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Abstract

A modeling technique, the Capitalist model, is outlined for analyzing multi-dimensional �le struc-
tures. It is particularly appropriate where the data keys may have non-uniform data distributions.
The basis of the model is to assume that the current distribution of data in an existing �le is a good
predictor of the underlying \true" distribution.

The method is applied to formal analysis of the BANG and NIBGF directory structures. The
average cost for search and insertion is found to be logarithmic in the �le size. The order constant is
quite small and depends on the capacity of a bucket. Simulation con�rms the analytic results. This
�rst use of the Capitalist model suggests its usefulness to the analysis of other multidimensional �le
structures.
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1 Introduction

Multi-dimensional bucket �les are data structures for storing records with many �elds or keys. A bucket

will contain records which are relatively close to one another if the records are regarded as points in metric

space. A variety of such structures have been proposed, among them the K-d-tree [Ben75], the Quadtree

[FB74], the Grid File [NHS84], the h-B tree [LS90], and the two structures discussed in this paper, the

BANG �le [Fre87] and the NIBGF [OM91].

Our particular interest is in comparing �le structures and algorithms with formal mathematical anal-

ysis. Analytic models permit asymptotic comparisons between algorithms with a nicety unachievable by

performance monitoring or simulation. A recurring problem of formal analysis is to provide mathemat-

ically tractable models of structures. Commonly used modeling techniques include: Fractional Progress,

the analysis of a �le in terms of percentage of transition from one mode to another [Lar85, HB92]; this

fades into Demographics, which studies the populations in various modes [Yao79, Lom81]; and Geometric

Transformation, which makes the structure under study similar or equivalent to some other, well-known

one [LS90, OM92]. Modeling simpli�cations include studying a structure only as it grows, or only at an

hypothesized steady state. Especially relevant to us are assumptions about the data distribution; the sim-

plest assumption is that data is uniformly distributed. More general is our Capitalist model: `the rich get

richer,' or `data attracts more data.'

The contribution of this paper is two-fold: we introduce the Capitalist model as an addition to the

model-builders toolkit, and we apply it to an average-case analysis of the BANG/NIBGF directory scheme.

We �nd that the average height of a node in the directory tree is logarithmic in the number of buckets.

In Section 2 we introduce the Capitalist model of �le growth as an aid to analyzing �le structures. It

is contrasted with the Bernoulli and Poisson models developed by [FNPS79, Reg85, Fla83]. In Section 3

we draw upon the �le description from [OM92], recasting the notation somewhat. We analyze data bucket

splits and apply one variant of the Capitalist model to obtain a probability distribution for the directory

tree height in the BANG �le. Finally we discuss performance implications with respect to NIBGF. Section

6 compares the results of the analysis with simulations. We conclude and summarize in Section 7.

2 The Capitalist Method

The Capitalist model of �le growth is particularly apt for non-uniform data distributions. When the

underlying data structure is appropriate for this model, we posit that density of current data values in the

�le structure corresponds to variations in density in the unknown underlying distribution of the data in

the domain.

There are two other important techniques for modeling data distributions in multi-dimensional �le

structures. Under the Bernoullimodel, the record keys are assumed to be uniformly distributed throughout

the keyspace1. The probability of insertion into a bucket is the fraction of the entire keyspace which it

covers, and the probability of various numbers of records in a bucket may be modeled with the binomial

distribution. Under the Bernoulli model, the populations of the buckets are not independent.

When we want the probabilities of the number of keys in each bucket to be independent, we can use

the Poisson model. In this model the number of records in the �le has the Poisson distribution, and the

probability distributions for the buckets are independent, and have Poisson distributions.

1Uniformity is a property of the model as introduced by [FNPS79], not of a Bernoulli or binomial distribution. Clearly
each bucket could have a Bernoulli distribution with a di�erent probability pb.
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The problem with both of these models is that useful analysis using them assumes a uniform distribution

over a �nite keyspace. This is not a realistic assumption for real-world datasets, and several of the multi-

dimensional �le structures anticipate non-linear transformations on the keyspace, which can be expected

to lead to non-uniform distributions of data.

In contrast, the Capitalist model deals easily with non-uniform distributions. The assumption of the

Capitalist model is that past behavior will be a good predictor of future behavior. Therefore, buckets which

cover areas that have had equal numbers of previous insertions are expected to have equal probability of

an insertion, independent of the total area of the key-domain which they cover.

Clearly the model is not applicable to all �le structures. For example, in Linear Hashing [Lit80], full

buckets lead into over
ow chains. So the maximum number of records in a bucket does not correspond to

a ceiling probability for a bucket hit. (However, the number of records in a bucket and its over
ow chains

may be a good estimator of the expected value of another hashing collision.) In some applications insertion

history may not be a good predictor of reference history, although intuitively we might expect insertion

history to be as good an estimator of references as of insertions.

We outline the basis for two variants of this model: the per-key and the per-bucket approximations.

Per-Key approximation

The per-Key approximation is a straightforward form of the Capitalist principle. A version of the per-Key

approximation was �rst used by [Yao79] in his fringe analysis of the B-tree. Each key in the �le is assumed

to stake a claim to a portion of the dataspace. Where keys are sparse, the size of a claim is large; where

keys are dense, the size of the interval surrounding a key will be small. Each interval is assumed to be

equally likely to receive an insertion, independent of its size.

Per-Bucket approximation

Depending on the access method, there may be various numbers of keys stored in each bucket. For example,

data buckets in B-trees or B+-trees are always at least half full [Com79] (unless the �le has only one bucket.)

BANG �les have data buckets which range in utilization from one-third to entirely full.

The per-Bucket approximation ignores these variations. It assumes that each bucket is equally likely

to receive new insertions, and ultimately to split, independent of its current utilization. Obviously this

is a simpli�cation, but the simpli�cation makes the mathematics easier. Furthermore, for non-uniformly

distributed data, the areas covered by buckets are likely to be much better approximations to areas of

equal record density than other a priori estimates like equal area.

