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Abstract

Scienti�c databases are usually large, distributed and dynamically changing. We address the problem of

e�cient processing of queries in scienti�c databases, especially in very large numerical databases. Previous

work has focused on how to store the database and the design of index structures for the e�cient access

of data. Recently more and more statistical methods have been used in query optimization. Those meth-

ods essentially attempt to approximate the distribution of the attribute values in order to estimate the

selectivity of query results.

We introduce a new methodology that uses regression techniques to approximate the actual attribute

values. Through analysis of the data, one derives a set of characteristic functions to form a \regression

database," a compressed image of the original database. Based on these functions, approximate answers to

queries may be provided within a pre-speci�ed tolerable error, but without the expensive search overhead

usually inherent with the use of indexing techniques.

We propose a framework to build regression databases. An experimental prototype is implemented to

evaluate the technique in terms of realizability, e�ciency and practicality. The results demonstrate that

our approach is complementary to conventional approaches and to statistical methods.
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1 Introduction

Scienti�c databases are usually large, distributed and dynamically changing. The e�cient processing of

queries in database systems, and speci�cally in very large numerical databases is an important research

problem [8, 13, 16, 17, 28]. When the precise attribute values are not signi�cant in answering a query,

using an approximate representation can reduce the storage space for loading the database and the time

for searching the large amount of information. Through a good choice of representation, a class of queries

including aggregate queries can be supported. We propose to use regression techniques to approximate the

actual attribute values of the data.

Regression analysis is a statistical technique for investigating multidimensional/multivariate data. It

provides a conceptually simple method for establishing a functional relationships among variables [2]. We

applied Least Squares Regression, which minimizes the sum of squares of di�erences between the observed

values and the corresponding approximate values, to compute the set of coe�cients of the �tting function.

We refer to databases that use regression functions to model numerical data as \regression databases."

Queries on actual data can be mapped to queries on regression databases. Query answers, evaluated

against the regression database, are an approximation of the exact answers against the actual data.

The contributions of this work include the development of a framework to build regression databases for

approximate query answering: �rst we analyze the data to choose a function that best �ts it and a regres-

sion technique to compute the set of coe�cients of the �tting function. Second we derive the coe�cients

from the data; third we maintain the regression database using adaptive techniques. Di�erent mainte-

nance algorithms, that deal with di�erent �tting functions and criteria, were developed. An experimental

prototype was implemented to evaluate the approach in terms of realizability, and e�ciency.

Section 2 introduces regression analysis and curve �tting. A general framework to build regression

databases is presented in Section 3, while the details of algorithms which were developed and implemented

are described in Section 4. An evaluation of these algorithms is then presented in Section 5. Finally Section

6 concludes this work and gives a direction for future research.

2 Regression Analysis and Curve Fitting

We overview linear regression models in regression analysis. The basic form of that model is

Y = �0 + �1X1 + �2X2 + � � �+ �pXp + e

where X1; X2; � � � ; Xp are independent variables or explanatory variables, and Y is the dependent variable

or response variable. �0; �1; �2; � � � ; �p are called the regression coe�cients or regression parameters and

determined from the data. The error e is assumed to be a random disturbance with mean 0 and a common

variance denoted by �2.

When we say that a model is linear or nonlinear, we are referring to linearity or nonlinearity in the

parameters [6]. The value of the highest power of a predictor variable in the model is the order of the

model. For example,

Y = �10 + �11X + �12X
2 + e

is a second-order (in X) linear (in the �'s) regression model.

Xi can be X2

i , 1=Xi, XiXj , Xi=Xj , or logXi, sinXi, X
0

i , or any other transforms of Xi, or combination

of any of these transforms. These forms can be chosen into a regression model as the basis �tting function.

Additional details can be found in [1, 2, 6, 14].
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Regression Techniques Domain of Optimality

Least Squares when error distribution is exactly normal
Least-Absolute-Deviations when error distribution has heavy tails

and is e�ective at controlling bias
Huber M-estimate when error distribution has heavy tails
Nonparametric when error distribution has heavy tails
Bayesian prior information are taken into account

in constructing an estimate
and produce direct probability statements
about the parameters

Ridge when there are collinearities
among the independent variables

Table 1: Classi�cation of regression techniques

The objective is to estimate the regression coe�cients from the observed data so that the regression

model best represents the set of observations. There are various regression methods that correspond to

di�erent de�nitions of what \best represents" stands for. Table 1 classi�es some of the commonly used

regression techniques and briey describes under which conditions they are optimal. We discuss the Least

Squares regression (LSR) method. Additional details on the other methods is found in [1, 4].

