
WPI-CS-TR-95-2 August 1995

Self-Modifying Finite Automata |
Basic De�nitions and Results

by

Roy S. Rubinstein

and

John N. Shutt

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Self-Modifying Finite Automata |

Basic De�nitions and Results

Roy S. Rubinstein

roy@cs.wpi.edu
&

John N. Shutt

jshutt@cs.wpi.edu

Computer Science Department

Worcester Polytechnic Institute

Worcester, MA 01609

August 1995

Abstract

We formally de�ne the Self-Modifying Finite Automaton (SMFA), a model
of computation introduced in [RS93, RS94, RS95], as a subclass of a new more
general model, the Self-Modifying Automaton (SMA). SMAs are similar to
standard �nite automata, but changes to the transition set are allowed during
a computation. An SMFA is constrained in that it can have only �nitely many
di�erent modi�cation instructions, and the e�ect of each instruction must be
computable.

1 Introduction

The Self-Modifying Finite Automaton (SMFA) is a model of computation introduced
in [RS93, RS94, RS95]. SMFAs are similar to standard �nite automata, but changes
to the transition set are allowed during a computation. While retaining much of the
simplicity of �nite automata, SMFAs have greater power. A weak form of SMFAs has
been shown to accept the class of metalinear languages, as well as some other classes
of context-free and even non-context-free languages [RS94, RS95].

The treatment of SMFAs in previous papers, although precise and su�ciently
detailed for initial research, has not been accompanied by mathematically rigorous
de�nitions. This paper provides the missing formalism. Initially, a still more general
model of computation, the Self-Modifying Automaton (SMA), is de�ned. A variety
of constraints are then used to de�ne subclasses of SMAs. SMFAs comprise one of
these subclasses.

The main results presented in this paper are that the general SMA model has
arbitrary computational power (that is, arbitrary languages are SMA-decidable); all

SMFA languages are recursively enumerable; and a relatively constrained subclass of
SMFAs is Turing-powerful.

2 SMAs

Throughout this document, for any alphabet X, let X� = X [f�g. Equivalently,
X� = fw 2 X� such that jwj � 1g.

De�nition 2.1 (SMA basis)
An SMA basis is a tuple B = h�; Q0; R;Ai, where �, Q0, and R are pairwise

disjoint �nite sets of symbols, A is a set, and Q0 and A are nonempty. � is called
the input alphabet, Q0 the set of prede�ned states, R the set of registers, and A the
set of modi�cation actions, of B.

The domain of states over B is Q = Q0 [(R� IN). That is, a state is either a
prede�ned state, or an ordered pair hr; ki of a register r with a nonnegative integer
k. The intent is that hr; ki is the kth state created via register r.

The domain of transitions over B is D = Q����Q�A. That is, a transition
is a tuple hq; s; q0; ai, where q; q0 2 Q are the source and destination states of the
transition, s 2 �� is the input read, and a 2 A is the modi�cation action taken.

The domain of transitions between prede�ned states over B is D0 = Q0 ��� �
Q0 �A. Note that D0 � D.

The function states : P(D)! P(Q) is de�ned by

states(X) = fq j 9s; p; a such that hq; s; p; ai 2 X or hp; s; q; ai 2 Xg

That is, if X is a set of transitions, then states(X) is the set of every state that
is the source or destination of some transition in X. (Functions are total unless
otherwise stated.)

The domain of con�gurations over B is C = Q� (R! IN)�P(D)���. That
is, a con�guration is a tuple hq; �; �; wi, where q 2 Q is the current state, � : R! IN
is a function mapping each register to a nonnegative integer (the \current value"
of that register), � 2 P(D) is the current set of transitions, and w is the remaining
input. The null register function over B is the unique function �0 : R! f0g; that
is, �0(r) = 0 for all r 2 R.

