
Contents

1 Introduction 1

2 Petri Nets 3
2.1 Basic Petri Nets : 3
2.2 Colored Petri Nets : 5

3 Derivation Nets 6
3.1 Formal De�nition : 6
3.2 Execution Rules for Marked DNs : 8
3.3 Properties : 9

3.3.1 Closure of the Model under Queries and Updates : : : : : : : 9
3.3.2 Database Closure : 9
3.3.3 Uniqueness of Final Markings : : : : : : : : : : : : : : : : : : 13
3.3.4 Semantics of Queries : 13
3.3.5 Semantics of Updates : 14
3.3.6 Assertions and their Use : 14
3.3.7 Observations : 15

3.4 Additional Properties of DNs : 16
3.4.1 Reachability : 16
3.4.2 Reverse Reachability : 18
3.4.3 Reversibility : 19
3.4.4 Reachability, Reverse Reachability, and Reversibility : : : : : 20

4 Implementation 20
4.1 The Gaea Architecture : 21
4.2 Data Derivation Management in Gaea : : : : : : : : : : : : : : : : : 22
4.3 Operational Characteristics : 24
4.4 Data De�nition and Manipulation : 24
4.5 Integrating Data Analysis Tools : 26
4.6 Example : 27

5 Discussion 29
5.1 Limitations of the Model : 29
5.2 Comparison with Other Formalisms : : : : : : : : : : : : : : : : : : : 30

5.2.1 Conceptual and Functional Modeling : : : : : : : : : : : : : : 31
5.2.2 Lineage and Versioning : 31
5.2.3 Scienti�c Databases : 32

6 Conclusions 33

1

Derivation Nets: A Petri Net Model for the Management

of Data Derivations in Scienti�c Experiments�

Nabil I. Hachem, Nina Serrao, Michael A. Gennert, and Ke Qiu

Department of Computer Science

Worcester Polytechnic Institute

Worcester, MA 01609-2280, USA

e-mail: hachem,nmc,michaelg,qiu@cs.wpi.edu

Abstract

An important aspect of scienti�c data management is metadata manage-
ment. One kind of metadata which needs special attention is data derivation
information, i.e., how data are generated. In this paper we propose extensions
to current database models to include implicit metadata management.

We introduce and analyze Derivation Nets, an extension of Petri Nets, as
a tool to represent and manage data derivation relationships between scienti�c
data, and the procedures and algorithms that derive data. We formulate the
Derivation Net model, study its properties with respect to database states, and
discuss the semantics of queries and updates within this framework.

Derivation Nets have been used to design the metadata manager portion of
the Gaea scienti�c database management system. Their operational character-
istics, implementation, and sample use are described.

�This work was supported by the National Science Foundation under Contract IRI-9116988.

0

1 Introduction

There are several issues in scienti�c databases which make conventional database
techniques insu�cient to achieve the goals of data integration and data sharing [12,
15, 51]. One such important issue is the capture of computations and the management
of the data derivation mechanisms, involving scienti�c data objects.

In a scienti�c database, data may be classi�ed into two categories: base data and
derived data [17]. Base data is viewed as immutable input data to an analysis system,
obtained from well-known sources outside the system. Derived data are generated
from base data or previously derived data by applying analysis operators. Note that
one system's derived data may be another's base data, e.g., radiometrically corrected
remotely sensed imagery may be base data for a Geographic Information System
(GIS), but derived data for the instrument scientists. Unlike base data, derived data
are not always well understood. One important objective for the e�cient management
of scienti�c information is to be able to build on pre-existing knowledge, by sharing
both base and derived data.

There is a growing need to manage the algorithms applied to scienti�c data to
derive new data. As there are standard mathematics and statistics libraries available
to the general scienti�c community, so too should there be common and consistent
algorithms for all components of data analysis. To accomplish this requires the devel-
opment of methods to manage the development, evolution, veri�cation, and dissem-
ination of algorithms. Another focus of management is in the scienti�c experiments
themselves. The view of some types of investigation as iterative re�nement dictates
a need to monitor the progression of experiments to best identify future directions
of highest potential. Experiment management also helps avoid unnecessary duplica-
tion of experiments and may encourage the reuse of aspects of previously performed
experiments in the design of new ones. Finally, to facilitate the dissemination, ex-
ternal con�rmation, and veri�cation of results, some form of management is needed.
Some branches of science have already identi�ed this need, with standard formats for
distributing data and reporting experimental results [1].

In GIS and global change research, studies involve gathering many forms of scien-
ti�c data. This diversity ranges from tabular data such as rainfall or census reports
to raster data such as satellite imagery to vector based cartographic data. In these
investigations, scientists may evaluate many classi�cation schemes (principle com-
ponents, maximum likelihood, linear mixture modeling), and perform experiments
over diverse regions at di�erent periods of time. Comparison of regions with similar
climatic, socio-economic, or geographic characteristics may reveal heretofore undis-
covered relationships or trends. However, inconsistencies between di�erent classi�ca-
tion methods may prompt the development of entirely di�erent techniques based on
di�erent types of data.

Di�erent scientists may employ di�erent methodologies or apply di�erent algo-
rithms to reach the same objective. In order to make use of the results or data
obtained by other scientists, we must have a full understanding of the data derivation

1

history|how they are produced. It is only when such metadata are available that
shared data can be meaningfully utilized and interpreted.

Consider the following simple scenario: two scientists are working on detecting
changes in vegetation index in Africa between 1988 and 1989. One may subtract the
NDVI1 of 1988 from that of 1989, while another divides the NDVI of 1989 by that of
1988. In this case, if only the resultant images are stored (as in common GISs such
as IDRISI [14] and GRASS [45]), there is no way to share and compare the produced
data unless the derivation procedures are known to both scientists.

It should be observed that the above problem does not exist in business databases.
Data stored in a business database are based on descriptions about an existing enter-
prise, which are commonly accepted by all the users of the database. This is reected
by the global schema in a business database. In scienti�c environments, individual
researchers may share some information but manipulate it using di�erent algorithms
or ad hoc experiments to derive new data, which are added to the knowledge pool.
Therefore, it is of absolute necessity to manage the data derivation history in scienti�c
databases.

The main contribution of this paper is Derivation Nets (DN), a model for the
capture and management of data and metadata derivations in scienti�c databases.
Derivation Nets are based on an extension and interpretation of Petri Nets (PNs)
[36]. This model has been implemented in the Gaea spatio-temporal DBMS for global
change research [20, 21, 22]. We describe the structure and behavior of the model
and analyze it with respect to database states, and the semantics of queries and
updates. Our contribution parallels other e�orts such as [7, 9, 16, 43], while addressing
limitations of current systems such as [14, 45].

We start by overviewing the basis and some important extensions of Petri Nets
in Section 2. Section 3 concentrates on the description of the structure of Derivation
Nets, and provides an analysis of their behavior. Speci�cally, we concentrate on the
semantics and stability of the model with respect to database states, and queries
and updates. We include a discussion of the essential semantic constructs that are
proposed and for which the DN model is constructed. In Section 4 we give a brief
overall description of the Gaea architecture. This is followed by a description of the
use of DNs within the derivation layer of that system. We provide a typical example
of derivation speci�cations and queries that are possible using DNs. In Section 5,
we discuss the limitations of the current model and implementation, and relate our
work to others. Finally, Section 6 draws some preliminary conclusions from the work
described.

1NDVI is the normalized di�erence vegetation index, a qualitative measure of vegetation derived
from satellite imagery data.

