 then f(a) = a. Otherwise, the

recursive algorithm of Figure 7 computes f(a).
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Let l = fg.

For each (q
s=b
�! p) 2 fd1; � � � dkg,

let q0 =

(
old r0 if q = new r

q otherwise

let p0 =

(
old r0 if p = new r

p otherwise

append the following action to l:

add q0
s

�! new rx

for each action b0 in f(b), from left to right,
append the following action to l:

add old rx

�=b0

�! new rx

append the following action to l:

add old rx
�

�! p0

For each r 2 R,
if a increments r,
append the following actions to l:

add old r0
�

�! new r

add old r
�

�! old r0

add new r0
�

�! new r0

Let f(a) = l.

Figure 7: Algorithm to reduce an action to single-additions
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Let �N = fg.

For each d = (q
s=a
�! p) 2 �0,

let a1 � � � ak = fa, where the ai are actions;
add the following transition to �N :

q
s

�! qd;0
for i varying from 1 to k,
add the following transition to �N :

qd;i�1
�=ai
�! qd;i

add the following transition to �N :

qd;k
s

�! p

Figure 8: Algorithm to reduce an initial transition set to single-action

On the other hand, suppose a has the form SD(b), where b is of the form above
(i.e. non-deleting), and SD maps any non-deleting action to its self-deleting variant.
Let b1 � � � bk = f(b), where the bi are actions. Then f(SD(b)) = SD(b1) � � � SD(bk).

The initial transition set of N is entirely disjoint from that of M . The algorithm
to construct �N is shown in Figure 8.

The set QN of prede�ned states of N consists of exactly those elements of Q0
0

referenced in �N . Likewise, the set AN of actions of N consists of exactly those actions
referenced in �N (and the modi�cation functions of N are chosen accordingly).

The SMFA N constructed as above satis�es the theorem. 2

Convention 5.5 (single-addition)
Hereafter to the end of the paper, all SMFAs with self-delete are assumed single-

addition except where explicitly otherwise stated. 2

5.2 Ultralinear languages

In [RS95b], it was proved that all metalinear languages are accepted by single-register
�rst-order SMFAs. This result will now be extended to the entire class of ultralinear
languages. Basic de�nitions in the following treatment are adapted from [GS66].

Context-free grammars will be written in the form G = hV;�; P; Si, where V is
the set of nonterminals, � the set of terminals, P the set of productions, and S 2 V
the start symbol of G.

De�nition 5.6 (Linear language)
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A context-free grammar G = hV;�; P; Si is linear i� each production in P is of
the form A! uBv or A! u, where A;B 2 V and u; v 2 ��.

A language is linear i� it is generated by some linear grammar. 2

De�nition 5.7 (Metalinear language)
A context-free grammar G = hV;�; P; Si is metalinear i� each production in

P is of the form S ! !, A ! uBv, or A ! u, where ! 2 (� [ V � fSg)�,
A;B 2 V � fSg, and u; v 2 ��.

A language is metalinear i� it is generated by some metalinear grammar. 2

The metalinear languages are exactly the �nite unions of concatenations of linear
languages.

De�nition 5.8 (Ultralinear language)
An ultralinear decomposition of a context-free grammar G = hV;�; P; Si is a

�nite list of sets V0; � � �Vn that partitions V , such that each production in P is of the
form Ak ! uBkv or Ak ! !k, where Ak; Bk 2 Vk, u; v 2 ��, and !k 2 (�[

[
j<k

Vj)
�.

A context-free grammar G is ultralinear i� there exists an ultralinear decompo-
sition of G.

A language is ultralinear i� it is generated by some ultralinear grammar. 2

If G is linear, it has a one-set ultralinear decomposition V0 = V . IfG is metalinear,
it has a two-set ultralinear decomposition V0 = V � fSg, V1 = fSg.

Theorem 5.9 (Ultralinear languages)
Every ultralinear language is accepted by some single-register �rst-order SMFA.

2

The following proof adapts and extends the proof in [RS95a] that every linear language
is accepted by some �rst-order SMFA.

Proof. Suppose L is an ultralinear language over alphabet �.
Let G = hV;�; P; Si be an ultralinear grammar that generates L, and V0; � � �Vn

an ultralinear decomposition of G. Without loss of generality, assume that every
production of G has the form Ak ! uBkv, Ak ! u, or Ak ! Ck�1Dk�1, where
Ak; Bk 2 Vk, u; v 2 ��, and Ck�1;Dk�1 2 Vk�1. The assumption is without loss
of generality because given any ultralinear grammar H, it is easy to construct an
equivalent ultralinear grammar G and ultralinear decomposition V0; � � �Vn of G of
this form.