Given any con�guration c = hq; �; �; wi 2 C and any transition d = hp; s; p0; ai 2
D, d is allowed from c i� q = p, d 2 �, and s is a pre�x of w. A pair hc; di 2 C �D
is allowable, sometimes denoted by the predicate allow (c; d), i� d is allowed from c.
The domain of all allowable pairs is denoted allow (C;D).

The domain of modi�cation functions over B is A = allow (C;D)! P(D). The
intent is that, when taking an allowed transition d 2 D from a con�guration c 2 C,
a modi�cation function � 2 A determines a set �(c; d) of transitions to be added
to or deleted from the transition set of c.

2

The null modi�cation function over B is the unique function �0 2 A such that
�0(c; d) = fg for all allowable hc; di. 2

Lemma 2.2 (Allowable pairs)
If B is an SMA basis, then there exists an allowable pair over B. 2

Proof. Suppose B = h�; Q0; R;Ai is an SMA basis. Since Q0 and A must be
nonempty, suppose q 2 Q0 and a 2 A are elements of these sets. Let d = hq; �; q; ai,
and c = hq; �0; fdg; �i. (Recall that �0 is the null register function over B.) Then
d 2 D, c 2 C, and hc; di is an allowable pair. 2

De�nition 2.3 (SMA)
A self-modifying automaton (SMA) with basis B = h�; Q0; R;Ai is a tuple

M = h�; Q0; R;A; S; F; �0; �; �
0i

such that S 2 Q0, F � Q0, �0 � D0, and �;�0 2 A. S is called the start state, F
the set of �nal states, �0 the initial set of transitions, � the addition function, and
�0 the deletion function, of M .

The initial con�guration of M on input w 2 �� is cw = hS; �0; �0; wi 2 C.
The step function for M is a partial function step : allow (C;D)! C as follows.

Suppose hc; di is an allowable pair; then step(c; d) = hq0; �0; �0; w0i whenever all these
values are well-de�ned as follows.

c = hq; �; �; wi
d = hq; s; q0; ai
w = sw0

�0 = (� � �0(c; d)) [�(c; d)

8r 2 R; �0(r) = max (f�(r)g [fk j hr; ki 2 states(�(c; d))g)

(The value of �0(r) is unde�ned whenever the set of integers in its de�nition has no
upper bound; see Lemma 2.4, below.)

The binary computation step relation M̀ on C is de�ned as c M̀ c0 i� there exists
d such that step(c; d) = c0. The re
exive transitive closure of M̀ is denoted M̀

�

. For
con�guration c 2 C, c is reachable i� there exists some w 2 �� such that cw M̀

�

c.
(Recall that cw is the initial con�guration of M on input w.) For con�gurations
c; c0 2 C, c0 is reachable from c i� c M̀

�

c0.
A con�guration hq; �; �; wi is accepting i� q 2 F and w = �. Suppose w 2 ��.

Then w is accepted byM i� there exists an accepting con�guration that is reachable
from cw.

The language accepted by M is L(M) = fw j w is accepted by Mg. 2

3

Lemma 2.4 (SMA Step functions)
Suppose M is an SMA with addition function �, and hc; di an allowable pair on

M . Then step(c; d) is de�ned i� states(�(c; d)) is �nite.
Further, step is a total function i� for all allowable hc; di, states(�(c; d)) is �nite.

2

Proof. Suppose M = h�; Q0; R;A; S; F; �0; �; �
0i is an SMA, and hc; di an al-

lowable pair. Let X = states(�(c; d)). Since Q0 must be �nite, X is in�nite i�
X �Q0 = X \ (R� IN) is in�nite. Since R is �nite, X \ (R� IN) is in�nite i� there
exists some r 2 R such that X \ (frg � IN) is in�nite. But step(c; d) is de�ned i� all
sets X \ (frg � IN) are �nite. Therefore step(c; d) is de�ned i� X is �nite.

The second half of the lemma follows immediately. 2

In e�ect, the lemma says that only �nitely many states may be added by any
single computation step. Note, however, that an in�nite number of transitions may
be added with impunity, provided that they all together involve only a �nite set of
states.