2

2 Petri Nets

2.1 Basic Petri Nets

Petri Nets have been proposed as a modeling tool for systems. They are used to
develop a mathematical representations of systems and apply these models to study
the behavior and analyze the performance of systems [35, 36]. We have proposed to
represent data derivation processes with PNs [20]. The advantages of this approach
to model the derivation process are [3, 10, 26, 36]:

� The graphical representation of Petri nets is not only easy to understand but has
a well-de�ned semantics which, in an unambiguous way, de�nes the behavior of
the system.

� PNs have proven to be very useful to describe pieces of intended system behavior
where process synchronization is of utmost importance and the behavior of the
system needs to be analyzed.

� PNs can be used to represent systems in a top-down fashion at various levels of
abstraction, i.e., they can be used to model a system hierarchically.

� Most importantly, PNs are uninterpreted models. Hence they can be used in
many di�erent environments by using appropriate interpretations.

Informally, a Petri net is an abstract model of the ow of information and control
of actions in a system.

De�nition 1 A Petri net structure is the four-tuple C = (P; T; I;O) where

� P = fp1; : : : ; pmg is a set of places.

� T = ft1; : : : ; tng is a set of transitions.

The relationship between places and transitions is de�ned using the input function I

and the output function O. For each transition t:

� I(t) de�nes the set of input places for transition t, and

� O(t) de�nes the set of output places for transition t. [36].

De�nition 2 A marking �:P ! N of a Petri net is an assignment of tokens to the
places in the net, with �(t) the number of tokens at place t. A marked Petri net is
de�ned by the 5-tuple M = (P; T; I;O; �).

The two components of a Petri net are places represented using circles, and tran-
sitions represented using vertical lines (Figure 1). Arrows interconnect places and
transitions. Tokens (black tiny circles) move from place to place according to speci�c
\�ring" rules. Firing rules describe the behavior of the structure of a PN model.

3

Petri net

A

B

C

D

E

F

A

B

F

EC

D

Derivation net

P1 P2

P3

P1
P2

P3

Process

Token

Place

Transition

Data Object

Base Class

Derived Class

Figure 1: Petri Net and Derivation Net

De�nition 3 The �ring rules for a basic PN are as follows:

� A transition is said to be enabled when all of its input places have at least one
token.

� A transition �res by removing the enabling tokens from their input places and
generating new tokens which are deposited in the output places of the transition.

� The number of tokens in each place always remains nonnegative when a transi-
tion is �red.

� Usually, only one of the enabled transitions can �re at a time [36].

In Figure 1, for example, transition P1 is enabled since its input places A and
B have at least one token in them. Transitions P2 and P3 are not enabled as their
respective input places do not have a token in them. Transition P1 �res by removing

4

one token from each of A and B and then generating one token in C. The e�ect of
�ring a transition is illustrated in Figure 2.

PNs evolved to overcome the limitations of �nite state machines [36]. Some of
the application areas of PNs are in performance analysis [23, 46, 52], communication
protocols [49], asynchronous systems modeling [3, 39], hardware modeling [6, 34, 19],
and in hypertext systems [38] among others. Di�erent properties of PNs have been
investigated as analysis tools, including boundedness, conservation of tokens, safety,
liveness of transitions [36], and invariants [30].

The implications of the concept of liveness can be di�erent for di�erent systems
modeled using PN. This concept was developed to deal with deadlock problems in
operating systems. It is reducible to the reachability problem in a PN and can be used
for its analysis [36]. The reachability problem is stated as follows: Given a marked
Petri net (with marking M) and a marking M

0

, is M
0

reachable from M [36]?. The
reachability set of a PN is the set of all states into which the net can enter by any
possible �ring sequence of its transitions. It is the set of markings of the net.

Many extensions to the basic PN formalism have been proposed. Prominent ones
are timed PNs [52], stochastic nets [32], G-Nets [11], PNs with inhibitor arcs [3], and
free choice nets [36]. Relevant to Derivation Nets, an interesting extension is high-level
Petri Nets such as Colored Petri nets (CP-nets) and hierarchical nets [19, 24, 26].

2.2 Colored Petri Nets

One of the PN extensions that comes closest to our work is Colored Petri Nets [26].
CP-nets attach to each token a token-color and relate the input to output token colors
by means of functions. In this way, a large Petri Net exhibiting a regular structure
can be collapsed into a much smaller and more easily analyzed CPN.

Consider the problem of modeling two processes using the same set of resources
in a similar way using basic Petri Nets. Two separate PNs are needed as a single
token can be used to �re transitions in either net but not both. As more processes of
the same kind are added to the system the PN will become very large and di�cult
to comprehend. This occurs with most real-time systems as they often contain many
processes that are similar yet distinct. In such situations, Colored Petri nets provide
a better form of representation by making use of the token color.

In a CPN each token has an attached token color drawn from a discrete set. The
color can be a complex data type like a structure in programming languages. For a
given place all tokens must have token colors that belong to a speci�ed set of allowable
colors for that place, called the color set of the place. Attaching a color to each token
and a color set to each place allows the use of fewer places than would be needed in
a basic PN. Color sets in CPN are the same as types in programming languages.

A CP-net consists of three di�erent parts: net structure, declarations, and net
inscriptions. The net structure is a bipartite directed graph with two kinds of nodes,
places and transitions, interconnected by arcs. The declarations describe the di�erent
types of data and variables being used in every process. Net inscriptions consist

5

of names for the places, transitions and arcs, the types of data (color sets) and
initialization expressions attached to a place, the guards attached to a transition and
the arc expressions attached to an arc. The purpose of guards is to de�ne additional
constraints which must be satis�ed before the transition is enabled [26].

The major advantage of using CPNs to model a system is that it is possible to
prove that a given system has a set of desired properties, including absence of dead-
lock, the possibility to return to the initial state and an upper bound on the number
of tokens.

3 Derivation Nets

In this section we present and discuss the features of Derivation Nets as a model for
managing derived data in scienti�c databases. We show the closure of the model with
respect to the database states, followed by semantics of queries and updates. Finally,
we present additional interesting properties used for the analysis of and operations
on derivation nets.

3.1 Formal De�nition

The various extensions to Petri nets which were reviewed are inadequate for the
modeling and decision support capabilities needed for scienti�c database management.
By using appropriate interpretations of places, transitions, tokens and markings; and
further by modifying the �ring rules of PNs, we propose Derivation Nets, a network
model for the derivation process.

De�nition 4 A Derivation Net (DN) is the �ve-tuple2 D = (C;P; I;O;A) where

� C = fc1; : : : ; clg is a set of classes (net places); each class encapsulates the
structural representation of a single type of data.

� P = fp1; : : : ; pmg is a set of processes (net transitions); each process encapsu-
lates the procedures applied to the classes of data.

� I:P ! C�, I(p) � C de�nes the set of input classes for process p,

� O:P ! C�, O(p) � C de�nes the set of output class for process p3,

� A:P ! (C� ! ffalse; trueg), A(p) is an assertion function (predicate). Process
p can �re, that is, generate output of class O(p), only when the set I(p) is
marked and A(p) is true in the context of I(p). Allowing arbitrary expressions

2This de�nition supersedes the one given in [17]; the DNs of that paper are the marked DNs in
this work.

3The implementation discussed in Section 4 assumes that there is only a single output class per
process, but this assumption is not critical to the theory.

6

to appear in A(p), including conjunctions, permits us to treat multiple assertions
as a single assertion.

One of the functions of a Derivation Net, in addition to determining data deriva-
tion relationships, is to guarantee that derived data are not rederived unnecessarily
during the course of responding to a query. To avoid recomputation of known quan-
tities, data objects are uniquely identi�ed by an object identi�er and the tokens
that mark a DN are also uniquely identi�ed. We now introduce tokens and marked
Derivation Nets.