Related Work

The Capitalist model di�ers from [Yao79] and related work by Baeza-Yates in that

� Although Yao formulated the idea of equally-probable intervals, and used it in the analysis of [Yao79],

he did not examine it in detail; the bulk of that analysis deals with transformations between \\fringe"

subtrees.

� The Capitalist model tracks the statistic \keys per bucket" rather than its dual, \data-space per

key."

� It uni�es the \ideal hashing" of [BY89] and \equally probable key-intervals" in a single concept.
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Figure 1: space covered by the data buckets in a BANG directory tree

� The intuitive foundation in the key-distribution is explicit, rather than implicit.

� Most importantly, founding the model in the key-distribution gives a basis for analysis of the model

itself.

3 Analysis of the BANG Directory Tree

In this section, we apply the Capitalist technique to the BANG �le. We start by a description of the BANG

directory tree, followed by an analysis of the split probabilities of data buckets in the �le. We then provide

a detailed analysis and estimate of the directory height of the BANG �le. The structure we analyze is the

abstract directory structure, for which a number of di�erent physical implementations are possible. One

subset of the possible physical implementations include NIBGF directories. We postpone discussion of the

physical implementation until section 4, where we compare BANG and NIBGF.

3.1 The BANG Directory Tree

A BANG �le [Fre87, OM91] contains k-�eld records which are each mapped to a point in [0; 1]k. The �le

has a directory tree or forest of trees which has one node for each data bucket in the �le. Each node in the

directory tree has an associated subspace descriptor string, which denotes the canonical bounding subspace

for the node and all its descendant nodes in the directory. The bounding subspaces of sibling nodes do not

overlap, but the bounding subspaces of parent and child nodes always overlap.

Possible bounding subspaces are created by successive halving of [0; 1]k into subspaces, such that a string

of binary digits can be assigned to every rectangular subspace, e.g. \0011" or \001". Figure 2 illustrates a

few of the canonical subspaces and their descriptors for a two-dimensional space. One subspace completely

contains another if its descriptor string is a pre�x of the second subspace's string. A data point may be given

a (potentially in�nite) descriptor also, such that the descriptor string of every subspace which contains it

3
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Figure 2: The canonical subspace splits in a BANG directory tree
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Figure 3: Bucket split creates two peers
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Figure 4: Bucket split creates descendant bucket

is a pre�x. A descriptor string for a data point can be generated by a perfect shu�e, or Z-ordering [Ore83]

of the bit values of its k coordinates into a binary string.

In Figure 1, which illustrates a two-dimensional �le with three data buckets, the root node subspace

descriptor would be the empty string \", corresponding to the entire unit square. This is the area shown in

the �gure with a dashed line, and is the area covered by this node and all of its descendants. However, the

data bucket corresponding to the node contains only those points not covered by some descendant. This is

the gnomon drawn with solid lines. The two children of the top node have subspace descriptors \10" and

\0000".

A point is found or inserted in the bucket at the outermost node in the directory tree which contains

it. The cost of a search in this scheme depends on the depth of the directory and the fanout of the nodes.

The size of the directory is directly proportional to the number of data buckets, so it remains only to see

how the other parameters relate to the size.

3.2 Data Bucket Splits

A �rst step in modeling the behavior of the directory tree as it grows is to describe the behavior of a single

bucket when it over
ows as the result of insertions. There are two ways to maintain the properties of the

data structure: we can split the bucket somewhat evenly, replacing a single node in the directory tree with

two nodes (Figure 3); or we can carve a rectangular subspace out, and make it a descendant in the the tree

(Figure 4). Which of these two occurs depends on how the data is distributed over the keyspace spanned
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Figure 6: Probability density of data may vary across bucket

by the bucket.

If the �rst partition of the bucket succeeds in dividing the records so that neither part contains more

than twice as many records as the other, we call this a Peer Split. If not, then successive partitions are

considered until the utilization constraint is met. The resulting division of data between buckets will require

a child in the directory tree. This is referred to as a Subspace Split. The 1 :: 2 constraint permits use

of a greedy partition algorithm which always subpartitions the fuller of the two parts created at the last

(sub-)partition. Figure 5 illustrates the progress of the greedy partition algorithm for a two-dimensional

�le and a bucket capacity of four.

The height of the directory tree is related to the split behavior; if every bucket over
ow results in a peer

split, the height of the directory will be zero. The only way the directory can become deeper is through a

subspace split. Thus it is important to determine the probability pS that a split will be a subspace split.

3.3 Probability of a Subspace Split

To model the split behavior, we note that there are two sources for variation in the probability density

across a node. First, there is the gradient in the underlying probability distribution of the data. For

example, consider the imaginary case illustrated in Figure 6. This �gure shows a variation in marginal

probability density for x in di�erent parts of the key space, including a variation across the bucket \010".

When we partition bucket \010" we expect to �nd that fewer of the datapoints will fall into partition

\0100" than \0101", because the relative cumulative marginal densities p, for bucket \0100" is smaller

than the cumulative density q, for bucket \0101". Given p and a bucket capacity bmax, we can predict

the probability of any population m of bucket \0100" at the time of a split, when we know that there are

bmax + 1 datapoints in bucket \010". Using the binomial distribution, this probability is

�
bmax + 1

m

�
pm(1� p)bmax+1�m
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Figure 7: Space claimed by descendants changes shape of bucket

The probability, pS, of a subspace split (one which generates a descendant in the directory tree, or

equivalently, one requiring more than one partition) is

pS =
X

0�m<
bmax+1

3
2
3 (bmax+1)<m�bmax+1

�
bmax + 1

m

�
pm(1 � p)bmax+1�m (1)

that is, the probability that a second partition will be necessary to maintain storage utilization is the sum

of two tails of the binomial distribution.