Consider a one-dimensional data set with n observations and p independent variables. Let Y = X� + e

where

Y =

2
6664

y1
y2
...
yn

3
7775X =

2
6664

1 x11 x12 � � � x1p
1 x21 x22 � � � x2p
... � � �
1 xn1 xn2 � � � xnp

3
7775 � =

2
666664

�0
�1
�2
...
�p

3
777775
e =

2
6664

e1
e2
...
en

3
7775 :

The LS method minimizes the squares of the residuals, that is, minimizes
Pn

i=1 e
2. The LS estimate

is the best linear unbiased estimate [1]. The disadvantage is that it assumes that the random errors are

normally distributed and allows \outlying" data points to inuence the �nal determination of the regression

function parameters.

Before using regression techniques, we need to choose a set of basis functions that may �t the set

of observations. The problem to be addressed relates to which functions and regression techniques to

choose. The data distribution and the error distribution need to be analyzed. For example, if the data

set has periods one may use trigonometric functions. If the error population is assumed to be normally

distributed, Least Squares Regression may be used. In this work, we focused on two classes of basis

functions: polynomial interpolation and Fourier Series.

Polynomial Interpolation

The most elementary notion of curve �tting is that of interpolation [14, 26]. The goal of interpolation is

to derive coe�cients of a polynomial function that exactly �ts a given set of data points. For regression

databases, we are interested in the case where there are more conditions to be satis�ed than parameters

to be adjusted. For example, we may be given

2



f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6;

which has seven coe�cients, and we are required to �nd the set of coe�cients which best approximates a

set of i >> 7 observations (xi; fi) (fi denotes f(xi)). we need to solve the matrix equation XA + E = F

where:

X =

2
6664

1 x1 x2
1

x3
1

x4
1

x5
1

x6
1

1 x2 x2
2

x3
2

x4
2

x5
2

x6
2

...
1 xn x2n x3n x4n x5n x6n

3
7775A =

2
666664

a0
a1
a2
...
a6

3
777775
E =

2
6664

e1
e2
...
en

3
7775F =

2
6664

f1
f2
...
fn

3
7775 :

It is well known that A = (XTX)�1XTF gives the coe�cients that minimize the sum of the squares

of di�erences between the observations and the approximations [24].

That is, with LSR,
Pn

i=1(
~fi � fi)

2 =
Pn

i=1 e
2

i is minimized, where

~fi(x) = ~f (xi) = a0 + a1xi + a2x
2

i + a3x
3

i + a4x
4

i + a5x
5

i + a6x
6

i

and (xi; fi) are the observations, i = 1; � � � ; n.

Fourier Series

Polynomial interpolation techniques are not always satisfactory. They usually su�er from rounding error

propagation problems. Another set of basis functions can be derived with Fourier Series of the form

F (x) =
a0
2
+ a1 cosnx+ b1 sinnx+ a2 cos 2nx+ b2 sin 2nx

+a2 cos 3nx+ b2 sin 3nx+ � � �

where n = 2�
L

and L is the interval length (0 � x � L). We have XA � F , with

X =

2
6664

1 cosnx1 sinnx1 cos 2nx1 sin 2nx1 cos 3nx1 sin 3nx1 � � �
1 cosnx2 sinnx2 cos 2nx2 sin 2nx2 cos 3nx2 sin 3nx2 � � �
...
1 cos nxm sinnxm cos 2nxm sin 2nxm cos 3nxm sin 3nxm � � �

3
7775 ;

A =

2
666666666664

a0
a1
b1
a2
b2
a3
b3
...

3
777777777775

; F =

2
6664

f1
f2
...
fm

3
7775 ;

We still use LSR, with A = (XTX)�1XTF .

Increasing the number of terms of the Fourier series does not su�er from the rounding error problem as

much as polynomials. But simply increasing the number of terms will need additional storage space and

may not improve the performance much.
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3 Framework for Approximate Query Answering

In this section, we propose a general framework to build regression databases and discuss some issues

associated with the framework.