De�nition 5 A token in a Derivation Net is an element of the set of tokens de�ned
recursively as

x 2 X = C � (B [(P �X�))

where

� B = fb1; : : : ; bng is the set of uniquely identi�ed base data objects, and

� X� indicates zero or more tokens in the input classes from which a token may
be derived.

A token in a DN represents an instance of a class (data object), with the class
appearing as the �rst element of the token. The tokens in a class reect the instances
of that class in analogy with tuples in relations. A token can either correspond to
base data or it can correspond to derived data. In the former case, the token has
the form x = (c; b), indicating that the data is an instance of base class c. Tokens
that correspond to derived data are tagged not only with their class, but also the
generating process and the identities of tokens used to instantiate the process. Thus,
derived data carry along with them their derivation history.

For example, let process p1 be instantiated with base data b1 in class c1 and b2 in
class c2 to generate a new data object in class c3. The newly generated token will be
(c3; p1; (c1; b1); (c2; b2)).

De�nition 6 A marked Derivation Net is a pair M = (D;m) where

� D is a Derivation Net, and

� m � X is the set of tokens active in the DN.

Marked Petri Nets ordinarily de�ne the marking to be a function from places
to natural numbers and Colored Petri Nets de�ne a marking as a function from
places to the multiset of colors. Our de�nition of a marking di�ers in that the tokens
themselves carry along class information, which plays the same role as colors in CPNs.
It is natural to de�ne functions on marked DNs for the class of a token and the tokens
of a class.

7

class:X ! C; class(x) = �rst element of x

tokens:C ! X; tokens(c) = fx 2 Xj class(x) = cg

For a given net place c, its marking tokens(c) will consist solely of elements of the
form (c; b) or else the elements will have the form (c; p; x1; x2; : : :) where c 2 O(p) and
class(xi) 2 I(p) depending on whether c contains base data or not. A class c is a base
class if it is not the output class of any process.

De�nition 7 A (marked) Derivation Net is an initial marking if and only if it is
M = (D;m0) and m0 � C �B, the restriction of the tokens to base classes only.

An initial marking is the set of instances of data objects in the base classes and is thus
an image of a state of the database representing base data (in analogy to extensional
data in deductive databases). A DN is illustrated in Figure 1. Places represented
with concentric circles are base classes, while the others are derived data classes.

In the remainder of this paper, all DNs may be assumed to be marked DNs unless
otherwise stated. When data analysis is non-iterative, we may impose on Derivation
Nets the additional condition that they be acyclic.

De�nition 8 An acyclic Derivation Net is a DN where there are no cycles in the
underlying class/process graph.

The class/process graph of a DN (C;P; I;O;A) is a bipartite directed graph obtained
by considering the vertex set V = C[P and the edge set E as a subset of (C�P)[(P�
C) with (c; p) 2 E i� c 2 I(p) and (p; c) 2 E i� c 2 O(p). A cycle in the class/process
directed graph is a chain of classes and processes (c1; p1; c2; p2; : : : ; cN ; pN) where ci 2
I(pi), ci+1 2 O(pi), and c1 2 O(pN). It turns out that for many applications, iterative
data analysis is extremely important; we conjecture that most of the propositions
below can be extended to cyclic DNs by considering the least �xed point of an in�nite
family of acyclic DNs.

3.2 Execution Rules for Marked DNs

As tokens represent base or derived database objects, they are not consumed by
the �ring of a process. Firing a transition, or equivalently, instantiating a process p
creates new tokens in the output classes of the process. These objects are the result
of actually deriving data using a task as de�ned in Section 4.1. The new objects can
be created if the set of assertions A(p) is satis�ed. We modify the Petri Net execution
rules as follows for Derivation Nets:

� A process p is instantiatable (enabled) if there exists a set of tokens in each input
class ci 2 I(p) of p such that A(p) (assertion for process p) is true (satis�ed).

8

� Each of the instantiatable processes can �re at any time.

� Instantiating (�ring) a process p does not remove any tokens from the input
classes I(p), but adds one token to each output class in O(p). The newly
generated tokens are identi�ed with their class, the instantiated process p, and
the identi�ers of the input tokens.

Thus, instantiating a process with an identi�able set of input tokens always gen-
erates the same identi�able output token. This claim will be proven later.

Formally, if process p is instantiated with objects fx1; : : :g under marking m1 to
yield marking m2, then m2 will di�er from m1 by being augmented by the newly
generated tokens. To be precise, m2 = m1 [f(ci 2 O(p); p; x1 2 I(p); : : :); (ci0 2
O(p); p; x1 2 I(p); : : :); : : :g.

Therefore, the equivalent to �ring a transition in a PN is instantiating a process
in a DN. The major di�erences between the two is that the latter does not remove
tokens from its input places when it generates new tokens in the output places.

Note that it is possible to construct an equivalent PN from a DN, ignoring as-
sertions. The construction is straightforward; for each process p, the output classes
O(p) are augmented with input classes I(p). Then the usual PN �ring rules apply
and every time a transition �res, it replenishes its input set.

3.3 Properties

3.3.1 Closure of the Model under Queries and Updates

The modi�ed �ring rules lead us to discuss closure of the markings of a DN. With
an initial marking m0, one asks the following questions: What is the relationship
between markings? Is there a state which can be used as a basis to determine if a
speci�c object can be derived? Can we assure that the number of tokens remains
enumerable? As processes can �re concurrently, does the �nal database state depend
on the sequence of instantiations? These questions are important and should be
answered if the model is to be of any use4.

3.3.2 Database Closure

Based on the �ring rules of DNs, we de�ne a legal marking and a �nal marking as
follows:

De�nition 9 Given an initial marking m0, a marking m in a DN is legal if it is the
result of zero or more instantiations of processes from the initial marking.

De�nition 10 The union of all legal markings is called a �nal marking.

4This has correlates with least �xed point semantics and the closed world assumption in deductive
databases.

9

A

B

C

D

E

F

A

B

F

EC

D

P1 P2

P3

P1 P2

P3

Firing a transition

Instantiating a process

Figure 2: Results of Firings in a Basic Petri Net and a Derivation Net

Consider the DN in Figure 1. The initial marking, m0 consists of the set of data
objects in classes A and B, i.e., a set of three data objects from each of the classes
making a total of six data objects. From the legal marking m0, if P1 is instantiated
generating an object in class C, the resultant marking m1 is a legal marking and is
illustrated in Figure 2.

Assume a new data object is added to class C without instantiating process P1.
Then the marking m

0

1 (which includes m0) is NOT considered to be a legal marking.
This is illustrated by the gray token in Figure 3.

Consider the DN in Figure 4. The initial marking m0 is the set of data objects
in classes A, B and D. The marking m1 is the result of instantiating process P1 from
the initial marking m0, generating an object in class C. The marking m2 is the result
of instantiating process P2 from marking m1 generating an object in class E. The
marking m3 is the result of instantiating process P3 from marking m0 generating
an object in class F. Assuming for this example that it is not possible for other

10

A

B

F

EC

D

P1 P2

P3
Legal token

Illegal token

Figure 3: Illegal Marking in a DN

A

B

F

EC

D

P1 P2

P3

Figure 4: DN with a Final Marking

instantiations to take place5. Thus, the �nal marking, mf for the DN of Figure 4 is
m0 [m1 [m2 [m3.