For each nonterminal A 2 V , let L(A) denote the set of terminal strings that can
be derived from A using productions of P . Thus, L = L(G) = L(S).

For every Vk and every N 2 Vk, it will be shown (by induction on k) that an
SMFA M to accept L(N) can be constructed with all of the following properties.
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� M is single-register and �rst-order.

� M has exactly one �nal state.

� In every reachable con�guration of M ,

{ The start state has in-degree zero.

{ The �nal state has out-degree zero.

{ State hr; 0i has degree zero.

Suppose N 2 Vk, and for all j < k, if B 2 Vj then an SMFA with the above proper-
ties can be constructed to accept L(B). Construct an SMFAM = h�; Q0; R; S; F; �0i
to accept L(N) as follows.

R = frg. F = fqfg.
Let Q0 = VkfS; qx; qfg. More prede�ned states may be added later.
Let �0 = fg. More initial transitions will be added later.
Complete the machine as follows.

� Add an initial transition from q0 to N labeled \�=add new
�

�! qf".

� For each production in P of the form Ak ! uBkv, where Ak; Bk 2 Vk and
u; v 2 ��, add an initial transition from Ak to Bk labeled \u=add new

v
�! old".

� For each production in P of the form Ak ! u, where Ak 2 Vk and u 2 ��, add

an initial transition from Ak to qx labeled \u=add qx
�

�! old".

� For each production in P of the form Ak ! Ck�1Dk�1, where Ak 2 Vk and
Ck�1;Dk�1 2 Vk�1,

{ Using prede�ned states not already in Q0, construct an SMFA with the
aforementioned properties accepting L(Ck�1); this is possible by induc-
tive hypothesis. Add the prede�ned states and initial transitions of this
machine to Q0 and �0, respectively.

{ Using prede�ned states not already in Q0, construct an SMFA with the
aforementioned properties accepting L(Dk�1); this is possible by induc-
tive hypothesis. Add the prede�ned states and initial transitions of this
machine to Q0 and �0, respectively.

{ Add an initial transition fromAk to the start state of the machine accepting

L(Ck�1), labeled \�=add qx
�
�! old".

{ Add an initial transition from the �nal state of the machine accepting
L(Ck�1) to the start state of the machine accepting L(Dk�1), labeled \�".

{ Add an initial transition from the �nal state of the machine accepting
L(Dk�1) to qx, labeled \�".
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The SMFA so constructed accepts L(N) and has all the requisite properties.
Hence, by the principle of mathematical induction, the construction is possible for all
N 2 V . The machine constructed to accept L(S) establishes the theorem. 2

It is not known whether any single-register �rst-order SMFA can accept a context-
free, non-ultralinear language. (Single-register �rst-order SMFAs to accept non-
context-free languages are commonplace; see for example [RS95b].) However,

Theorem 5.10 (Non-ultralinear context-free languages)
There exists a �rst-order SMFA with two registers that accepts a non-ultralinear

context-free language. 2

Proof. This follows immediately from a construction in [RS93]. Figure 6 of that
paper depicts a two-register �rst-order machine that accepts the set of all strings over
fa; bg with the same number of a's and b's; this language is known to be context-free
but not ultralinear [Har78]. 2

6 The pumping lemma

In [RS93, RS95b], it is conjectured that

Conjecture 6.1 (First-order register complexity classes)
For every integer r � 1, there exist languages with �rst-order register complexity

r (that is, register complexity r in the class of all �rst-order SMFAs). 2

If true, this would separate the �rst-order SMFA languages into an in�nite hierarchy.
The immediate stimulus for this conjecture was languages of the form fwr+1 j

w 2 Lg for regular L and r � 0. Each such language is accepted by some �rst-order
SMFA with r registers, and at the time it was conjectured that

Conjecture 6.2 (Complexity of wr+1)
There exist languages L such that for all r � 0, fwr+1 j w 2 Lg has �rst-order

register complexity r. 2

Alas, Conjecture 6.2 turns out to be false (see x6.3); but it still appears likely that

Conjecture 6.3 (Complexity of wf(r))
There exists a non-decreasing function f : IN ! IN and regular languages L

such that fwf(r) j w 2 Lg has �rst-order register complexity r. 2

Given the structure of these languages, it seems natural to look for some form of
pumping lemma on r-register �rst-order SMFAs.
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6.1 Priming the pump