3.3.1 Digression on Binomial tails

If bmax is large and p is central, the tails are small and far from the probability mass centered at the mean,

bmax � p, and we can neglect the summation, and consider only the probabilities p and q. The expected

populations p (or q) of the two pieces are binomially distributed random variables with mean (bmax + 1)p

(or (bmax + 1)q) and variance �2 = (bmax + 1)pq. We can use the Normal approximation to the Binomial

distribution to compute a 95% con�dence interval for p

p = (bmax + 1)p���1(:975)
p
(bmax + 1)pq

= (bmax + 1)p� (1:96)
p
(bmax + 1)pq with 95% con�dence

Since
p
p(1� p) has its maximum value at p = 1

2 , we have

p = (bmax + 1)p�
p
(bmax + 1)

p = (bmax + 1)p(1� 1

p
p
(bmax + 1)

) with 95% con�dence or better

and the error (1� 1

p
p
(bmax+1)

) approaches 1 as bmax increases. We'd like 1

p
p
(bmax+1)

� p. We're particularly

interested in values of p in the neighborhood of 1
3 , because the BANG algorithms treat splits in the range

1
3
< p

bmax+1
< 2

3
specially. We can solve for the value of bmax which brings the error term less than p=2 at

p = 1
3
:

p=2 >
1

p
p
(bmax + 1)
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1

6
>

1

(1=3)
p
(bmax + 1)

1

18
>

1p
(bmax + 1)

18 >
p
(bmax + 1)

324 > (bmax + 1)

323 > bmax

With plausible physical block sizes of 4096 bytes, this seems like a reasonable number of records to �t

in a bucket.

3.3.2 Digression on continuity

If the underlying distribution of the data is continuous, then as the number of buckets in the �le increases,

and each bucket covers a smaller and smaller portion of the key-domain, we would expect that the cumu-

lative probability in adjacent buckets of the same coverage would be about the same. In particular, we'd

expect the probabilities of the two sub-buckets of a split to converge to 1
2 as the area in the key-space

which the bucket covers approaches zero.

However, there is nothing about the Capitalist model which requires continuity. Many real-world

datasets concern �nite populations, which are discontinuous at the level of individuals. For example, in

an addressbook relation with schema fNAME, CITY, STATEg, we might �nd many entries for CITY =

`Los Angeles'. The Capitalist model predicts that subsequent insertions will also include many entries for

CITY = `Los Angeles'. Nearby regions of the key-space do not experience `trickle-down.' There are no

entries for `Los Angelet' or `Los Angeler'.

The �le itself has a �nite population, and so the representation of the underlying distribution provided

by the �le must always be discrete. We can, however, talk about apparent continuity. If the cumulative

probabilities of adjacent areas of the keydomain tend to be about the same, then the data distribution is

perceived to be continuous. If not,

� the distribution might be continuous if we considered smaller areas.

� the distribution might be discontinuous.

Capitalism claims that insertions into an area of the key-domain so far are an estimator of future

insertions into the same area. It doesn't claim that insertions into one part of the area covered by a bucket

predict insertions into other parts of the bucket.

In a continuous distribution, in the limit as bucket sizes decrease, probabilities of the respective halves of

a split bucket converge to one-half. One could imagine a discontinuous function for which the probabilities

converge to p 6= (1� p); [Reg85] carries out an analysis of grid �les for such a distribution function. In the

antithesis of continuity, the relative probabilities of the halves of a split bucket might have any value. Of

course p + q = 1, but p might have any value between 0 and 1. We call a distribution function with this

property anti-continuous.

De�nition 1 A distribution function F (x) is near-continuous at x; � if

F (x+ �)� F (x) � F (x+ �)� F (x)

8
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Figure 8: Successive probabilities of words

De�nition 2 A distribution function F (x) is non-continuous at x; � if

F (x+ �)� F (x) 6� F (x+ �)� F (x)

A discontinuous function is non-continuous for every value of �.

De�nition 3 A distribution function F (x) is anti-continuous at � if

F (x+ �)� F (x)

F (x)� F (x� �)
has a broad range of values.

De�nition 4 A distribution function F (x) is anti-continuous at x if either of

F (x)� F (x� �)
�

or
F (x+ �)� F (x)

�

does not converge to a constant as � goes to zero.

Anti-continuity is a stronger condition than discontinuity. However, it does not imply discontinuity;

a continuous distribution function is anti-continuous over any interval on which the probability density is

zero.

A dataset recording properties of individuals will be everywhere anti-continuous, although uncertainty

about those properties can be used to introduce continuity by replacing point values with distributions.

Figure 8 plots against one another the absolute probabilities of words from an ordered German wordlist

falling into successive intervals. For this plot, the interval size is one letter; the percentage of words
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Figure 9: Assigning names to probability of insertion into bucket quadrants

beginnning with `b' is plotted against the percentage of words beginning with `c'; the percentage beginning

with `d' is plotted against `e', and so forth. The plot has 26 points because upper- and lower-case are

treated separately.

The graph exhibits both some near-continuous and some anti-continuous properties. We �nd a number

of points whose abscissa and ordinate are both small. These correspond to the fact that relatively few words

in the wordlist are capitalized, so the intervals in the region (A,Z) are all sparsely populated compared to

the intervals in the region (a,z). This neighborliness is a near-continuous property. On the other hand, in

all regions, the range of relative probabilities is broad. If the data distribution were continuous, we'd see

the points clustered around the line p = q; instead they are widely distributed throughout the unit square.

A continuous distribution might exhibit this anti-continuous behavior for larger values of �, and certainly

the interval size for this plot is su�ciently large that it could still prove to be continuous for a smaller

interval. But our intuition about word formation is that the contingent distributions of second letters are

even less uniform than initial letters; if we divide the wordlist into 272 intervals corresponding to the �rst

nine letters of the words, almost all of the intervals will be empty, many will have only one word, but others

will contain many words.

With this plausibility demonstration of anti-continuity in place, let us suggest a model for partition of

buckets in the BANG �le which is based on anti-continuity.