Tokens represent an abstraction of data objects in the database. If we are to use
relational systems and extend them with a DN, then tokens will be individually iden-
ti�ed by the keys of the tuples they represent. Using the object-oriented paradigm,
tokens may in practice be represented with object identi�ers. As tokens are not con-
sumed, then for any �ring of a transition, a new legal marking m is generated, with
m0 � m. Since the number of tokens in a class is bounded (�nite) over the set of all
markings, there is a �nite number of markings for an acyclic DN. We restate this as:

5It is observed that, as tokens are not consumed, the same input tokens can be reused to instan-
tiate a process as many times as we want. If a new token is derived from a process, any subsequent
�ring of the same process with the same input tokens will lead to the same output token.

11

Proposition 1 The set of possible markings derivable from an initial marking of an
acyclic DN is a �nite set.

Proof: Consider the tree constructed by starting with the initial marking m0 as the
root node; children nodes are generated by considering all possible transitions. The
size of the tree is limited by the branching factor (the number of active transitions at
any node) and the depth of the tree (which cannot exceed the number of processes
for an acyclic tree). Thus, the tree is �nite.

If the restriction to acyclic DNs is lifted, the tree may be in�nite, but enumerable,
because the tree depth is enumerable.

Essentially, a marking is a representation of a database state. The �nal marking is
thus the database state that represents all possible objects that one can retrieve, given
the initial marking m0. This �nal marking mf completely captures the semantics of
the database. The following proposition provides a �rm grounding of the relationship
between the set of legal markings of a DN.

Proposition 2 The set of legal markings forms a partially ordered set (poset), or-
dered by the operation of set inclusion �. The least upper bound (lub) of the set
is the �nal marking mf , and the the greatest lower bound (glb) is the initial marking
m0.

Proof: By the de�nition of the �ring rules for DNs, the marking after process instan-
tiation includes the pre-instantiation marking as a subset, so the poset property hold
trivially. The �nal marking mf must be the lub because for all other legal markings
m it holds that m � mf . The initial marking m0 must be the glb because for all
other legal markings m derivable from m0 by a chain of transitions it must hold that
m0 � m by the transitivity of �.

Illustration: The initial marking m0 is the glb as it is contained in every marking
and the �nal marking mf is the lub. The set of legal markings fm0;m1;m2;m3g forms
a poset. m0 is contained in m1 and m1 is contained in m2. Similarly m0 is contained
in m3. However m2 and m3 are not comparable.

The set of legal markings is a pointed complete partial ordering (a poset containing
a least element and whose every chain has a lub). Nonetheless, it does not follows
that the set of legal markings forms a lattice, because a set of markings may have
no unique lub. For example, the marking poset illustrated in Figure 5 generated by
a simple DN (not shown) has no unique lub for m1 and m2. The complete poset
structure of markings is very elegant and very important as it provides us with the
closure of database states:

Proposition 3 All possible (legal) database states are derivable from m0 and con-
verge to mf .

Proof: This is a restatement of De�nitions 9 and 10. That the set of all legal database
states converges to mf follows from its being the lub of the set of markings.

12

m0

m1 m2

m3 m4

mf

Figure 5: Marking Poset that is not a Lattice.

3.3.3 Uniqueness of Final Markings

Proposition 4 The �nal marking derivable from an initial marking is unique and
independent of the order of �ring of the transitions.

Proof: The tokens in a marking may be interpreted as functions: tokens in base
classes are 0-argument functions (constants) and tokens in derived classes having i
inputs are i-ary functions. Firing a transition to add new tokens is akin to perform-
ing a reduction on the functional interpretation. The function corresponding to the
�nal marking is a normal form, for which no further reductions are possible. By the
Church-Rosser property for function application, the normal form is unique irrespec-
tive of the order of reductions. Thus, the �nal marking is also unique and independent
of the order of �ring of the transitions.

3.3.4 Semantics of Queries

As mf is the union of all possible markings, then any object that can be derived
from the database using a combination of tokens from m0 is a token in mf . A query
speci�ed on the database can then be transformed into an equivalent query on mf .

Proposition 5 In a DN, a response to a query is a subset of the �nal marking mf .
Irrespective of the current state of the database, if that state is legal then the answer
to a query will be consistent with, and equivalent to, that query with respect to the
�nal marking mf .

Proof: The proof follows by induction on the number of process instantiations needed
to satisfy a query.

13

3.3.5 Semantics of Updates

There are two cases of update to consider: derived data updates and base data
updates. All updates to derived classes must be performed through the application of
derivation procedures; in order to guarantee metadata consistency, it must be illegal
for a user to manually perform insertions and deletions to derived classes.

Proposition 6 Inserting or deleting a derived data object does not alter the �nal
marking.

Proof: The proof follows from the de�nition of �nal marking, which is dependent
only on the initial marking developed from base data. Inserting or deleting a derived
object is merely a change of state within the poset structure.

On the other hand, base data determines the poset structure, so any modi�ca-
tion to it by, for example, adding (deleting) a base token implies a chained addition
(deletion) of all possible tokens that could be (have been) generated with that token.
This implies modifying the poset structure and the �nal marking.

Proposition 7 Inserting or deleting a base data object always alters the �nal mark-
ing, with the new �nal marking as a superset of the previous �nal marking in the case
of insertion, and a subset in the case of deletion.

Proof: We prove the claim for the case of insertion; the deletion case is identical. Let
m0 be an initial marking to which base data b is inserted to yield m0

0 = m0 [f(c; b)g.
Clearly, m0 � m0

0. By induction on the number of transitions, it must hold that
mf � m0

f . The two �nal markings cannot be equal because, at a minimum, token
(c; b) will be absent from mf but present in m0

f .

3.3.6 Assertions and their Use

Assertions in Derivation Nets are similar to guards in CP-nets [26]. In CP-nets the
guard of a transition is a predicate which must be true before the transition can �re.
So far we have ignored the assertions part of a DN. These are part of the process
de�nition (Section 4.1), and are used to provide the following features:

� Guarantee the integrity of data. Conditions on input data can be speci�ed, and
through the mapping of a process corresponding conditions are thus de�ned on
output data.

� Guarantee the integrity of data derivation. Some relationship among the input
data objects amy be required to obtain meaningful data derivations. For exam-
ple, a certain process may require its inputs to have the same or overlapping
spatio-temporal coverage. This can be expressed in the process template as
constraint rules and assertions. Only when such relationships are satis�ed will
the transition be enabled and �re.

14

� Assertions can be used to de�ne, capture and express specialized relationships
between classes. This di�ers from the conventional ones used in semantic model-
ing by being more general, including the ability to de�ne multiple relationships
between (possibly the same) classes, pertaining to a speci�c derivation proce-
dure.

We now consider the implications of the introduction of assertions with respect
to the poset structure of the markings of DNs. If no assertions are speci�ed, then
instantiating a process is independent of the \nature" of the input tokens. Denote
by Pf = fm0; : : : ;mfg the marking poset structure in this case, which we refer to
as the information poset. At the other extreme, we may place an assertion on every
transition in a DN such that, for every transition no tokens can be found that will
instantiate it. In this case m0 = mf and we denote the resultant poset structure by
P0 = fm0g. It is straightforward to prove the following:

Proposition 8 The set of posets that can be generated by starting with no assertions
and adding them to a DN, forms a lattice which is partially ordered by the operation
of set inclusion �. The least upper bound (lub) of the set is the poset Pf which is
generated when no assertions are associated with transitions, and the greatest lower
bound (glb) is the poset P0, which corresponds to the singleton set of markings fm0g.

Proof: Note that the elements of the information structure are themselves posets, i.e.,
sets of markings. Because the join and meet operations are set union and intersection,
respectively, the structure is a lattice. The singleton set of initial markings fm0g is
a subset of every poset, thus it is the glb of the lattice. Poset Pf must be the lub
because adding assertions to generate another poset P guarantees that P � Pf .