De�nition 6.4 (Computation)
SupposeM = h�; Q0; R; S; F; �0i is an SMFA. A computation ofM is a sequence

of transitions that can be traversed by M starting from an initial con�guration.
Suppose c 2 D� is a computation of M , and c = uvw. Here, v is called a

substring instance in c, to emphasize that its position in c is signi�cant. Then
input(v) denotes the input string read by v, source(v) denotes the state at which v
begins, and dest (v) denotes the state at which v ends. Note that because c = uvw,
the source and destination of v are de�ned even when v = �. Formally,

input(v) =

8<
:
� if v = �

st if v = (p
s=a
�! q)z and t = input(z)

source(v) =

8<
:
S if u = �

dest(u) otherwise

dest(v) =

8<
: q if v = z(p

s=a
�! q)

source(v) otherwise

Computation c is an accepting computation of M i� dest(c) 2 F . Substring
instance v of c is nth -order i� all of the transitions in v are nth-order. v is a cycle

in c i� jvj � 1 and source(v) = dest(v).
Substring instance v of c = uvw is productive in c i� either input(v) 6= �, or

there exist x; y; z such that c = uvxyz, y is productive in c, and when M performs
computation c, the transitions in y are created while traversing v. 2

Note that for the productivity of a substring instance v of c, transitions created by v
don't matter unless they are actually used by c. Also, a substring that occurs several
times in c might be productive in some instances and non-productive in others.

Theorem 6.5 (Priming Lemma)
Suppose M is a �nite-order SMFA, and n � 0. Then there exists k � 0 such

that for every accepting computation c of M , if jinput (c)j � k then there must be
some sequence of n consecutive productive cycles in c. 2

That is, c = uv1v2 � � � vnw such that all the vi are productive cycles. Since the vi are
consecutive, dest(vi) = source(vi+1) for 1 � i < n.

Proof. Suppose M = h�; Q0; R; S; F; �0i is an mth-order SMFA, and n � 0. Let
k = 1 + (njQ0j � 1)

X
0�j�m

nj.

Suppose c is an accepting computation of M , and there is no sequence of n con-
secutive productive cycles in c. It will be shown that jinput(c)j < k.
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Let � be the transition set of M after traversing the entire computation c. �0 � �.
For 1 � j � m, let �j � � be the set of all transitions in � that were created by
instances of transitions in �j�1. Then �0; �1; � � � �m is a partition of �.

For 0 � j � m, let lj � 0 be the number of productive instances in c of transitions
in �j. Then jinput (c)j �

X
0�j�m

lj.

It will now be shown, by induction on j, that lj � (njQ0j � 1)nj . Therefore,
jinput(c)j �

X
0�j�m

lj � (njQ0j � 1)
X

0�j�m

nj = k � 1.

Base case: Suppose j = 0.
If any one prede�ned state q 2 Q0 were the source of more than n productive

transition instances in c, then there would be a sequence of n consecutive productive
cycles in c. Moreover, if dest(c) 2 Q0 were the source of more than n� 1 productive
transition instances in c, then again there would be a sequence of n consecutive
productive cycles in c. So the total number of productive transition instances in c
with sources in Q0 cannot exceed n(jQ0j � 1) + (n� 1) = (njQ0j � 1). But the source
of an initial transition is always a prede�ned state; therefore, l0 � (njQ0j � 1).

Inductive step: Suppose j > 0, and lj�1 � (njQ0j � 1)nj�1.
If a transition d 2 �j has at least one productive instance in c, then by de�nition,

the transition instance in c that created d is productive. Since d 2 �j, the transi-
tion that created it must be in �j�1; and there are only lj�1 productive instances of
transitions in �j�1, each of which creates at most one transition in �j. Therefore, the
number of transitions in �j that have productive instances in c cannot exceed lj�1.

If there were more than n productive instances in c of any one transition in �j,
then there would be a sequence of n consecutive productive cycles in c. So by the
pigeon-hole principle, lj � nlj�1 � (njQ0j � 1)nj . 2

6.2 Single-register

Theorem 6.6 (Single-register Pumping Lemma)
Suppose M is a single-register �rst-order SMFA. Then there exists an integer

k � 1 such that for all z 2 L(M), if jzj � k then there exist u; v; w; x; y with
z = uvwxy, jvxj � 1, and for all i � 1, uviwxiy 2 L(M). 2

Proof. Suppose M = h�; Q0; frg; S; F; �0i is a single-register �rst-order SMFA,
and z 2 L(M). Let n = 2jQ0j, and let k = 1 + (njQ0j � 1)(n + 1). Suppose jzj � k,
and there do not exist u; v; w; x; y such that z = uvwxy, jvxj � 1, and for all i � 1,
uviwxiy 2 L(M). A contradiction will be derived.