If the bucket size is big enough, the probability of a bucket split being a subspace split is the same as

the probability that the relative probability of the �rst bucket division is less than 1
3 or greater than 2

3 .

That is,

pS = P [p >
2

3
] + P [p <

1

3
]

Of course the assumption of anti-continuity does not tell us what the distribution of p is, but if every

distribution is as likely as any other, we can make a plausible estimate of pS based on the portion of the

range of p which leads to a subspace split. That proportion is 2
3 = :666 : : :.

A re�nement of this foolhardy estimate is also available. Suppose we plot the successive split probabil-

ities of two axes of a BANG �le against one another. Under an anti-continuous assumption, we'd expect

the probabilities to be unrelated and have broad ranges.

Consider the four quadrants of a bucket which is splitting, as shown in Figure 9. The relative cumulative

probability for each quadrant is shown as �, �, 
, 1 � � � � � 
. These probabilities are normalized to
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sum to one; that is, we are for moment uninterested in the absolute probability of performing an insertion

into the appropriate quadrant, but only the conditional probability given that an insertion strikes one of

the four quadrants. Under an anti-continuous assumption, we treat �, �, and 
 as ranging independently

between 0 and 1. Once �, �, and 
 are speci�ed, we can plot the possible values as points in 3-dimensional

space. Of course, �, �, and 
 are not completely independent, since they must not sum to more than 1.

Figure 10 shows the permissible positions in 3-space of the (�, �, 
) points as the volume of a tetrahedron.

The tetrahedron re
ects the constraints:

0 � � � 1
0 � � � 1
0 � 
 � 1

�+ � + 
 = 1

Now consider the values of �, �, and 
 which can result in a subspace split. These are those in Figure

11, and result from the added constraint

�+ 
 <
1

3
_ �+ 
 >

2

3

The volume of the entire tetrahedron of Figure 10 is 1/6. Working out the volume of the permissible region

of Figure 11 we �nd it to be 17/162; dividing through by the volume of the tetrahedron, we �nd that the

ratio of the volume of (�; �; 
) points which result in a subspace split to the possible volume of such points

is 17/27 or .6296296: : :

This estimate of pS = :6296296 : : : should be tested by simulations on anti-capitalist datasets. Such

simulations do not appear here.

3.4 A stochastic process for continuous distributions

We have a more complicated model for continuous data distributions For this case, the probability density

over the two haves of the splitting bucket converge as the area covered by the bucket in the key space

gets smaller, and di�erence in cumulative density of the two sub-buckets is due to the di�ering shapes of

the subspaces covered by a bucket after spaces covered by descendant buckets are subtracted. Consider

the two splits (a) and (b) in Figure (7). The bucket in Figure 7a has no descendants, and if the data

were uniformly distributed, a new datum would be equally likely to fall into partition \...0" or \...1". The

bucket in Figure 7b has a descendant, \...01". All of the datapoints in that quadrant of the keyspace are

included in the descendant bucket. Therefore, if the data were uniformly distributed, a new datum would

be twice as likely to fall into partition \...1" as \...0" (because \...0", having \...01" subtracted from it,

is only half as big.) As we have seen in 3.3.2, these considerations for uniform distributions apply also to

any continuous distribution in the limit as the number of buckets in the �le increases and the area of the

key-space spanned by each bucket decreases; and to `near-continuous' distributions at appropriate bucket

sizes.

Considering for the moment only entire buckets, those which have no descendants, and only uniform

distributions, so that p = q = 1
2
, pS tends to zero as bmax increases, and even for small values of bmax it is

not large. Table (1) gives a few values of pS for p = 1
2 .

Similarly, for a bucket covering a space like that of Figure 7b, if the data is uniformly distributed, the

�rst partition will create regions \...0" and \...1". The two regions are nominally the same size, but \...0"

has a child, and so insertions will have fallen into \...0" and \...1" in this bucket with probabilities p = 1=3

and q = (1 � p) = 2=3. The expected population of \...0" at the time of a split is bmax+1
3 and in the limit

12



bmax pS
3 .125
4 .375
5 .218: : :
6 .125
7 .289: : :
8 .179: : :
9 .109: : :
...
27 .036: : :
28 .061: : :
29 .043: : :
30 .029: : :
31 .050: : :

Table 1: Values of pS for some values of bmax (p = :5)

as bmax !1 the probability of a subspace split is pS = 0:50. For small bmax , there is some variation; for

example, for bmax = 5, evaluating Equation (1) gives pS = 0:369.

If we could estimate the proportion of buckets covering each of the possible subspace shapes, we could

estimate an expected value for pS . We consider �fteen possible shapes created by having or not having

a descendant in each of four quadrants (Figure 12). These variations are grouped together according to

how the descendant quadrants fall with respect to the bucket split line. The shape grouping named M ,

or ` ' has no descendants on either side of the split line. The shape grouping named J , or `. ' has a

single descendant quadrant on one side of the split. This is the shape illustrated in Figure 7b; there are

four orientations possible. The shape C or ` . .' has one descendant on each side of the split line; and

the shape Z or ` . .' has two descendants on one side, and zero or one descendants on the other side.

The grouping consisting of a bucket which contains no datapoints, all of its space being subsumed by its

descendants, cannot occur in a BANG directory.

This approach does not consider all possible subspace shapes. There are other possibilities: the partition

shown in Figure 5 is an example of a directory node which is not in any of the groupsM , J , C, or Z. In fact

there an in�nite number of these subspace shapes. We justify ignoring them with the numeric observation

that, for a uniform data distribution, the probability of a subspace split of a bucket with no descendants

creating a child smaller than a quadrant is quite small. This is about .02 for a bucket capacity of �ve and

approaches 0 as this capacity increases.