3.1 Framework

Given a multidimensional/multivariate data set, the general framework for building and using regression

databases includes three main steps:

1. Data Analysiswhich can be viewed as model construction. It is used to determine the characteristic

of the data distribution. Within this step, a class of curve �tting functions as well as the regression

technique that may be used to �t the data set are determined and selected.

2. Regression Function Generation. Based on the chosen regression technique and curve �tting

methods, the set of coe�cients such that the �tting function best �ts the data set are computed. In

our work we chose LSR coupled with the class of polynomial interpolation or Fourier Series as basis

functions. We also propose and test a variation of LSR which is referred to as \relaxation" LSR.

One must then check if the regression function \best" represents the data set. If the relative error

between the actual value and the corresponding function value is within ", the function thus derived

is considered as �tting the data points.

3. Regression Function Maintenance. To maintain the regression database, space hypercubes are

used as bounding boxes for data sets. A �tting function is associated with the region covered by a

bounding hypercube. In response to an update, the objective is to adaptively modify the regression

function associated with the bounding box which is the target of the update.

For example, after a new data point is added to a region, one needs to determine the suitability of

the regression function associated with that region. If the relative error between the new data point

and the corresponding function value is greater than a prespeci�ed tolerable error ", a new function

needs to be derived (Step 2). From time to time, recomputing a new function that satis�es " may not

be possible. In this case, the region is split into two subregions, by dividing the bounding hypercube

along one dimension. Then a �tting function is derived for each region (Step 2). Optionally, one can

just derive a new function for the region containing the new data point, and use the previous one

for the other region. In some situations, it may be possible to switch to another class of basis �tting

functions and regression technique, which implies restarting from Step 1.

3.2 Issues

There are some design and research issues associated with each step:

1. Data Analysis

It is often the case that a single function is not su�cient to approximate the data set within ". In

many cases, the data set needs to be divided into several segments so that each segment can be

accurately approximated.

Furthermore for a set of data segments, di�erent classes of basis functions and regression techniques

may need to be associated with one or more segments. The choice of a suitable function depends on the
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data distribution of the segment. For example, if the segment has periods we may use trigonometric

functions; if the segment has poles, we may use rational functions.

For the work reported here, we have analyzed the use of Fourier series and polynomials only. Al-

though the appropriate regression technique depends on the nature of the data, and should be chosen

dynamically, we used the LSR technique. Further investigations on this subject will be necessary.

Finally, the problem associated with the selection of a suitable data structure to hold the bounding

boxes and associated �tting functions is within the �eld of study of indexing techniques, and out of

our current scope. One can use current available access index structures.

2. Regression Function Generation:

For this step, issues associated with e�ciency, computation and storage overhead are considered.

Using all data points in a segment to compute the coe�cients may be slow. To speed up the

computation, one might just want to use a subset of representative data points to compute the

coe�cients without losing much accuracy. Sampling techniques have been proposed for that purpose

[5, 10, 11, 20, 21].

The space required to store the computed matrix depends on the number of data points \n" as well as

the number of coe�cients of the �tting function. Increasing the number of coe�cients may increase

the accuracy of the �tting function, at the expense of an increase in storage overhead. Assume f0
is the mean size of segments and d is the dimension of the data set. To store the whole segment we

need 8f0(d+1) bytes, assuming 8 bytes per point. For each segment, we need to record the regression

technique and �tting function types (1 byte each), as well as the coe�cients cd of the function (8

bytes each)1 . Therefore the ratio of the size of the regression database to the size of the original

numerical database, referred to here as compression ratio, is expressed as

8f0(d+ 1)

2 + 8cd
�

f0(d+ 1)

cd
:

3. Regression Function Maintenance.

Issues associated with this step include update propagation, split criteria and error.

Immediate or delayed updates may be adopted. Two of the algorithms proposed and studied in this

work use delayed update propagation with the use of overow arrays. Whenever a data segment

needs to be split into two new segments, di�erent split criteria can be followed. For example an

equal density criterion would result into each segment having the same number of data points, while

an equal range criterion results into segments that cover equal absolute ranges of the dimension of

the split. Another technique would be to chose the boundary between segments as the value of the

newly inserted data point along the split. Relative error and absolute error both have advantages

and disadvantages. Which should be chosen depends on the applications [4].