Let c 2 D� be the sequence of transitions traversed by M during some shortest
accepting computation on z. Since z = input(c) and jzj � k, by the Priming Lemma
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(Theorem 6.5) there is a sequence of n consecutive productive cycles in c. Note that
jQ0j � 1, so n � 2.

Suppose c = abd and b is a productive cycle. Let u = input(a), v = input(b), and
w = input(d). Hence z = uvw.

Suppose b is zeroth-order. Then since b is productive, v 6= �. But since b does not
modify the machine, abid is an accepting computation on input uviw for all i � 0,
contrary to assumption. So b must be strictly �rst-order.

Suppose none of the transitions created by c occur in d. Here again, since b is
productive, v 6= �. To help show that b can be pumped, the following additional
notation is introduced.

For any sequence of transitions ! 2 D�, let r! denote the change in the register
value of M that would accrue from performing the actions on the transitions of !.
Thus in computation c, the register value just before M traverses b is ra, and the
value just after is rab. rab � ra = rb.

For any integers i; j � 0, let ti;j : Q ! Q and �i;j : D� ! D� be the following
functions.

ti;j(q) =

8<
:
hr; h+ ji if q = hr; hi and h > i

q otherwise

�i;j(!) =

8<
:
� if ! = �

(ti;j(q)
s=a
�! ti;j(p))�i;j( ) if ! = (q

s=a
�! p) 

Using this notation, a�ra;�rb(d) is an accepting computation of M on input uw. In
fact, for all i � 0, abi�ra;rb(i�1)(d) is an accepting computation of M on input uviw,
contrary to assumption. Therefore, d must contain at least one transition created by
b.

Let d = d0e1d1 � � � emdm be the unique decomposition of d into substring instances
di that contain no transitions created by b, and ei that contain only transitions created
by b, such that only d0 and dm are allowed to = �. (That is, e1; � � � em and d1; � � � dm�1

have non-zero length.) So c = abd0e1d1 � � � emdm. Because d contains at least one
transition created by b, m � 1.

There is no way, in general, to construct an accepting computation from a and
d without b, because there might be no way to get from di�1 to di without the ei
created by b. However, with suitable transformations of d, b can be pumped j � 1
times, as follows.

Transitions created by b can only begin and end on states q 2 Q0, or hr; hi for
ra � h � rab. Transitions not created by b cannot begin or end on states hr; hi for
ra < h < rab. Therefore, any endpoint of an ei that is also an endpoint of a di0 6= �
must belong to the set Q0 [ fhr; rai; hr; rabig. If dm = �, then em ends on a state
q 2 F � Q0. If d0 = �, then since b is a cycle, e1 begins on a state q that existed
before b, hence q 2 Q0 [ fhr; raig.
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Thus, all ei begin and end on states in the set Q0 [ fhr; rai; hr; rabig.
Suppose j � 2. An accepting computation c0 of M will now be constructed by

pumping b j times and transforming each di and ei as follows.

c0 = abjd00e
0
1d

0
1 � � � e

0
md

0
m

The di are transformed as in the earlier construction for m = 0: d0i = �ra;rb(j�1)(di).
For each ei, an e0i must be constructed that will connect dest(d0i�1) to source(d0i).

The tools used in this construction will be the transition paths analogous to ei cre-
ated by the j iterations of b in c0. For 1 � h � j, the hth iteration of b creates a
transition path �ra;rb(h�1)(ei); note in particular that the �rst iteration of b creates
path �ra;0(ei) = ei.

If neither endpoint of ei is hr; rabi, then the endpoints of e0i are the same as those of
ei; so let e0i = ei. Otherwise, if neither endpoint of ei is hr; rai, let e0i = �ra;rb(j�1)(ei).

Otherwise, ei must go either from hr; rai to hr; rabi or vice versa, and rb 6= 0.
If source(ei) = hr; rai, let e0i = �ra;0(ei)�ra;rb(ei) � � � �ra;rb(j�1)(ei); otherwise, let e

0
i =

�ra;rb(j�1)(ei)�ra;rb(j�1)(ei) � � � �ra;0(ei).
This completes the construction of accepting computation c0.
For each di, input(d0i) = input(di); and for each ei, either input (e0i) = input(ei) or

input(e0i) = input(ei)j. So there exist unique substring instances w0; � � �wl in z, and
unique non-� substring instances x1; � � �xl in z, such that

z = w0x1w1 � � � xlwl

input(c0) = w0x
j
1w1 � � � x

j
lwl

Note that when v 6= �, w0 = u and x1 = v. For each xi with i � 2 or v = �, there is
an ei0 such that xi = input(ei0), and the endpoints of ei0 are hr; rai and hr; rabi.