This grounding to a lattice structure of all possible marking posets characterizes
the closure of all possible models that can be generated by a DN. The use of assertions
does not a�ect the stability of the model that we propose. It only a�ects the size of
the �nal marking and thus the composition of the corresponding poset of markings.
Assertions are available to enable the scientist to carve a particular poset out of the
overall information poset Pf by adding constraints to the DN.

3.3.7 Observations

The DN structure which has been proposed can be extended to a hierarchical network.
This is briey discussed in [20] as a mechanism to represent processes in a top-down
fashion at various levels of abstraction.

The problems of conict which arise in PNs do not arise in DNs as tokens are not
removed from the input places [3, 36]. Thus, the problem of deadlock may not arise
in Derivation Nets, because tokens do not represent non-sharable resources. On the
other hand, processes can be dead. A process is said to be dead in a marking if there
is no sequence of process instantiations that can instantiate it. A dead process is one
which cannot become instantiatable, and may arise when one or more base classes

15

have no instances. Furthermore the state of nondeterminism cannot occur in a DN,
since when more than one transition is enabled, they may all �re in some order.

3.4 Additional Properties of DNs

Di�erent properties of PNs have been investigated as analysis tools, namely bound-
edness, conservation of tokens, safe nets, liveness of transitions [36], S-invariance,
T-invariance [30]. For DNs, the property of conservation of tokens is not important
as tokens are only created, not consumed. Similarly, the properties of safety and
boundedness are irrelevant since there is no bound on the number of tokens in any
class (place) of the net. Likewise, there are no S-invariants nor T-invariants except
for the trivial (zero) invariants, because tokens are only added.

The implications of the concept of liveness can be di�erent for di�erent systems
modeled using PNs. This concept is reducible to the reachability problem in a PN and
can be used for its analysis [36]. In a DN, reachability is de�ned with three di�erent
interpretations of the PN, namely the graph based, the class based and the object
based interpretations. Furthermore, we de�ne and discuss issues with traversing the
net backward and discuss reversibility. These two concepts are important and were
used in our implementation of DNs [44].

3.4.1 Reachability

The reachability set of a PN is the set of all states into which the net can enter by
any possible �ring sequence of its transitions. It is the set of legal markings of the
net. The reachability problem is as follows: Given a marked Petri net (with marking
M) and a marking M

0

, is M
0

reachable from M [36]?

A

B

F

EC

D

P1
P2

P1
P2

P3

P3

Figure 6: Graph Representation of the Petri Net in Figure 1

16

A PN can also be viewed as a bipartite directed graph (Figure 6) [3]. In a graph
a node n1 is reachable from a node n2 if n1 equals n2, or there is a path from n2 to
n1. Therefore a graph based de�nition of reachability is as follows:

De�nition 11 Class reachability (graph based) A class b is said to be reachable
if it is a base class or a class derived by a process p such that the set of input classes
fcig of process p is reachable. The set of input classes fcig is said to be reachable if
each of the members of the class is reachable. The reachability set of a set is the
transitive closure of the set of reachable classes from a given set of classes.

The DN can be used to determine if a class is reachable or an instance of a class
(data object) is reachable. Hence the de�nition of reachability of an object di�ers from
the reachability of a class. The de�nitions of class reachability and object reachability
are based on the de�nition of a reachability path.

De�nition 12 The reachability path of a class ci is the set of processes fpig that
must be instantiated from a given set of classes fcjg to reach class ci.

De�nition 13 Class reachability (PN based): Given a set of input classes fcig
with data objects (instances), a class c is said to be reachable if there exists a sub-
set of objects from the set of input classes fcig that instantiate all processes in the
reachability path of class c.

De�nition 14 Object reachability: Given a set of input classes fcig with a set of
data objects (instances or tokens), an object b in class c is said to be reachable if the
given set of data objects from the set of input classes fcig instantiates all processes
in the reachability path of class c to generate object b.

Illustration: Consider the DN of Figure 1, which has tokens in classes A and
B forming the initial marking. Using the graph-based de�nition of class reachability,
class E is reachable from class A. The reachability path of class E is the set of processes
fP1, P2g. Based on the PN-based view, class E is not reachable since process P2
cannot be instantiated to obtain any new data objects in class E. Using the de�nition
of object reachability, there are no objects in class E that are reachable from class
A. However, class C is reachable using both the graph- and PN-based de�nitions of
class reachability.

The decidability of class and object reachability is settled by the following propo-
sitions.

Proposition 9 Class reachability is a decidable proposition.

Proof: Class reachability (PN based) is identical to the accessibility problem for
PNs, which is shown to be decidable in [41]

Proposition 10 Class reachability (graph based) is a decidable proposition.

17

Proof: By considering an initial marking containing every base class, this follows as
a corollary of class reachability (PN based).

Proposition 11 Object reachability is a decidable proposition.

Proof: This is also a corollary of class reachability (PN based), assuming that the
assertions are decidable, which will be true for any practical DN.

3.4.2 Reverse Reachability

In addition to the concept of reachability, reverse reachability can be de�ned for a
class and an object. Intuitively, reverse reachability is the ability to determine the
source data provided that the target data exists.

De�nition 15 Given a derived class b, reverse class reachability is the ability to
recursively determine the set of input classes that contain the tokens used to generate
at least one new data object in b.

De�nition 16 An object o is said to be reverse reachable if the set of tokens that
are members of the initial marking m0 used to generate o can be determined.

A

B

F

EC

D

P1 P2

P3

Figure 7: Reverse Class and Object Reachability

Illustration: Consider the DN with the �nal marking mf shown in Figure 7.
Classes E and F have a token (data object) and hence are reverse reachable. If the
structure of the network is known, then it can be determined from which classes in
the network the marking needs to be obtained. One can use reverse reachability to
determine which portion of the network is relevant to the evaluation of a data object.

18

This is a selection of a subnet from the global network. This subnet can then be
analyzed independently from other network portions, pruning the search space to
answer a query. The poset structure of the subnet is contained in the original net.
Its reduced size enables us to perform e�cient derivations over the DN.

Proposition 12 Reverse class reachability and reverse object reachability are decid-
able propositions.

Proof: Given a marked Derivation Net M = (C;P; I;O;A;m), consider exchanging
the input and output classes for all processes to create another marked DN M 0 =
(C;P; I 0 = O;O0 = I;A;m). Reverse class reachability in M is isomorphic to class
reachability in M 0 of the base classes in M . Reverse object reachability in M is
isomorphic to object reachability in M 0 of the base data objects in M . Thus, both
reverse properties are decidable.

3.4.3 Reversibility

A process p is said to be reversible, if for a given object in its output class, the
corresponding object(s) in its input class(es) can be found from the mappings de�ned
as part of the process de�nition (refer to Section 4.1).

For example, assume the following process de�nition that is a simple query over
a class:

DEFINE PROCESS p1

OUTPUT o1

ARGUMENT (a of in1)

TEMPLATE{

ASSERTIONS: /* no constraints */

MAPPINGS:

o1.timestamp = a.timestamp;

o1.spatialextent = a.spatialextent;

o1.someinfo = SQL_TYPE_QUERY_OVER(a);

}

Assume that the SQLTYPE QUERY OVER() is a linear and bijective function. This
process maps class a into the output class o1 over the same spatio-temporal extent.
The functions de�ned by the mappings speci�ed in process p1 are bijective map-
pings. Therefore, if the user desires information for \15 Nov 1992" and for the city
of \Worcester", the information can be retrieved from the input class and assigned
to the output class. Hence it can be said that the process p1 is reversible.