4 Implementation

We implemented three di�erent algorithms within the framework. The implementation and evaluation

parameters for each algorithm are tabulated in Table 2. The algorithms were tested using a 2-dimensional

1This estimate is pessimistic, as usually 8 bytes double-precision representations may not be needed. Furthermore, the

storage of a point should include the X and Y values for a 2-dimensional data set.
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Algorithm A: Naive B: Delayed C: Relaxation
A: Segmentation B: Segmentation C: LSR

Regression Least Square Regression Relaxed LSR
technique
Basis function Polynomial interpolation Fourier series
" relative relative absolute

error error error
Split criterion equal density
Test databases synthetic synthetic synthetic solar solar temperature

Table 2: Parameter sets for the three algorithms

synthetic database and two real databases (refer to Section 5). Each algorithm has two main parts that

are briey described: a pre-processing module and an update module. We also discuss how queries are

processed.

4.1 Algorithm-A: Naive Segmentation

This is a basic naive algorithm that essentially keeps splitting the data into smaller segments until each

individual data set is properly �tted. The two modules as as follows:

1. Pre-processing

(a) Start with one bounding box;

(b) Fit the original data with a set of coe�cients;

(c) For each bounding box

f While there exists a point whose relative error is greater than ", split the data set into two

bounding boxes;

for each bounding box repeat from step (b);g

(d) Store the sets of coe�cients with their corresponding bounding boxes and return;

2. Adding a new data element

(a) Find the bounding box covering the new data element;

(b) Using the corresponding �tting function, compute the approximate value of the new point;

(c) If the relative error of the estimate to the true value is not less than "

fsplit the bounding box into two regions;

for each bounding box, call the pre-processing module; g

4.2 Algorithm-B: Delayed Segmentation

This algorithm follows a \delayed commitment" strategy. The idea is to associate an \overow" array

with each bounding box. This structure can contain at most N points and is used to delay splitting or

merging the data segments and thus recomputing the coe�cients of �tting functions. The two modules as

as follows:
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1. Pre-processing

(a) Start with one bounding box;

(b) Fit the original data with a set of coe�cients;

(c) For each bounding box

fWhile there exists a point whose relative error is greater than ", store it in the corresponding

overow array;

If the overow structure is full, split the data set into two bounding boxes and inde-

pendently restart from step (b);g

(d) Store the coe�cients with their corresponding bounding boxes and return;

2. Adding a new data element

(a) Find the bounding box covering the new data element;

(b) Using the corresponding �tting function, compute the approximate value of the new point;

(c) If the relative error of the estimate to the true value is not less than "

fStore it in the corresponding overow array. If the array is full,

Split the bounding box into two bounding boxes;

for each bounding box, call the pre-processing module;g

4.3 Problems with LSR

The main characteristic of LSR is that it advocates \egalitarianism"which makes \good" points and \bad"

points all become \fair" points. In other words, it gives great emphasis to large errors, and little emphasis

to small ones. For example, it prefers 10 errors of size 1 to one error of size 4 because 42 >
P

10

k=1 1
2 = 10.

Consequently, the presence of some \outlying" data points can distort the trend of the �tting curve. For

example, using a synthetic database (Table 3), we observe that when using a 6th order polynomial �t and

with "=0.05, �tting the 1000 points in one bounding box results in only 518 \good" points whose relative

errors are within 0.05, although there are 566 synthetically generated \good" points. This is because LSR

advocates \egalitarianism" which makes \good" points and \bad" points all become \fair" points.

Therefore, to get a reasonable �tting curve which �ts most data points, it is better to delete the

\outlying" data points �rst, then �t the remaining data points. In Figure 1 the curve �tted by LSR is

shown in solid line. If we delete the two \outlying" data points and �t the remaining data points, we get

the more reasonable dashed line curve.

The objective is then to �nd the \best" function that can �t most data points within ". In other words

we want to minimize the the number of points in the overow array. To solve this problem, we propose a

heuristic with Algorithm-C which we refer to as the relaxation �t or relaxation LSR.

4.4 Algorithm-C: Relaxation LSR

This algorithm aims at �tting most data points by reducing the number of \outlying" points in the overow

array. This should result in an increase of the compression ratio.