One could, of course, generalize the de�nitions to allow for adding in�nite numbers
of states, by amending the domain of register values from IN to IN1 = IN [f1g.
Since even an in�nite subset of IN1 has a least upper bound in IN1, the step function
is total. However, this complication is entirely unnecessary, because (1) the model
is already arbitrarily powerful without it (Theorem 5.1), and (2) in the special case
that will be of principal concern here, the question of in�nite state sets simply cannot
arise (Corollary 4.6).

De�nition 2.5 (Well-formed con�guration)
Suppose M is an SMA, and c = hq; �; �; wi 2 C. The set of valid states in c is

Q0 [fhr; ki j r 2 R and 0 � k � �(r)g

c is well-formed i� all p 2 states(�) are valid in c. 2

Note that c well-formed implies states(�) �nite.

Lemma 2.6 (Well-formed con�gurations)
Suppose M is an SMA. Then every reachable con�guration of M is well-formed.

2

Proof. Suppose M is an SMA, and c = hq; �; �; wi is a reachable con�guration
of M . Proceed by induction on the (�nite) number of computation steps needed to
reach c.

Suppose c is an initial con�guration. Then � is the initial set of transitions of M .
There are no states of the form hr; ki in states(�), so c is well-formed.

4

Suppose c is not an initial con�guration, and the theorem holds for all con�g-
urations reachable in fewer steps than c. Since c is reachable, there must exist an
allowable pair hc0; d0i such that step(c0; d0) = c and c0 is reachable in fewer steps than c.
Let c0 = hq0; �0; �0; w0i, and let � be the addition function of M . Then � � �0[�(c0; d0).

Suppose further that hr; ki 2 states(�); either hr; ki 2 states(�0) or hr; ki 2
states(�(c0; d0)) (or both). If hr; ki 2 states(�0), then by inductive hypothesis, k �
�0(r); and by de�nition of the step function, �0(r) � �(r). On the other hand, if
hr; ki 2 states(�(c0; d0)), then again by de�nition of the step function, k � �(r). 2

3 Classes of modi�cation functions

Most distinctions between classes of SMAs will be based on the nature of their mod-
i�cation functions. (Even the distinction between �nite and non�nite SMAs will be
based partly on modi�cation functions; see De�nition 4.5.)

De�nition 3.1 (Separability by action)
Suppose B = h�; Q0; R;Ai is an SMA basis, � 2 A a modi�cation function over

B, and X � A a class of modi�cation functions over B. Then � is separable by

action into X i� there exists a function f : A! X such that

�(c; hp; s; q; ai) = (f(a))(c; hp; s; q; ai)

2

Note that the decomposition need not be unique: Given B, �, and X, there may be
more than one f satisfying the condition.

Separation by action allows complex modi�cation functions to be understood in
terms of classes of simpler functions.

3.1 �-separable

Before applying the principle of separation by action, one must have a previously
de�ned class of modi�cation functions. The following de�nition provides such a class.

De�nition 3.2 (�-relative generator)
Suppose B = h�; Q0; R;Ai is an SMA basis. Let g : (R ! IN) ! (Q ! Q),

h : (R! IN)! (D ! D), and G : P(D) !A be the functions

(g(�))(q) =

8<
:
q if q 2 Q0

hr; �(r) + ki if q = hr; ki

(h(�))(hp; s; q; ai) = h(g(�))(p); s; (g(�))(q); ai

(G(Z))(hp; �; �; wi; d) = f(h(�))(z) j z 2 Zg

5

Then G is the �-relative generator for B.
A modi�cation function is �-relative i� it has the form G(Z) for some Z � D.