Suppose b is the rightmost cycle for which l � 1. (The case that no such b exists
will be considered momentarily.) By assumption, there are no one or two pumpable
substring instances in z, so l � 3. Hence there must be integers i 6= i0 such that ei; ei0
each accepts non-� input, and has endpoints hr; rai and hr; rabi. But then, at least
one of these states must be the endpoint of a cycle to the right of b that accepts non-�
input, contrary to our choice of b. So l = 0 for all cycles b.

Since b is productive but v = �, there must be some ei such that input(ei) 6= �. ei
cannot be a cycle (because it accepts non-� input). ei cannot have endpoints hr; rai
and hr; rabi, because that would cause l � 1. So ei must begin or end on a prede�ned
state.

Recall that because jzj � k, there exists a sequence of n = 2jQ0j consecutive
productive cycles in c. For each such cycle bi in c, there is a substring instance fi
in c that accepts non-� input, and either begins or ends on a prede�ned state; and
no two of the fi overlap. Because there are at least 2jQ0j such fi, by the pigeon-hole
principle there must either be some fi that begins on the �nal state of c, or some two
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Figure 9: 2-register SMFA to accept fwww j w = anb for some n � 0g

fi that begin on the same state, or some two fi that end on the same state. In any
of these cases, there will be a cycle in c accepting non-� input.

Since a contradiction has been reached, there must exist u; v; w; x; y such that
z = uvwxy, jvxj � 1, and for all i � 1, uviwxiy 2 L(M). 2

Corollary 6.7 (Examples)
The following languages have �rst-order register complexity 2.

fwww j w = anb for some n � 0g

fanbncn j n � 0g

2

Proof. That these languages cannot be accepted with just one register follows
easily from the Single-register Pumping Lemma (Theorem 6.6). 2-register machines
to accept them are shown in Figures 9 and 10. 2

Theorem 6.6 is rather weak. It says nothing about the positions within z of
the substring instances to be pumped, and puts no upper bound on their length.
Consequently, it has nothing to say about some important languages. For example,
L = fwww j w 2 ��g satis�es the condition of the theorem, because for every z 2 L
and i � 0, zi 2 L. Moreover, it is particularly unfortunate that every context-free
language satis�es the condition of the theorem.

6.3 Multi-register

An important property of single-register �rst-order SMFAs is that any cycle in an ac-

cepting computation can be pumped in such a way that a new accepting computation
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Figure 10: 2-register SMFA to accept fanbncn j n � 0g

can still be constructed. In the proof of the Single-register Pumping Lemma (Theo-
rem 6.6), this property was used to show that no more than 2 substring instances of
the input must be pumped.

Unfortunately, this property does not hold for �rst-order SMFAs with more than
one register. Figure 11 illustrates the problem. Here, the prede�ned path from qz
back to qx must be traversed exactly once in every accepting computation; if it is
traversed more than once, or not at all, the machine cannot possibly accept.

Figure 11 is a modi�cation of Figure 9. Just as the latter �gure could easily be
modi�ed to accept fw3 j w 2 Lg for any regular L, the former could be modi�ed
to accept fw5 j w 2 Lg for any regular L, thus disproving Conjecture 6.2. A slight
modi�cation of the machine, with the cycle on qy instead of qz, would accept fw4 j
w 2 Lg for regular L.

Although this modi�cation technique provides 2-register languages in which 4
or 5 substring instances have to be pumped simultaneously, there are still only 3
distinct substrings involved; it's just that two of these substrings are allowed to have
two instances each. It still appears likely that no 2-register machine can accept
fanbncndnen j n � 0g.

7 Conclusion

This paper has presented new results on the computational power of various classes
of SMFAs (Self-Modifying Finite Automata), notably on the class of single-register
�rst-order SMFAs. These results extend and augment results previously presented
in [RS93, RS94, RS95a, RS95b]. The treatment of number of SMFA registers as a
complexity measure was proposed. The property of path determinism was formally
de�ned, and investigated in relation to both computational power and register com-
plexity.
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Figure 11: 2-register SMFA to accept fw5 j w = anb for some n � 0g

An important outstanding conjecture on SMFAs was resolved. First proposed in
[RS93], the conjecture states that the �rst-order register complexity of fwr+1 j w 2 Lg
is r for some regular L. The conjecture was shown to be true for r � 2, but false for
r � 3. A weaker variation on the conjecture, consistent with proven results to date,
was proposed.

These conjectures are closely allied to the problem of formulating a pumping
lemma for n-register �rst-order SMFAs. A weak single-register pumping lemma was
derived, but the n-register case remains outstanding. Further research is indicated,
both to develop a lemma for n-register machines, and to provide a stronger single-
register lemma.
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