An example of a process that is not reversible is:

DEFINE PROCESS P2

OUTPUT o2

19

ARGUMENTS(a of in2)

TEMPLATE{

ASSERTIONS: /* no constraints */

MAPPINGS:

o2.timestamp = a.timestamp;

o2.spatialextent = a.spatialextent;

o2.data = gIMaxlik(gICluster(gMkGroup(a.filename), 12));

}

In the process de�nition of p2, the operators gIMaxlik, gICluster, and gMkGroup

are borrowed from GRASS to perform the image functions of Maximum Likelihood,
Clustering, and Grouping respectively. In p2 if an output object is speci�ed with
the temporal extent of \15 Nov 1992" and spatial coverage of \Worcester", the input
object cannot be found as there is no indication as to which input object should
be used. Moreover, even if objects can be found with the speci�ed spatio-temporal
extents, they may not all be applicable. Therefore the process is not reversible.

De�nition 17 Reversibility is the process of generating the desired set of data in a
class b by instantiating processes in the reachability path of b, provided all processes
along the path are reversible and all tokens relevant to the derivation can be determined
from m0.

3.4.4 Reachability, Reverse Reachability, and Reversibility

It is important to di�erentiate between the di�erent properties just described.

� Reachability generates data if it does not exist.

� Reverse reachability does not generate data. It only helps one �nd the source of
the target data. In order to perform reverse reachability the target data should
have been generated earlier.

� For reversibility the target data need not exist. Reversibility generates the
target data when the target data does not exist after determining which is the
source data that can be used to generate the target data.

4 Implementation

In this section, we provide an overview of the Gaea architecture. We describe our
implementation of Derivation Nets within the derivation semantics layer of Gaea. The
operational characteristics and some of the Gaea query constructs are described. We
provide an example showing how such a system can be used.

20

GaeaVEKhoros/AVS/VE

Postgres

DATABASE BACKEND

VISUAL FRONT-END

Gaea KERNEL

Gemstone

ObjectStore

Meta-Data
Browser

Query/Analysis
Schema
Manager

DISTRIBUTED

Visual Environment Interface

Database BackendDistributed Computing
Interface

Data Abstraction
Generators/Recall

Meta-Data/
Semantics
Layers

AVS/AT Khoros/AT

Grass/AT

VE

Processor

Other analysis tools

 Interface

ANALYSIS TOOLS

Meta-Data Manager

Distributed
Archival
Systems

Figure 8: The Architecture of Gaea (from [20]).

4.1 The Gaea Architecture

The Gaea system architecture is designed to meet the needs of scienti�c research,
speci�cally global change studies. Our view of a scienti�c data management and
analysis environment can be layered along three levels (Figure 8): 1) The visual
frontend, which allows the user to pose visual queries, apply analysis operators to
data, and visualize data, including analysis results; 2) the Gaea Kernel, which provides
support for meta-data, and converts simple queries from the visual frontend into a
complex series of database accesses and operations; and 3) the backend, which actually
stores the data, providing network and archiving functions. It also provide interface
and access to di�erent analysis tools. We describe each subsystem in turn.

The Visual Frontend mediates all interaction with the user. Our objective is to
provide su�cient exibility so that a variety of popular visual environments can be
interfaced to the Gaea Kernel. There exists many such packages, either commercial
(e.g., AVS [4]) or publicly available (e.g., Khoros [40]). These visual environments
come with complete analysis subsystems. We would like to make use of the frontends
and analysis operators separately, as shown in Figure 8. In addition, we have written
our own visual frontend tailored to the Gaea Kernel (GaeaVE) [50].

The most important function of theGaea Kernel is the management of metadata
and the semantics of derived data. Users can query metadata to obtain the meaning
of derived data. Furthermore, capturing a data object's derivation process informa-
tion enables the user to repeat that process and derive new data, given di�erent input
data. The kernel includes a schema manager which manages the metadata and the as-

21

sociated derivation semantics and analysis operators (Figure 8). The Query/Analysis
Processor (QAP) is responsible for processing queries, deriving new data whenever
necessary, and using metadata. The kernel includes a semantic and metadata browser
to allow a user to �nd relevant data without knowing speci�c �le and path names.
There is also a Data Abstraction Generation and Recall module which allows previ-
ously generated data to serve as a template for additional queries, i.e., queries can
be abstracted. Generic interfaces to the frontend visual environments and backend
distributed computing and distributed databases and archives are provided.

The Backend System consists of distributed and archive databases such as Post-
gres, Object Store and Gemstone [2, pp. 34{93]. The distributed computing environ-
ment consists of scienti�c analysis operators which are available within commercial
or public domain software systems. Examples are the analysis tools available within
AVS, Khoros, and GRASS. These tools may be imported into Gaea because the meta-
data manager will have registered information about analysis operators, their domains
of application, data types and formats they apply to, among other metadata. The
Gaea Kernel may chose from these available tools and use them to provide a seamless
integration between analysis and data management for scienti�c environments.

C1

C2

C3

C4

C5

C7 C9

TM = {C1}
AVHRR ={C2}
LULC={C3,C4}
NDVI={C5}

Tropical Forest={C6,C7}

C6 C8

Deforestation={C8,C9,C10}
D1={P3,P4}
D2={P5}

P3

P4

P5 P6

P7

P8

P9

Example Derivation Process: P4 is used to derive LULC using unsupervised
classification, while P3 is based on supervised classification.

D3={P6,P7}
D4={P8,P9,P10}

Derivation Semantics Level

C11 C10

P10

MODIS-N = {C11}

Figure 9: Derivation Management Layer

4.2 Data Derivation Management in Gaea

The Meta-data/Semantic layers of Gaea shown in Figure 8 consists of three layers:
the high-level semantics, the derivation semantics and system level semantics. DNs
are used and implemented for the derivation semantics layer. Additional details about
how the other layers are used is found in [20].

The derivation semantics layer provides for the management of (scienti�c) deriva-
tions of data based on the formalism of Derivation Nets. Scientists manipulate objects
according to a set of object classes in the derivation semantics layer. These objects

22

correspond to the tokens in the Derivation Nets. Each class represents a set of objects
related by the class de�nition. Objects containing base data can be in base classes,
while derived classes hold objects derived from speci�c derivation procedures.

The derivation semantics layer records the derivation relationships among classes
of data in the form of processes, which capture the descriptions of scienti�c procedures
used for the generation of new instances of data objects from other data. Typically,
when data are not stored in the database, we generate the needed data with the help
of such derivation relationships through process instantiation with input data objects.

An example of a process for the derivation of land use/land cover (LULC) is illus-
trated in Figure 9. Base data are Thematic Mapper (TM), Advanced Very High Reso-
lution Radiometer (AVHRR), and MODerate resolution Imaging Spectrometer{Nadir
(MODIS-N) data sets in classes C1, C2, and C11, respectively. Process unsupclass
(P4) derives class landcover (C4) which has four attributes: the spatial extent
landcover.spatialextent, the temporal extent landcover.timestamp, the number
of land cover classes landcover.numclass, and raster image data landcover.data.
The extents are invariantly transferred from the input classes, while the image data
are derived using the functional application of the image operators: unsuperclassify
and composite [13]. The assertions using the rule commonmake sure that the spatio-
temporal extents of the input classes are the same or overlap.

common (bands.spatialextent);

C4.timestamp = ANYOF bands.timestamp;

}
C4.data = unsuperclassify (composite (bands), 12);

C4.numclass = 12;

C4.spatialextent = ANYOF bands.spatialextent;

common (bands.timestamp);
card (bands) = 3; // need three bands

)C1 SETOFbands

C4

P4

Land_coverLandsat TM
Rectified

P4
C4C1

TEMPLATE {

OUTPUT
ARGUMENT (

ASSERTIONS:

MAPPINGS:

DEFINE PROCESS

unsupervised
classification

Figure 10: Derivation Process for Unsupervised Classi�cation

23

4.3 Operational Characteristics

Currently, the Gaea system is built on top of the Postgres extensible system [48]. The
properties of reachability, reverse reachability, and reversibility discussed in Section
3.4, together with the semantics of DN queries and updates, were used to formulate
extensions to Postquel, the query language of Postgres [2, pp. 64{77]. The detailed
implementation of these extensions is described in [44].