For a bucket from group M , with bmax = 5 and a uniform data distribution, we know from Table 1

that the probability of any subspace split occurring is 14=64 = :218875. If we examine the probability of

any particular quadrant becoming the single descendant as the result of a subspace split, we �nd that this

outcome requires that its appropriate adjacent quadrant be full enough to require a second partition. For

the particular case of bmax = 5, this can happen if the desired quadrant has 3 datapoints, and its neighbor

has 2 or 3, or the desired quadrant has 4 datapoints, and its neighbor has 1 or 2. The probability of one

of these pairings (a; b) is described by the multinomial distribution

�
6

a; b; 6� a� b
��

1

4

�a�
1

4

�b�
1

2

�6�a�b
=

6!

a!b!(6� a� b)!
1

4a4b26�a�b
(2)
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Figure 12: Space claimed by descendants changes shape of bucket

and since the pairings are mutually exclusive events, the probability that a particular quadrant will become

a descendant is

2

�
6

3; 2; 1

�
+

�
6

3; 3; 0

�
=2 + 2

�
6

4; 1; 1

�
+

�
6

4; 2; 0

�

4096
= :05005 (3)

We omit the case in which the quadrant contains 2 datapoints and the neighbor contains 3 or four, because

the algorithm would choose the neighbor for the child in this case.

The case when both neighboring quadrants have three datapoints could result in either quadrant be-

coming the child; we need some care to avoid counting this case twice. As only one quadrant at most can

become a descendant on a single split, the probability that some quadrant does so is 4(0:05005) = :2002.

Thus the probability that more than two partitions are necessary in this case is :218875� :2002 � :019.

While this probability is not vanishingly small, we may dare to hope that ignoring it will give us a reasonable

approximation in the following.

As the result of an over
ow, a bucket may be transformed in the following ways: (The numbers over

the arrows indicate the probabilities of the transformation for a bucket capacity of �ve. The transition

probabilities are slightly fudged to add to one for each shape. The same transformations occur, but the

transition probabilities will be di�erent for other values of bmax . A value of bmax = 5 was chosen for

convenience of simulation. A general symbolic solution was not attempted.)

M
:80! M 0M 0 (4)
:20! JM 00 (5)

J
:66! Z0M 0 (6)
:17! ZM 00 (7)
:17! CM 00 (8)

C
:80! Z0Z0 (9)
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:20! ZM 00 (10)

Z ! ZM 00 (11)

Assuming that each variety of bucket is equally likely to over
ow, and ignoring the 0 marks which will

be used later to indicate height in the directory tree, we can manipulate these transformations to get the

Markov chain described by the following set of equations:

(n+ 1)mn+1 = nmn + 0:8mn + jn + zn + 0:2cn (12)

(n + 1) jn+1 = njn + 0:2mn � jn (13)

(n+ 1) zn+1 = nzn + 0:83jn + 1:8cn (14)

(n+ 1) cn+1 = ncn + 0:17jn � cn (15)

Each of the letters cn, jn, zn, cn indicates a proportion of the bucket population made up of the appropriate

class of bucket when there are n buckets. Equation (12) can be read to say

The number of buckets expected in class M after n+ 1 bucket over
ows is the same as the

number before the over
ow, plus the expected number of buckets of class M created by the

over
ow. This number is :80 if the bucket which over
owed was of class M , 1 if the bucket

which over
owed was of class J or Z, and :20 if it was a type C bucket.

Making the assumption that the stochastic process eventually converges to a steady state, we seek

to �nd an approximation to the steady state by solving for a �xed point. We set m = mn+1 = mn,

j = jn+1 = jn, etc., and include the condition m + j + c + z = 1. The resulting system of equations has

the solution

m = :8286377196; z = :08145508784; c= :007043420617; j = :08286377196

We've computed the probabilities of subspace split for p = :5 (M and C) as .22; for p = 1=3 (J) as .35;

and for buckets in class Z, there are no data points in one of initial partitions, so a partition must always

generate a descendant, so pS = 1. Thus we are able to compute an expected value for pS (for a bucket size

of 5) of

pS � :22m+ :35j + z + :22c � :29 (16)

This value is quite close to the value we observe in the simulations reported in Section 6.

3.5 Directory height estimates

We now concentrate on estimating the directory height. A �rst approximation is made by assuming that

each bucket is equally likely to split, and describing the state of the �le as a vector showing the number of

buckets at each depth of the directory.

This is a capitalist model of the �le structure: it assumes that the subspaces spanned by buckets all

have roughly equal probabilities of new insertions, even though they cover very di�erent areas of key space;

if they weren't deserving, they'd not have received insertions2.

2`To every one who has, will more be given.' Matthew 25:29
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Generating function

Let us de�ne:

pS the probability that a split will be a subspace split, that is, it divides the bucket-space unevenly, so

that one of the resulting buckets covers a subspace of the other; the covering bucket will remain at

its previous level in the directory tree, and the directory entry for the subspace bucket will be a child

of the entry for the covering bucket.

pP the probability that a split will be a peer split, that is, that it will divide the bucket-space evenly to

result in two peer buckets at the same level of the directory tree. Notice that pP + pS = 1.

�l;n the proportion of the population of buckets at level l when n buckets have been created.

We derive a generating function for the population distribution, making a number of simplifying assump-

tions about the system behavior:

� Every bucket is equally likely to receive the next key inserted. (The per-bucket approximation of the

Capitalist model.)

� Every bucket is equally likely to split.

� pP and pS are constants, independent of the size of the �le, insertion history, level of the splitting

bucket in the tree, or distribution of the data.

Now we can characterize the population distribution by describing it with a generating function.

Theorem 1 For each n the population distribution probabilities �l;n are described by the generating func-

tion:

fn(y) =
X

0�l<n

�l;ny
l =

1

pP + pSy

�
(pP + pSy) + n� 1

n

�
(17)

We want to derive a generating function for the population distribution. We know a few of the bound-

ary conditions.

�l;0 = 0
If there are no buckets in the population, there are
none at any level.