If we delete all \bad" points at the same time, then many \good" points will also be deleted since they

appear \bad" with respect to the wrong �tting curve. It is best to incrementally delete \bad" points, by

deleting the \worst" points �rst. This technique is referred to as \relaxation LSR."
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Figure 1: E�ect of outliers on the goodness �t of LSR

The issue is to determine which points are \bad," which are \worse" and which are the \worst." This

determines the width of error levels. Our proposed algorithm is based on a heuristic observation: Because

the \worse" the points are, the less the number of the points, we divide the \bad" points into di�erent

width levels. The largest error level is " + 10L; the second largest one is " + 6L; the third largest one is

"+3L; the fourth largest one is "+L; and the �fth largest one is ". The widths between the two successive

error levels are 4L, 3L, 2L, and L, respectively. One can change the number of levels in the algorithm.

The more the number of the error levels, the better the results; however, the longer the time it takes to

iteratively �t the data. The two modules as as follows:

1. Pre-processing

(a) Start with one bounding box;

(b) Fit the original data with a set of coe�cients;

(c) If maximum relative error � ", then store the set of coe�cients and return;

(This means there is no point whose relative error is larger than ")

(d) If maximum relative error � i � "; i = 2; 3; 4; 5; 6;7; 8; 9;10, then L = (i� 1) � "=10; Else, L = ".

i. Divide the points into 5 levels with relative errors � ", � " + L, � " + 3L, � " + 6L and

� "+ 10L respectively;

ii. Iteratively delete the points with relative errors > "+ 6L, > " + 3L and > "+ L, and each

time �t the remaining points with a set of coe�cients;

iii. Keep the set of coe�cients which minimizes the number of points with relative errors > ".

iv. Store the points with relative errors > " in an overow array;

2. Adding a new data element

This module is similar to the one for Algorithm-B.
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4.5 Query Processing

In the case of Algorithm A, a query is processed by applying it against the regression database returning

an approximate answer. For Algorithms B and C, the overow structures are used �rst. If the query can be

answered then the answer is returned. If not, then the query is processed against the regression database,

returning an approximate answer.

5 Analysis and Evaluation

5.1 Test Data Sets and Evaluation Criteria

The di�erent algorithms were evaluated with 3 di�erent data sets

Synthetic data set

The synthetic data set consists of 1,000 data points, generated from a 6-th order polynomial function

perturbed by multiplying by a uniform random variable, keeping the average relative error within 5%.

The second row in Table 3 shows the distribution of perturbations of the synthetic data set. The third

and fourth rows show the distribution of the relative errors of approximate values �tted with a 6-degree

and an 8-degree polynomial respectively; with respect to the corresponding actual values.

� :05 .05-.10 .10-.15 .15-.20 .20-.25 .25-.30 > :30
Synthetic 566 327 93 13 1 1 0
Degree=6 518 318 95 29 16 22 18
Degree=8 518 306 101 34 13 19 22

Table 3: Data points distribution as a function of the error level for the synthetic data set

Solar data set

The ERB-SOLI data set from NASA's GEDEX CD-ROM [22] was used. It consists of 4,794 data points

on daily averages of solar irradiance, collected by the NIMBUS-7 satellite between 1978 and 1991.

Temperature data set

The temperature data set was extracted from the GEDEX CD-ROM as well. It consists of a more restricted

set of average monthly temperatures over a 20 year period for a speci�c spatial location.

Evaluation Criteria

Some of the criteria which can be used to evaluate the performance of regression database are:

1. Compression ratio. This parameter is a measure of how many data points can be mapped to a single

function in practical situations.

2. Precision. The accuracy of answers provided by the regression database to a class of queries including

aggregate queries (e.g. COUNT, RANGE, AVERAGE).
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3. Robustness. This test evaluates the behavior of the method in the presence of missing information

from the original database..

4. Query speed. The response time in answering a query by the regression database.

5. Maintenance E�ciency. This relates to the computational as well as the I/O overhead associated

with the adaptive maintenance techniques.

Our current evaluation focused on the compression ratio, precision and robustness of the techniques.

5.2 Tests with the synthetic database

� Algorithm-A: We observed that, when attempting to �t the data with a 6th degree polynomial, the data

set is split repetitively and 153 bounding boxes are generated. The algorithm is essentially free running

with no control on the number of splits. As expected, it results in low compression ratios, due to its high

susceptibility to \outlier" points.

� Algorithm-B:

Table 5.2 illustrates the storage overhead required as a function of the average overow length. The

test case was with a 6-degree polynomial �t and for " = 0:05.