For any k 2 IN, G(Z) is �-relative with depth k i� states(Z) � Q0[(R�fj j j � kg).
2

Theorem 3.3 (�-relative generator)
Suppose B = h�; Q0; R;Ai is an SMA basis, G is the �-relative generator for B,

X;Y � D, and hc; di is an allowable pair. Then G(X)(c; d) � G(Y)(c; d) i� X � Y ,
and G(X)(c; d) = G(Y)(c; d) i� X = Y . 2

Proof. Suppose B etc. as in the theorem. Let c = hq; �; �; wi, and let functions
g and h be as in De�nition 3.2. We have:

G(X)(c; d) = fh(�)(x) j x 2 Xg
G(Y)(c; d) = fh(�)(y) j y 2 Y g

Note that g(�) : Q! Q and h(�) : D ! D are injections (i.e., one-to-one functions).
The desired results follow immediately. 2

De�nition 3.4 (�-separable, �-normal)
Suppose B is an SMA basis, and � 2 A is a modi�cation function over B. Then

� is �-separable i� � is separable by action into the class of functions in A that
are �-relative. Further, � is �-normal i� � is separable by action into the class of
functions in A that are �-relative with depth 1. 2

3.2 Self-separable

Non-�-separable modi�cation functions are rarely of interest. The most prominent
exception is the class of self-separable modi�cation functions.

De�nition 3.5 (Self-separable)
Suppose B is an SMA basis, and � 2 A. Let X � A be the class X = f�0; �Ig,

where �I(c; d) = d for all allowable hc; di. Then � is self-separable i� it is separable
by action into X. 2

3.3 Finite-order

Whereas separation by action isolates each individual action, the concept of �nite-
order modi�cation function addresses the way di�erent actions relate to each other.
For convenience, let action(d) denote the modi�cation action a of any transition
d = hq; s; p; ai 2 D.

6

De�nition 3.6 (Order of a modi�cation function)
Suppose B = h�; Q0; R;Ai is an SMA basis, and � 2 A. Let . be the following

binary relation on A. a.a0 i� there exist c 2 C and d; d0 2 D such that action(d) = a,
action(d0) = a0, and d0 2 �(c; d).

Suppose a 2 A. For every k 2 IN, a has order k in � i� there is no a0 2 A such
that a.k+1a0; in other words, there does not exist a sequence of actions a0; � � � ak 2 A
such that a . a0 and, for all 0 � j < k, aj . aj+1.

� has order k i� all actions a 2 A have order k in �.
a 2 A is unordered in � i� there exists k � 1 such that a .k a. � is unordered i�

some a 2 A is unordered in �.
a 2 A has in�nite order in � i� a is ordered (i.e. not unordered) but does not

have �nite order in �. � has in�nite order i� � is ordered but does not have �nite
order. 2

As de�ned here, if a has order k in �, then a also has order j in � for every j > k.
Similarly, if � has order k then � has order j for every j > k.

Note that a 2 A has order zero in � i� there is no a0 2 A such that a . a0. � has
order zero i� it is the null modi�cation function, � = �0.

The modi�cation function in the proof of Theorem 5.1 has in�nite order. The
modi�cation function in the proof of Theorem 5.3 is unordered. See also Corollary 4.7.

3.4 Notation

Because �-normal modi�cation functions are so common in the theory of SMFAs, it
is worthwile to establish a convenient notation for them. The following is a general-
ization of the notation used elsewhere for SMFA actions [RS93, RS94, RS95].

Convention 3.7 (Notation)
Suppose B = h�; Q0; R;Ai is an SMA basis, and � 2 A is �-normal. Let

f : A!A separate � by action into �-relative modi�cation functions; let G be the
�-relative generator for B, and let g : A! P(D) be the unique function such that
G�g = f . The following notation may be used to represent modi�cation actions.

� A non-zeroth-order modi�cation action a 2 A with �nite g(a) = fd1; � � � dng �
D may be represented by

verb fd1; � � � dng

where verb is either add or delete, depending on the usage of �, and the dk
are the representations of the transitions dk according to the following rules.
If n = 1, the enclosing set braces fg may be omitted.

� A zeroth-order transition d = hp; s; q; ai is represented by p
s
! q, where p and

q are the representations of p and q.