�0;1 = 1 If there is only one bucket, it is at the root

�1;2 = pS=2
The probability that the second bucket will gen-
erate a child is pS ,

�0;2 = (1 + pP )=2 and there will then be two buckets in the tree.P
l�0 �l;n = 1 for each n > 0

We begin with a recurrence describing the growth of the directory tree when a bucket splits:

(n+ 1)�l;n+1 = (n+ pP )�l;n[0 � l < n] + pS�l�1;n[0 < l � n]

+ 1 � [l = 0][n = 0] (18)

This describes the change in the population of buckets at each level of the tree when the number of buckets

increases from n to n+ 1. After the split, (n+ 1)�l;n+1 is the expected number of buckets at level l. That

expected value is the sum of
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the expected number of buckets before the split, n�l;n,

the expected number of new buckets from a peer split at level l, pP�l;n

the expected number of new buckets from a subspace split at level l � 1, pS�l�1;n

The expressions in square brackets are what [GKP88] calls `Iverson's convention,' cited there as originating

in [Ive62]. [P ] represents the value 1 when P is true. When the conditions is not true, the value of the

entire term, for example, (n+pP )�l;n[0 � l < n] is 0. This convention keeps the boundary conditions visible

during the generating function transforms which follow. The last term of (18) describes the directory tree's

initial, empty state.

De�ne a family of generating functions (note that for l � n, �l;n = 0):

fn(y) =
X

0�l<n

�l;ny
l (19)

Multiplying (18) by yl and summing over non-negative values of l:

(n+ 1)
X
l�0

�l;n+1y
l = (n+ pP )

X
l�0

�l;ny
l [0 � l < n]

+ pS
X
l�0

�l�1;ny
l[0 < l � n] +

X
l�0

[l = 0][n = 0] (20)

= (n+ pP )
n�1X
l�0

�l;ny
l [n > 0]

+ pS

nX
l=1

�l�1;ny
l[n > 0] + [n = 0] (21)

substituting (19) appropriately:

(n+ 1)fn+1(y) = (n+ pP )fn(y)[n > 0] + pSyfn(y)[n > 0] + [n = 0] (22)

Multiply by xn and sum (22) over all values of n � 0:
X
n�0

(n+ 1)fn+1(y)x
n =

X
n�0

(n + pP )fn(y)[n > 0]xn +
X
n�0

pSyfn(y)[n > 0]xn+
X
n�0

[n = 0]

=
X
n�1

nfn(y)x
n + pP

X
n�1

fn(y)x
n +

X
n�1

pSyfn(y)x
n + 1

de�ne:

h(y; x) =
X
n�1

fn(y)x
n (23)

then:

d

dx
h(y; x) =

X
n�1

nfn(y)x
n�1 (24)
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And a little substitution yields a di�erential equation.

d

dx
h(y; x) = x

d

dx
h(y; x) + pPh(y; x) + pSyh(y; x) + 1

Doing a few cookbook manipulations:

d

dx
h(y; x) +

�(pP + pSy)

(1� x)
h(y; x) =

1

1� x

Multiplying through by exp(
R �(pP+pSy)

(1�x) dx) = (1� x)pP+pSy and integrating yields:

(1� x)pP+pSyh(y; x) = C � (1� x)pP+pSy
pP + pSy

h(y; x) =
C

(1 � x)pP+pSy �
1

pP + pSy
(25)

Where C is an as yet unknown constant introduced by the integration.

Expanding (1� x)�pP�pSy with the binomial theorem, we have

h(y; x) = C
X
n�0

��(pP + pSy)
n

�
(�x)n � 1

pP + pSy

= C
X
n�0

�
(pP + pSy) + n� 1

n

�
xn � 1

pP + pSy
(26)

and, for n > 0,

fn(y) = [xn]h(y; x) = C

�
(pP + pSy) + n� 1

n

�
(27)

We happen to know that f1(x) = 1, so solving for C:

C =
1

pP + pSy
(28)

and plugging this back into (27)

fn(y) =
1

pP + pSy

�
(pP + pSy) + n� 1

n

�
(29)

What to do with a generating function

We can obtain any desired constant �j;k by repeated di�erentiation of fn(y), but this is not very satisfying.

What Theorem 1 tells us is that fn(y) forms a probability generating function. This can be used to derive

the expected value of the depth of a bucket when there are n buckets. This is expressed as En(l) =
d
dy
fn(1).

Higher moments can also be easily obtained.
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Making the attempt, we have3:

fn(y) =
1

pP + pSy

�
(pP + pSy) + n� 1

n

�

=
1

pP + pSy

(pP + pSy + n� 1)n

n!

=
(pP + pSy + n� 1)n�1

n!

=
(pP + pSy + n� 1)!

n!(pP + pSy)!

=
�(pP + pSy + n)

�(n+ 1)�(1 + pP + pSy)
(30)

utilizing maple, we get a derivative, which turns out to involve the digamma function,

 (x) =
�0(x)

�(x)

d

dy
fn(y) =

�(pP + pS y + n)pS ( (pP + pS y + n)�  (1 + pP + pS y))

�(n + 1)�(1 + pP + pS y)
(31)

Evaluating at y = 1 and noting that pP + pS = 1

f 0n(1) =
pS ( (n + 1)�  (2))

�(2)
(32)

En(l) = pS ( (n + 1)� 1 + 
)

Referring to ([AS64],6.3.2, p.258), we learn

 (n+ 1) = Hn � 
 (33)

So the asymptotic value of the expected depth of a node in the tree as n gets large is

En(l) = pS ln(n+ 1)� pS (34)

This value for the expected depth can be used to estimate average cost of algorithms which traverse the

tree.

4 Comparing the NIBGF to BANG

NIBGF is a variant of BANG �les in which the directory is prganized by levels in such a way as to permit

a binary search between levels, and a binary search is possible within a level. The operations of search or

insert are required to �nd the deepest node in the directory tree spanning a given portion of the key space.