# of segments Storage overhead Average
(words) \outlying" points/box

31 1457 11.65
31 1519 11.65
28 1428 12.93
24 1272 15.46
22 1210 17.00
21 1197 18.05
19 1121 20.05
19 1159 20.05
19 1197 20.05
19 1235 20.05
17 1139 23.00

Table 4: Storage overhead correlated to the average number of \outlying" points in each bounding box.
(Algorithm-B, polynomial �t of degree 6, and " = 0:05)

As expected, we observe that the number of bounding boxes decreases as we increase the capacity of

the overow arrays. The resulting curves can be used for interpolation, but the storage overhead associated

with this algorithm is still unacceptable.

� Algorithm-C:

Table 5 shows data points distributions with respect to the relative error levels, when �tting the synthetic

data set with a 6-degree polynomial using Algorithm-C. One can observe that there is a limit to deleting

\bad" points. If this limit is exceeded, the performance will degrade. For example consider the number of

points whose relative error is with 0.05. Deleting points whose relative errors are greater than 0:1 (iteration

4), results in a 522 points instead of the 544 points when deleting the points with relative error greater

than 0.2 (iteration 3). Algorithm-C adjusts by picking the best �t (iteration 5). Furthermore, due to the
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Deletion # points relative errors distribution
iteration deleted � 0:05 � 0:1 � 0:2 � 0:35 � 0:55 > 0:55
#1 0 518 318 124 23 6 11
#2 17 517 319 124 23 0 0
#3 23 544 300 115 1 0 0
#4 116 522 228 42 2 0 0
#5 0 544 301 128 16 3 8

Table 5: Fit of synthetic data set with 6-degree polynomial using Algorithm-C

use of a polynomial �tting function, the compression ratio is still unacceptable in most situations and was

noted to be around 2.18 for (" = 0.05).

We observed that when x is large, the 6-degree polynomial is dominated by c6. Then it is not worth

calculating c0 to c5. On the other hand, if a 5-degree polynomial can �t the data set well, there is no

gain achieved by increasing the degree to 6 because c6 will turn out to be close to zero. Furthermore,

polynomial curve �tting functions have a rounding error problem. The errors may propagate as the degree

is increased, which deteriorates the accuracy of the result. For the synthetic data used, it is expected that

this phenomenon occurs if the order of the polynomial �tting function is increased from 6 to 8.

Fourier series are often useful when polynomial interpolation techniques are not 2. Increasing the num-

ber of terms of the Fourier series does not su�er from the rounding error problem as much as polynomials.

But simply increasing the number of terms will need additional storage space and may not improve the

performance in a noticeable way. We illustrate the use of Fourier series with real data sets evaluations.

5.3 Tests with real databases

Fourier Series versus Polynomial Interpolation

degree Polynomial Fourier Series
/term maximum average maximum average
6 0.002136 0.001328 0.002197 0.001341
8 0.002182 0.001311 0.002145 0.001331
10 0.002146 0.001299 0.002077 0.001314
12 0.002143 0.001300 0.002090 0.001307
14 0.002228 0.001327 0.002054 0.001300
16 0.002169 0.001301 0.002052 0.001298
18 0.002203 0.001317 0.002029 0.001296
20 0.002145 0.001296 0.001976 0.001294
30 0.002277 0.001400 0.001878 0.001251
40 0.002108 0.001279 0.001864 0.001229
50 cannot calculate 0.001855 0.001215

Table 6: Relative errors for solar data set �t with polynomial versus Fourier series

The objective here is to use algorithm C and �nd a polynomial function or a Fourier series of n terms

that �t the Gedex solar data within " = 0:002. In this test, we attempted to �t the data in one box and

2One could actually evaluate other techniques such as Fourier Transforms
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computed the relative errors. Table 5.3 shows maximum relative errors and average relative errors when

�tting with polynomial versus Fourier series while the degree of the polynomial and the number of terms of

Fourier series are increased. The maximum relative error was set to � 0:002. One can observe that using a

6-degree polynomial to �t the solar data set outperforms the corresponding 6-term (and even the 8-term)

Fourier series (Figures 2 and 3). On the other hand, neither of them satis�es the requirement. Increasing

the degree of the polynomial does not improve the performance; the maximum relative errors are worse

and the average relative errors are not stable. A 50-degree polynomial cannot get the precise coe�cients

due to the propagation of rounding errors. On the other hand when we increase the number of terms of

the Fourier series, the maximum relative errors and the average relative errors decrease. A 20-term Fourier

series satis�es the requirement (Figures 4 and 5).