7

� A higher-order transition d = hp; s; q; ai is represented by p
s=a
�! q, where p, q,

and a are the representations of p, q, and a.

� A prede�ned state is represented by itself.

� For any register r, state hr; 0i is represented by old r, and hr; 1i by new r. If the
machine is single-register, these representations may be shortened to old and
new .

2

For example, suppose d 2 D is the transition d = hhr; 1i; s; hr; 0i; ai, and g(a) = fdg.
Note that a is an unordered action (having neither �nite nor in�nite order). Then a
could be represented as

add new r
s=a
�! old r

or even (if you want to be di�cult),

add new r
s=add newr

s=a
�!oldr

- old r

4 Classes of SMAs

De�nition 4.1 (Elementary SMA classes)
Suppose M is an SMA with addition function � and deletion function �0. Let

' be any adjective on modi�cation functions (such as �-normal , or �nite-order).
Them M has ' addition i� � is '; M has ' deletion i� �0 is '; and M is ' i� �
and �0 are both '. 2

For example, M is �-normal i� � and �0 are both �-normal.

De�nition 4.2 (classes of deletion)
Suppose M is an SMA with deletion function �0. Then M is with self-delete i�

�0 is self-separable. Further, M is without deletion i� �0 has order zero. 2

When an SMA without deletion is written as a tuple, the deletion function is usually
left o�, so that the automaton is an 8-tuple M = h�; Q0; R;A; S; F; �0; �i rather than
a 9-tuple M = h�; Q0; R;A; S; F; �0; �; �

0i.

De�nition 4.3 (without �-transitions)
Suppose M is an SMA with initial set of transitions �0 and addition function �.

Let T � D be the following set of transitions.

T =
[

allow(c;d)

�(c; d)

Then M is without �-transitions i� for all transitions hp; s; p0; ai 2 (�0 [T), s 6= �.
2

8

De�nition 4.4 (Single-addition)
Suppose M is an SMA, and � the addition function of M . Then M is single-

addition i� for all allowable hc; di, j�(c; d)j � 1. 2

De�nition 4.5 (SMFA)
Suppose M is an SMA with modi�cation action set A, addition function �,

and deletion function �0. Then M is �nite i� A is �nite and � and �0 are both
computable. A �nite SMA is called an SMFA (self-modifying �nite automaton).

(Here, a modi�cation function � is considered computable i� there exists a
Turing machine that, given any allowable pair hc; di, enumerates the elements of
the set �(c; d) and halts in �nite time.) 2

Corollary 4.6 (SMFA step functions)
Suppose M is an SMFA. Then the step function of M is a total function. 2

Proof. Suppose M etc. as in the corollary.
Let hc; di be any allowable pair. The de�nition of SMFA requires that �(c; d) can

be enumerated in �nite time; therefore �(c; d) is �nite, and states(�(c; d)) is �nite.
Since this holds for all allowable hc; di, by Lemma 2.4 the step function of M is total.
2

Corollary 4.7 (SMFA modi�cation functions)
Suppose M is an SMFA with addition function � and deletion function �0. Then

neither � nor �0 has in�nite order. 2

Note that, although the modi�cation functions cannot have in�nite order, they could
still be unordered; see for example the proof of Theorem 5.3.

Proof. Suppose M etc. as in the corollary.
Let B = h�; Q0; R;Ai be the basis ofM ; sinceM is an SMFA,A is �nite. Suppose

� is any modi�cation function over B. If � is ordered, then since A is �nite, every
a 2 A must have �nite order in �; and again because A is �nite, there must be a �nite
upper bound on the order of actions in �, hence by de�nition, � has �nite order. So
� must be either unordered or �nite-ordered. 2