These operations can operate in lgh � lgw time; where h is the depth and w is the number of buckets of the

3The falling factorial notation, used in Equation (30) may be unfamiliar. Xn = X �(X�1)�: : : (X�n+1) = �0�i<n(X�i)
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level under consideration. Based on our understanding of the expected height of a directory node, we can

immediately predict that the binary search to determine directory level is not likely to be very valuable. In

their analysis of search costs, [OM92] suggest that lgh is likely bounded by a small constant. We agree; our

analysis shows that lgh = lg(pS lnn). Just to pick a value likely to exceed the size of databases possible

on today's machines, if n = 264 then lnn = 64(:6931 : : :) � 46, and since pS < 1, lg(46pS) < 6. (Actually

our �gure is the average depth; binary search cost depends on maximum depth, but it seems reasonable to

estimate the order of search costs this way.)

Mean directory depth for many �les will be small enough that a simple tree descent will be much less

costly than a binary search between levels. Taking cost of a typical sequential search from [Knu73] as

5h=2+ 3 and a typical binary search as 18 lgh+ 12 (again these are for h representing maximum depth of

the directory, not average) we can solve:

5h=2 + 3 < 18 lgh+ 12

A numerical solution gives h < 42:6 as the domain for which a sequential search is less expensive. Of course

the costs of particular binary search algorithms may be di�erent, and the break-even depth depends on

the implementation.

Approximating the average depth as half the maximum depth, a maximum depth of 42 corresponds to

a average depth of 21, which with a value of pS of :29 can be used in the inequality

21 > :29 lnn

to solve for the number of keys we'd need for binary search of levels to be a win. This gives a value of

n < 2:81 � 1031 which rather handily exceeds the estimate of 264 = 1:8 � 1019 which we just o�ered as a

reasonable maximum database size for present-day systems. If we use the value pS = :62 estimated in

section 3.3.2 for anti-continuous data distributions, we get a slightly more modest value of n < 5:1 � 1014,
probably within short-term hardware limitations, but still a very large database.

However, the issue of how to organize the descendants of a directory node has to be resolved, and the

NIBGF structure is certainly a reasonable one. Since directory nodes may have thousands of children, an

organization is required which permits rapid search through them. The NIBGF approach organizes all the

nodes at a given depth of the tree, irrespective of their ancestry, into one ordered structure to which binary

search may be applied. A tree walk involves performing a binary search at each level of the tree to �nd

the descendants of the previous, higher node. There is consensus that the B-tree is an excellent structure

for organizing this type of linearly sorted data. Abstractly and conceptually, each directory level is stored

as a sorted array, but physically, it should probably be stored as a B-tree.

In our implementation, we permit the tree to become a forest, through peer splits of the root node. For

large bucket sizes and uniform data distributions, the forest becomes a sorted array of data buckets, with

a few layers of over
ow levels. For non-uniform distributions, the number of levels needed to represent the

data increases, but the total number of layers required remains relatively small.

The conceptual simplicity of this layered B-tree implementation is attractive. However, except for the

root, most directory nodes will have relatively few descendants. The advantages of the layered scheme over

an explicit pointer scheme are that:

1. Permits a binary search between levels, because the node, if any, covering a point at any level can be

found by examining only the nodes of that level.

2. Peer splits do not require updating pointers in the parent or child nodes.
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3. Fewer pointers are stored. The B-tree has internal pointers of its own, but these are probably shared

among the children of several nodes.

Some of the disadvantages are:

1. A tree walk of the directory requires a binary search at each level.

2. Binary search touches directory pages remote from those pointing to interesting data.

3. There are hot-spots in the directory which are touched very frequently. For example, the highest and

lowest levels of the tree are examined on every directory search.

As we have seen, the inter-level binary search advantage is actually no advantage at all. If we change the

algorithms to omit use of inter-level binary search, we also mitigate disadvantages 1 and 2. Since search

is incorporated into B-tree access, and one directory access to secondary storage su�ces for B-trees of

reasonable size, a superior, competing algorithm would have to make less than two accesses to follow its

child pointers. In order to access to any child in a single disk reference, the descriptors and pointers for all

the children would have to be stored in the parent node. This would increase the complexity and size of

the node and the algorithms which manage it.

In summary, although the binary search capabilities of NIBGF are actually a liability, the data structure

is a reasonably good implementation of the BANG �le idea; more detailed comparison with other variants

would require more implementation detail.

5 Storage utilization

The minimum storage utilization of a BANG �le is 1/3. This can occur if there is a string of references

which repeatedly splits a single bucket. The splitting algorithm of section 3.1 guarantees that the smallest

new bucket created will be at least 1/3 full. If the added tuples are ordered so that the newly created

buckets are only 1/3 full, and no bucket is ever referenced again after it is created, the maximum wasted

storage will be achieved. In this case, the storage utilization of the BANG �le will be 1/3. Sequential

references to data buckets may be said to incur an overhead of 200%, because each tuple read will be

accompanied by a transfer of twice as much empty space (the unused portion of the bucket.)

However, if we assume a less malignant distribution of new tuple insertions, buckets will continue to be

referenced after they have been created. Then we can consider the utilization of a bucket over its lifetime.

For each bucket, the least utilization it may have at creation time is 1/3; the maximum utilization at

creation time is 2/3; and the mean value is 1/2. From the time a bucket is created until it splits again,

its storage utilization will range from its creation value to 100%. The storage utilization of the whole �le

depends on the proportion of buckets for each possible value of the storage utilization.

The Capitalist model for storage utilization assumes that when a bucket is split into two new buckets,

the relative utilization of the two buckets, that is, the number of tuples in each new bucket, determines

the probability that subsequent tuples will be addressed to the region which a bucket spans.