1368

1369

1370

1371

1372

1373

1374

1375

0 500 1000 1500 2000 2500 3000 3500 4000 4500

solar.db
6-degree Polynomial

Figure 2: Fit of solar data set with 6-degree polynomial

Fourier Series with Algorithm-C

Deletion # points relative errors distribution
iteration deleted � :0005 � :00065 � :00095 � :0014 � :002 > :002
#1 0 4157 301 198 107 31 0
#2 31 4186 267 198 109 3 0
#3 112 4230 210 199 12 0 0
#4 211 4229 183 28 0 0 0
#5 0 4230 210 199 107 48 0

Table 7: Fit of the solar data set with a 50-term Fourier Series using Algorithm-C

Table 7 shows the distribution of the data points with respect to the relative error levels, when �tting
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Figure 3: Fit of solar data set with 6-term Fourier series

the solar data set with a 50-term Fourier Series using Algorithm-C. If " is set to 0.002, the compression

ratio is 188:1, which is a practically useful ratio (Refer to Table 8). If " is set to 0.0005 (illustrated in Figure

6), the compression ratio drops to 8.16:1. Obviously, lower precision imply higher compression ratios. We

observe that for both test cases, the precision is high and the query speed is negligible. On the other hand,

the o�-line processing overhead is noticeable, but is acceptable.

" (relative error) 0.0005 0.002
compression ratio 8.160 188.0
query speed negligible
o�-line preprocessing time 1 min 25 sec 20 sec
running on Sun Sparc 10

Table 8: Fit of solar data set with 50-term Fourier series

We further �tted the, GEDEX extracted, temperature data set with a 40-term Fourier series using

Algorithm-C, setting (absolute error) " = 6oC (Table 9 and Figure 7). We observed high precision in the

results and negligible query speed. The o�-line algorithm needed 4 seconds to preprocess. On the other

hand, the compression ratio was low and is attributed to the small data set under consideration. We can

expect that increasing the number of data points while keeping the number of terms of the Fourier series

constant, we can achieve larger compression ratio.
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Figure 4: Fit of solar data set with 20-degree polynomial

" (absolute error) 6 11
compression ratio 7.377 10.975
query speed negligible
o�-line preprocessing time 4 sec negligible
running on Sun Sparc 10

Table 9: Fit of temperature data set with 40-term Fourier series

Robustness tests

Robustness tests were performed on both Algorithm B and C, using either a 6-degree polynomial or a

50-term Fourier series.

Algorithm-B on the synthetic data set

For this case we �tted the data points with a 6-degree polynomial function. We used the �tted curve to

compute the average by integration and compared it to the true average (which is 11.504342). We then

successively deleted 10, 20, 50, 100 data points. Each test was repeated 10 times and the results averaged.

Relative errors are tabulated in Table 10 It is observed that the relative errors are stable and thus the

function is reliable.

Algorithm-C on the solar data set

Algorithm-C was tested using a 50-term Fourier series. The data set included 4,794 data points. We

performed the test over intervals of di�erent widths over the range of data values. For each widths of an
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Figure 5: Fit of solar data set with 20-term Fourier series

# of points 1,000 990 980 970 960
Average by Integration 13.179896 13.188515 13.191811 13.226879 13.174106
(6-th order polyn.)
Relative .145645 .146394 .146681 .149729 .145142
Error

Table 10: Robustness of Algorithm-B for an AVERAGE Query on the synthetic database

interval (referred to as a sliding window), th test was repeated 10 times and the results averaged. The

sliding window width were 5%, 10%, and 20% respectively. The average over each interval was computed

using the real data set, and then integration over the �tting function.

Finally, we randomly deleted 5% (and 10%) of the data set and �tted the remaining points. We then

repeated the tests with the sliding windows. The results are tabulated in Table 11. One can truly observe

that the relative errors are very small and stable. For example, even when deleting 10% of the data, the

�tting function still reports stable and accurate query results. The average of the relative errors is 10�6.

This would be extremely valuable in noisy environments.

5.4 Comparisons with other approaches

No existing methods that we know of supports the notions of approximate query answering based on

regression techniques, similar to the ones presented in this work.