Reachability and reverse reachability were used to automate the process of data
derivation in Gaea, thus making the retrieval of derived data implicit, although not
completely transparent to the user. The retrieval mechanism is based on applying
reachability and reverse reachability analysis on the network to decide if a non-existing
object can be derived from existing data. The basic retrieval algorithm is as follows:

1. Attempt to retrieve the data from the target class. If it exists, return;

2. Else, back propagate the requirements through the derivation net and apply
this procedure to the input class(es) of the derivation process. If input data
are available, �re the process to generate the needed data; otherwise repeat this
step.

3. The procedure is recursively applied until the needed data are generated or back
propagation stops at some base class and we fail to generate the needed data.

Using DNs, the above procedure can be formulated on the (virtual) �nal marking.
Given a projected view of the �nal marking, that is, a subset of the �nal marking
containing the expected answer, try to �nd a subset of the initial marking which can
lead to this view. This identi�es a subnet from the global network which is then used
to derive the required data.

4.4 Data De�nition and Manipulation

Extensions to Postquel include a set of new data de�nition and manipulation state-
ments designed for Derivation Nets [44]. Some of these are:

� Process de�nition

De�ning a process registers into the database a process which can be instan-
tiated later. The current implementation allows a process to have only one
output class, but many input classes. The arguments to a process are either a
single object or a set of objects.

The body of a process de�nition is a template for the process, which will be
executed by an interpreter when the process is instantiated. A process de�nition
in Gaea is illustrated in Figure 10. and elaborated upon in [20].

CARD and COMMON are special functions for set expressions. CARD returns the
cardinality of a set while COMMON is a predicate that checks if some data value
holds for all elements in a set.

24

� Process instantiation

Process instantiation takes the input objects for the process and generates an
output object. The combination of process and its inputs is called a task. The
input objects could be a list of objects or object set depending on the process
de�nition.

INSTANTIATE PROCESS unsupclass

WITH ARGUMENTS (retrieve (landsattm.all) where

landsattm.timestamp = "July 1987"::abstime and

landsattm.areaname = "paxton" and

(landsattm.bandno = "green" or

landsattm.bandno = "red" or

landsattm.bandno = "blue"))

� Data retrieval

Gaea has a special retrieve statement which has di�erent semantics from the or-
dinary retrieve statement of Postquel. When no requested data object is found
in the database, the Gaea system will create a new data object by process in-
stantiation if a derivation process is de�ned and the reverse reachability criteria
are satis�ed.

GRETRIEVE retrieve (human_deforest.all)

WHERE human_deforest.timestamp =

"January 1987"::abstime AND

human_deforest.areaname = "paxton"

DERIVED BY PROCESS

This GRETRIEVEquery provides automatic retrieval of data from the human_deforest
class for the location and time speci�ed. If the data already exist, this query is
equivalent to a straightforward Postquel RETRIEVE statement. If the requested
data do not yet exist, then they are derived by executing the appropriate
operations using the derivation network. In order for this to work properly,
a process must have been de�ned that is capable of generating data for the
human_deforest class. If this process exists, but the input data that it needs
do not yet exist, then the input data are themselves the targets of internally
generated queries and these queries are recursively processed. This recursive
query processing is invisible to the user, who is only aware that the original
query can or cannot be satis�ed.

Other extensions include statements for process retrieval, process deletion, check
for reachability, etc. [44].

25

4.5 Integrating Data Analysis Tools

One important part of the Gaea system is the data analysis operators. In order to
make use of the available resources, we have decided to use GRASS as our base for
analysis operators because of its popularity in the GIS domain [45]. In the following,
we discuss how to integrate GRASS with Postgres to create an environment for change
analysis. Then we demonstrate how derivation management is achieved in such an
environment.

In GRASS, all data are organized by location and mapset. At one time, the
user can only work on a speci�c mapset of a location. The highest level of the
location/mapset tree structure is illustrated in Figure 11.

GISDBASE = /usr/user/grass/data

|

|

| |

location1 location2

| |

------------------ ------------------

| | | |

PERMANENT mapset1.1 PERMANENT mapset1.2

Figure 11: GRASS data tree structure

For every location, there is a mapset called PERMANENT. This mapset contains
non-volatile data for that location that all users will use. It also contains some
information about the location itself.

The data are actually stored under the mapsets, which are further divided into
subdirectories. The tree structure of a mapset is illustrated in Figure 12. Only the
part of the GRASS mapset tree that relates to image data is shown here. Another
large category of data is vector data, whose data organization has been omitted for
clarity.

Corresponding to every raster data �le, the auxiliary information is stored under
di�erent directories with the same name as the raster �le. Some related directories
are:

� cell { the binary raster �le itself

� cellhd { header �le for raster maps

� cats { category information for raster maps

26

mapset

|

--

| | | | | | | | ...

WIND cell cellhd cats colr group cell_misc hist

Figure 12: Mapset data tree structure in GRASS

� colr { color tables for raster maps

� cell-misc { miscellaneous raster map support �les

� hist { history information for raster maps

When needed, GRASS can look into the relevant directory to �nd the information
about a raster map. GRASS also provides a command g.remove which will delete
all the information (�les) for speci�c a raster map. This is one way to maintain
consistency.

Postgres is an extensible system. It allows the user to de�ne new data types
and new functions that can be dynamically loaded for execution. The main problem
encountered is the discrepancy in data organization between the two systems. GRASS
is �le-based, using a private tree structure to organize data, while Postgres is basically
a relational database system.

Our approach was to create a GRASS environment when running a GRASS com-
mand from Postgres. Data are normally stored in the database, but are transformed
into �les when needed. The conversion routine takes care of where to put the tempo-
rary GRASS �les. After the computation is completed, the resultant data is pulled
back into the database.

In order to record information necessary to execute GRASS or other procedures
from within Gaea, it is necessary to register these foreign procedures with the Gaea
Kernel. Currently, we have registered a set of GRASS image processing and raster
commands into Postgres and have tested them on simple change analysis tasks, such
as land cover and land use change in Paxton, Mass using both Landsat TM and SPOT
images.

4.6 Example

Based on the Derivation Net of Figure 13, an example of land use/land cover change
analysis using Gaea is illustrated in Figures 14, 15 and 16. Referring to Figure 13,
we see that the query has requested data from class human_deforest, which may
be derived by process chgdetect (change detection) using landcover class data.
Process unsupclass (unsupervised classi�cation) will be used to estimate landuse

27

Unsupervised

Classification

Landcover

Class

Change

Detection

Human-Deforest

Class

Process
Process

Landsat TM

Class

Figure 13: DN for deriving deforestation

using landsattm (landsat thematic map) class data. Unsupervised Classi�cation is
a process of automatic aggregation of similar regions used in the interpretation of
remotely-sensed images.