5 Computational power

Theorem 5.1 (SMAs)
Suppose L is a language. Then there exists a single-register �-normal SMA

without deletion and without �-transitions that accepts L. 2

9

Note that the SMA in the following proof has, in general, in�nite order.
Proof. Suppose � is a �nite alphabet, and L � ��. Consider the SMA without

deletion M = h�; fq0; q1; qfg; frg;��; q0; F; �0; �i, where

F =

8<
:
fq0; qfg if � 2 L

fqfg otherwise

�0 = fq0
�=�
�! q1 j � 2 �g [fq0

�=�
�! qf j � 2 Lg

�(c; hq; s; q0; ai) = (G(f(a)))(c; hq; s; q0; ai)

with G the �-relative generator for the basis of M , and f : A! P(D) de�ned as

f(v) =

8>>>><
>>>>:

fold
�=v�
�! new j � 2 �g [fold

�=�
�! qf j v� 2 Lg if jvj > 1

fq1
�=v�
�! new j � 2 �g [fq1

�=�
�! qf j v� 2 Lg if jvj = 1

fg if v = �

For each v 2 ��, G(f(v)) 2 A is �-relative with depth 1; therefore � is �-normal,
and M is �-normal. �0 contains no �-transitions, nor does any �(c; d), therefore M is
without �-transitions. Inspection of M con�rms that L(M) = L. 2

Theorem 5.2 (SMFAs)
Suppose M is an SMFA. Then L(M) is recursively enumerable. 2

Proof. Suppose M = h�; Q0; R;A; S; F; �0; �; �
0i is an SMFA with basis B =

h�; Q0; R;Ai. Given an input string w 2 ��, the following nondeterministic algorithm
accepts w i� w 2 L(M). Note that since R is �nite, any function � : R! IN can be
represented in �nite space, and its value for given r 2 R can be computed in �nite
time.

1. Let c = cw = hS; �0; �0; wi be the current con�guration.

2. If c is an accepting con�guration, then accept.

3. If � = fg, then diverge. (c is not part of any accepting computation.)

4. Nondeterministically guess a transition d = hp; s; p0; ai 2 �. If p is not the
current state in c, then diverge. (This guess does not lead to acceptance.)

5. Let c0 = step(c; d). Since M is �nite, the set of transitions in c must also be
�nite, and step(c; d) must be de�ned; also, � and �0 are computable; so step is
computable.

6. Make c0 the new value of c, and go back to step 2.

10

Since M is �nite, the set � of transitions in any reachable con�guration is �nite.
Hence, every step of the algorithm can be accomplished in �nite time and space.
Hence L(M) is recursively enumerable. 2

Theorem 5.3 (�-normal SMFAs without deletion)
Suppose L is a recursively enumerable language. Then there exists a �-normal

SMFA without deletion that accepts L. 2

Note that the SMFA in the following proof is unordered.
Proof. Suppose L is a recursively eumerable languages. Then L is accepted by

some deterministic Turing machine with two-way-in�nite tape M = hQ;Z; T; �; q0i,
where

� Q is the set of states.

� Z is the tape alphabet, including the blank symbol #, but not symbols L;R;H.

� T � Z � f#g is the input alphabet.

� � : Q� Z ! (Q� Z � fL;Rg) [fHg is the transition function.

� q0 2 Q is the start state.

Here, L;R;H mean \move left" and \move right", and \halt".
Con�gurations are indexed by nonnegative integers j 2 IN. Tape cells are indexed

by integers k 2 ZZ. Let zj;k 2 Z be the symbol at cell k, pj 2 ZZ the head position,
and qj the machine state, in con�guration j. In the initial con�guration, with input
string w = w1 � � �wn, wk 2 T ,

p0 = 0

z0;k =

8<
:
wk if 1 � k � n

otherwise

An SMFA will now be constructed that simulates M , hence accepts L.
Each con�guration j is represented by a path of �-transitions with actions aj;k,

for �j � k � n+ 1 + j, where

aj;k =

8<
:
hqj ; zj;ki if k = pj

zj;k otherwise

Traversing this path constructs a path representing the next con�guration (except
for the �rst and last transitions of the new path, which are constructed by prede�ned

11

transitions using the special actions begin and end). The following set of 2 jQj + 1
registers is used in the construction:

R = fr0g [frq;L j q 2 Qg [frq;R j q 2 Qg

When constructing con�guration j from con�guration j � 1, the transitions for the
old and new head positions (pj�1 and pj) are connected through register rqj;d, where
d is the direction moved by the head between con�gurations j � 1 and j. All other
consecutive pairs of transitions are connected through r0.