Previous work on query optimization concentrated on designing fast index structures. Our approach

can quickly respond to queries because we avoid searching the index, but simply calculate the �tting
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Figure 6: Fit of solar data with 50-term Fourier series

function and return the approximating value 3. Meanwhile, we do not need to store the index structure in

addition to the original database. We only need to store the regression database which includes the sets

of coe�cients of the �tting functions and the overow arrays. Yet, our approach is achieved at the cost of

the accuracy of the query results.

Recent work on query optimization essentially attempt to map the distribution of the actual data by

statistical methods [7, 9, 12, 15, 18, 19, 20, 23, 25, 27]. We intend to map the actual data directly against

regression functions. With histogram methods [18, 19, 23, 25], one needs to store the detailed statistics

about the database. Parametric methods have a problem [7]: if no known statistical model �ts the actual

distribution, any attempt to approximate the distribution will be in vain. Sampling methods are rather

costly due to run-time disk I/O [9, 12, 15, 20]. Only curve �tting methods are similar to our approach [27].

Our approach can provide accurate approximating functions to any kind of data set since the functions are

derived from the characteristics of the actual data.

Chen and Roussopoulos proposed a method of approximating the attribute value distribution by a

polynomial function using a query feedback mechanism [3]. Their approach is useful when queries cover a

small range of the database. By contrast, our approach provides approximate query answers over the full

range and is based on the actual data values.

3When there are more than one bounding box associated with a �tting function in our regression database, we �rst

search into which box the queried data point is falling, then we can use the corresponding �tting function to compute the

approximating value. However, searching for the box within some boxes is much faster than searching for a data point within

thousands of data points.
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Figure 7: Fit of temperature data with 40-term Fourier series

6 Conclusions and Future Work

A general framework for building regression databases was proposed. Regression databases can be used

for approximate but e�cient query processing in large scienti�c and numerical databases. Queries on

databases can be mapped to queries on the associated regression functions. Answers from �tting functions

are used as an approximation of the exact answer against the actual data.

To evaluate the ideas, we implemented three di�erent algorithms: a naive non-controlled algorithm, a

controlled split algorithm and a third algorithm that uses a \relaxation" of LSR to cope with outlier data

points. We performed various experiments using a synthetic as well as real data sets from the GEDEX

database [22]. Experimental results indicate that our approach is promising in that it can achieve a 188:1

compression ratio over the original database while at the same time being able to provide answers to queries

within a relative tolerable error as low as 0.002.

In situations where precise values are not necessary (for example, to estimate temperature and rain-

fall), our approach is useful. In addition, our approach is robust when the database su�ers from loss of

information. Moreover, the derived regression functions can be used for extrapolation, providing forecast

for future. This would be part of future research on extrapolation techniques.

To reduce the space overhead of the regression database while at the same time providing accurate

answers to queries, the regression functions should be able to �t most data points in the original database.

However no known regression technique exists for this purpose. We used LSR as a starting point in our

framework, and proposed a technique called \relaxation LSR" to overcome the disadvantages of LSR.

Several topics exist for future research. Many were outlined in Section 3. Furthermore, we are planning

to address other topics including investigating the use of sampling techniques in order to speed up the

computation of regression coe�cients; further evaluation of di�erent adaptive algorithms for curve �tting
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#points interval AVERAGE by sum. AVERAGE by int. rel.err
4794 5% of 0-4794 1371.910162 1371.894578 -0.000011

10% of 0-4794 1371.846219 1371.844480 -0.000001
20% of 0-4794 1371.773551 1371.772805 -0.000001

4554 5% of 0-4794 1372.160800 1372.165089 0.000003
10% of 0-4794 1372.079334 1372.081469 0.000002
20% of 0-4794 1371.950266 1371.949222 -0.000001

4314 5% of 0-4794 1372.230063 1372.241515 0.000008
10% of 0-4794 1372.147216 1372.148703 0.000001
20% of 0-4794 1372.023440 1372.021121 -0.000002

Table 11: Robustness of Algorithm-C for an AVERAGE query

very large numerical data sets, and expanding on the prototype. Finally we will be investigating the use

of such techniques to extend current data models to include interpolation, curve �tting and extrapolation

techniques as basic constructs in numerical databases. Other areas of application, such as use for multi-

media audio and video data signatures will be investigated.
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