For example, if a bucket is split which is currently receiving 20% of the tuples added to the �le, and one

of the resulting buckets is 1/3 full, the other 2/3 full, our model predicts that the �rst of the new buckets

will receive 1/15 of subsequent tuples added to the �le, and the second, or fuller, bucket will receive 2/15

of new tuples.4

4`To every one who has, will more be given.' Matthew 25:29
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Figure 13: Utilization based on recurrence 35

If we make the added assumption that every split will be worst case, we can write a recurrence to

approximate the number of buckets required to store xb tuples, where b is the number of tuples in a full

bucket.

s(xb) =

�
1 if xb � b

s(xb�b3 + b
3 ) + s(2(xb�b)3 + 2b

3 ) if xb > b
(35)

That is to say, if the number of tuples on hand is less than one bucketful, then they will all �t into a single

bucket. Otherwise they will be stored in more than one bucket. The �le has a history of additions, and at

some point it over
owed its �rst bucket and split into two sub-�les. Since it was a worst-case split, one of

the divisions included 1/3 of the then existing and subsequently added tuples, the other 2/3 of them. The

subsequently added tuples are represented as xb � b in the formulation of the recurrence; the previously

added tuples appear as b
3 and 2b

3 . (Obvious algebraic simpli�cations are omitted.)

This recurrence gives a precise numerical answer, which obviously does not re
ect the probabilistic

nature of its assumptions. However, it seems like a reasonable model. The graph of �gure(13) permits us

to estimate the asymptotic utilization limx!1
xb

s(xb) = 0:64.

[Lom81] provides a solution for steady-state �le utilization when S of the data on a split goes to one

bucket and (1� S) to another; that solution is given as

U = S log

�
1

S

�
+ (1� S) log

�
1

1� S

�

When S = 1
2 , this gives us the well-known utilization for a B-tree, loge 2 = :693, and when S = 1

3 it gives

an asymptotic utilization rate of 64.3%

We could attempt a mathematical analysis of equation (35), using Mellin transforms, but this would

be only as e�ective as the original model, which is somewhat approximate. The graph suggests that the

behavior of the utilization may have a log-periodic component, which is damped slowly, if at all.

Simulations appear to show a long-term log-periodic component in the utilization, but have a somewhat

larger mean than predicted by the 1/3::2/3model. (Nearer :69 � ln 2) For very small bucket sizes, rounding
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Figure 14: Simulated Utilization for bucketsize of 5
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Figure 15: Simulated Utilization for bucketsize of 500
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e�ects push the utilization up. For example, for a bucket size of 5, utilization varies from a low of 40%,

rather than 1/3. For very large bucket sizes, (and uniform distributions), it will be be very improbable to

put as few as 1/3 of the data points into a partition. Our graphs in �gures (14) and (15) illustrate this.

6 Simulations

We coded a metered virtual-memory implementation of a two-dimensional NIBGF [OM92] variant of the

BANG �le [Fre87] and created �les with large numbers of buckets, using uniform and normal distributions

and bucket capacities of 5, 30, 60, 120 and 500 tuples. Statistics were collected on the fraction of bucket

over
ows which created a child in the directory, the storage utilization, and the height distribution of

buckets in the directory tree. The graphs of Figure 16 and 21 show some of our results.
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Figure 16: Simulation with normal distribution. Bucketsize = 5

For the simulation of Figure 16, the x and y coordinates of the two-dimensional data are independent

Gaussian random variables with a mean of .25 and a standard deviation of .03125. This is a normal

distribution centered in the lower left quadrant, as shown in Figure 17.

The simulation was performed with a bucket capacity of 5. Section 3.2 discusses the expected split

behavior of this particular bucketsize at length.

In the graph we see pS has a fairly large value when there are only a few buckets in the �le. In fact,

pS is larger than our model of section 3.3.2 predicts for an anti-continuous data distribution. The �rst

few splits must always generate descendants, because three-quadrants of the key-space contain essentially

no data. However, as more buckets are inserted and the width of the key-space spanned by most buckets

gets small relative to the standard deviation, the continuous nature of the distribution gradually asserts

itself, and pS asymptotically approaches .28. This is shown in more detail in Figure 18. This value is

reasonably close to the approximate prediction of Section 3.2. Thus the simulation con�rms the usefulness

of the estimation techniques used in section 3.2.

Simultaneously, the slope of the average bucket depth tracks the change in pS , as predicted by Equation
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Figure 17: Simulated normal distribution is o�set from center.
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Figure 18: pS detail. Normal distribution. Bucketsize = 5
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(34). In Figure 16 a curve has been �t to the pS observations, and the integral of the �tted curve is shown

to track the observed stack depths.

In Figure 19 we see the the value of pS tracks the predictions of section 3.2 very well. The average

directory depth does not track the theoretical prediction nearly so well. This is probably because a

uniform distribution is emphatically not Capitalist . When the �rst descendant bucket of a directory node

is created, it covers at most one-third the area of its parent. For the uniform data distribution modeled

by this simulation, the nodes nearest the leaves of the tree will receive fewer insertions than their parents,

and split less often. In consequence we observe shallower trees than predicted by the assumptions which

derived the theoretical depth.

There are a few features of the graphs which are not explained by the models. The most striking

unexplained feature is an apparently log-periodic oscillation below the expected depth, which can be seen

in the observation for 5000 buckets in Figure 16, as well as in Figures 21 and 20.
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Figure 19: Simulation with uniform data distribution. Bucket size = 5

7 Conclusion and further work

The Capitalist model is a useful technique for modeling certain multi-dimensional and spatial �le structures.

We have applied it to NIBGF and BANG �les, to build models of �le growth and storage utilization.

Our model predicts that the expected height of a node in the directory tree is pS ln(�le size) where

pS � 1 is function of the bucket size. Based on the analytic models, we deprecate the importance of binary

search between containment levels in the tree. Within a single level, the value of binary search is con�rmed,

since a directory node may have thousands of children.

Our models do not explain a number of second-order features of the algorithms' behavior which appear

in simulations. These remain to be examined. Future work on the Capitalist model will include models of

other spatial data structures.
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