In order to guarantee that all of the registers will be updated by every action of
the machine, every action adds transitions

new r
�
�! new r 8r 2 R

Additional transitions are added by various actions, as follows. Here, qf is the �nal
state, and qL; qR are other prede�ned states.

z : old0
�=z
�! new 0

old0
�=hq;zi
�! new q;L 8q 2 Q

old q;R
�=hq;zi
�! new 0 8q 2 Q

hq; zi : old0
�=z0

�! new q0;R if �(q; z) = hq0; z0; Ri

old q0;L
�=z0

�! new 0 if �(q; z) = hq0; z0; Li

old0
�
�! qf if �(q; z) = H

begin : qL
�=#
�! new 0

qL
�=hq;#i
�! new q;L 8q 2 Q

end : old0
�=#
�! qR

begin 0 : qL
�=hq0;#i
�! new 0

The entire SMFA is shown in Figure 1. qs is the start state, and qf the �nal state.
During computation, the entire input string must be read while in state q1; otherwise,
by De�nition 2.3 the string will not be accepted. Traversing from qs to q2 creates the
initial con�guration path from qL to qR. Thereafter, traversing any loop from q2 to q2
creates another con�guration path from qL to qR. There is no requirement that this
loop always use the most recently added con�guration path, but repeating an earlier
con�guration path only creates a redundant copy of some other existing path. The
�nal state is reachable i� some accepting con�guration path can be created, i� that
con�guration is reachable from the given initial con�guration. 2

12

-&%
'$

qs -
�=begin 0

&%
'$

q1 -
�=end

&%
'$

q2 -
�=begin

&%
'$

qL

��6
z=z; 8z 2 Z

6

�=end

&%
'$
qR &%

'$
��
��
qf

Figure 1: SMFA to simulate a DTM

Corollary 5.4 (�-normal SMFAs without deletion)
Any language L is recursively enumerable i� it is accepted by some �-normal

SMFA without deletion. 2

Proof. Immediate from Theorems 5.2 and 5.3. 2

6 Conclusion

Formal de�nitions for Self-Modifying Automata (SMA's), Self-Modifying Finite Au-
tomata (SMFA's), and their properties have been presented here, supplementing and
augmenting the de�nitions for SMFA's previously presented in [RS93, RS94, RS95].
The open SMFA problems previously presented may now be approached from addi-
tional angles, with additional techniques.

Basic results on the computational power of SMA's and SMFA's have also been
presented. This includes the results that for an arbitrarily di�cult language there
exists a restricted form of SMA that accepts that language; every language accepted
by an SMFA is recursively enumerable; and every recursively enumerable language is
accepted by a restricted form of SMFA. The last two results together provide a new
characterization of the recursively enumerable languages in terms of a restricted form
of SMFA's.

References

[RS93] R. Rubinstein and J. Shutt. Self-modifying �nite automata. Technical Report
WPI-CS-TR-93-11, Worcester Polytechnic Institute, Worcester, MA, Decem-
ber 1993.

13

[RS94] R. Rubinstein and J. Shutt. Self-modifying �nite automata. In B. Pehrson
and I. Simon, editors, Technology and Foundations: Information Processing

'94 Vol. I: Proc. 13th IFIP World Computer Congress, pages 493{498, Ams-
terdam, 1994. North-Holland.

[RS95] R. Rubinstein and J. Shutt. Self-modifying �nite automata: An introduction.
Information Processing Letters, 1995. To appear.

14