Assuming that the necessary base data in class landsattm are available, the
derivation network may be examined to determine that the original query is sat-
is�able. That is, starting with an initial marking of the base data classes, a �nal
marking can be found that includes the output class human_deforest.

DEFINE PROCESS unsupclass

OUTPUT landcover

ARGUMENTS (blueband of landsattm, greenband of landsattm,

redband of landsattm)

TEMPLATE {

ASSERTIONS:

blueband.timestamp = greenband.timestamp;

greenband.timestamp = redband.timestamp;

blueband.spatialexten = greenband.spatialexten;

greenband.spatialexten = redband.spatialexten;

MAPPINGS:

landcover.timestamp = blueband.timestamp;

landcover.spatialextent = blueband.spatialextent;

landcover.area = blueband.area;

landcover.numcls = 12;

landcover.data = gRReclass (gMakeImg (gGetImgNumRow(blueband.data),

gGetImgNumCol(blueband.data), gGetImgPixType(blueband.data),

gIMaxlik (gICluster(gMkGroup3(blueband.data,

greenband.data, redband.data), 12))));

Figure 14: Process de�nition for land use and change analysis

28

INSTANTIATE PROCESS unsupclass

WITH ARGUMENTS (retrieve (landsattm.all)

where landsattm.timestamp = "Jan 1 1982"::abstime and

landsattm.area = "paxton" and

landsattm.bandno = ``blue'',

retrieve (landsattm.all)

where landsattm.timestamp = "Jan 1 1982"::abstime and

landsattm.area = "paxton" and

landsattm.bandno = ``green'',

retrieve (landsattm.all)

where landsattm.timestamp = "Jan 1 1982"::abstime and

landsattm.area = "paxton" and

landsattm.bandno = ``red'')

INSTANTIATE PROCESS chgdetect

WITH ARGUMENTS (retrieve (landcover.all)

where landcover.timestamp = "Jan 1 1982"::abstime and

landcover.area = "paxton",

retrieve (landcover.all)

where landcover.timestamp = "Jan 1 1987"::abstime and

landcover.area = "paxton")

Figure 15: Instantiating tasks for land use and change analysis

5 Discussion

5.1 Limitations of the Model

It is important to identify some of the limitations of our model and propose possible
extensions to overcome them.

1. The current DN is a single-level structure and should be extended to hierarchical
nets. A hierarchical DN is an extension of DNs where places or transitions can
themselves be considered as abstractions of Derivation Nets. Just as subroutines
and functions became a necessity as programming projects grew in size so also
managing descriptions of large and complex systems using PNs necessitated
the development of Hierarchical Petri Nets [19] and Hierarchical Colored Petri
Nets [24]. Using Hierarchical CP-nets, a number of individual CPNs may be

29

GRETRIEVE retrieve (human_deforest.all)

WHERE human_deforest.timestamp =

"January 1987"::abstime AND

human_deforest.areaname = "paxton"

DERIVED BY PROCESS

Figure 16: Using Gaea retrieve

related to each other in a formal way. Hierarchy constructs include substitution
of transitions, substitution of places, invocation of transitions, fusion of places,
and fusion of transitions [26].

At this time, the Gaea class structure is at; classes do not inherit from other
classes. Although current scenarios for global change research do not require
class inheritance, future applications may require it. Developing the theory for
Hierarchical Derivation Nets would facilitate this.

2. We made the assumption throughout most of this paper that all DNs are acyclic.
Thus, no loops are allowed and no output class may be used as input to its gener-
ating process or any process on its generation path. This is needed to guarantee
that the set of markings converges to a �nite �nal marking mf . Otherwise, we
would be dealing with in�nite posets6. We are currently investigating extensions
of the model that would support cyclic DNs.

3. Finally, in the current implementation of derivation nets, no interaction can be
speci�ed in a process de�nition. There are many situations in data analysis that
require the user to decide how to proceed with the based on an intermediate
result. One can envision a procedure followed by a scientist which demands
the speci�cation or modi�cation of input parameters based on some temporary
result visualized on the screen. A typical example is supervised classi�cation
[14], which by its nature requires interaction to complete successfully.

This limitation is due to our interpretation of DNs and is not induced by the
DN model. It seems fairly easy to modify this interpretation of derivation nets
to capture interaction. We foresee the use of special transitions and places for
that purpose. We are currently investigating that extension.

5.2 Comparison with Other Formalisms

In this section, we review other proposed mechanisms that relate to our work and
make some comparisons.

6This view has a correspondence with 1st-order logic (without functions).

30

5.2.1 Conceptual and Functional Modeling

The extended E-R approach is used in [31] to model both the functional and structural
components of an information system. The basic idea is to represent a process as a
relationship and apply existential constraints to express the partial order implied in a
process. We do not believe that the E-R approach is su�cient to represent derivation
relationships among data classes for reasons discussed in [20].

One may �nd similarities between our work and functional modeling in the system
analysis stage of business database applications. However they are di�erent in their
purpose and the methods used. One popular method for functional modeling is Data
Flow Analysis [33]. In data ow analysis, an information system is considered as a
process that maps input data to output data, and can be represented as a data ow
diagram. Then the transformation process is further decomposed into subprocesses
until each is basic enough to be implemented with a piece of simple program.

Although functional analysis is also concerned with a process, the purpose is
di�erent from that of derivation management in scienti�c databases. A process in
functional analysis is used to develop application programs, while in Gaea it is used
to de�ne derivation relationships among data classes. Furthermore, a task, the instan-
tiation of a process, is of no interest in functional analysis, while in Gaea, individual
tasks de�ne the derivation relationship among a set of data objects.

5.2.2 Lineage and Versioning

Di�erent means of capturing lineage information in GIS (Geographic Information
Systems) have been studied and critiqued [28]. Lineage information consists of in-
put/output relationships, transformations, and source data. Methods of automati-
cally capturing lineage information include history �les, version control systems, map
librarians, and polygon attributes. Each of these methods captures lineage details
but does not e�ciently manage the lineage information captured. There is no easy
way to retrieve and view this information as and when desired. The solutions to the
problem of lineage in GIS suggested in [28] are manual. This approach cannot provide
the ease of retrieval that an automated system provides.

A solution for the representation of lineage information in GIS, based on semantic
networks and frames, is proposed in [29]. The proposed procedure to maintain lineage
information is suitable when the data size is small. Since GIS datasets are very large,
semantic nets may not be e�ective without a database to store the data.

Version modeling concepts are similar to lineage in GIS and audit trails in manage-
ment information systems (MIS) [18]. They focus on version histories, time-varying
con�gurations, and equivalences among objects of di�erent types. Version modeling
has been applied to computer aided design databases in [27]. Version concepts appear
relevant to process histories in Gaea. The ability to maintain the derivation history
of a process is crucial in Gaea. On the other hand, the idea of currency within the
version history suggested in [27] is irrelevant in Gaea. Since version histories can

31

branch widely, a control mechanism to identify a preferred version from which new
derivatives can be created is identi�ed with a currency indicator. In Gaea, version
histories may be of concern when the process de�nition changes and data generated
from an old de�nition still exists. That is e�ectively version control. The metadata
used by the derivation semantics may also be used to keep track of versions, but note
that the derivation semantics per se does not solve versioning problems.

5.2.3 Scienti�c Databases

Experiment management is also the goal in [9, 25]. The former application domain is
the modeling of experiments in computational chemistry, while the latter is simula-
tion; both are based on the object-oriented paradigm [5]. They provide mechanisms
for managing the de�nition, preparation, monitoring and interpretation of experi-
ments. We address the same problems, but identify di�erences between experiment
management and data derivation management. By using di�erent formalisms to
model them, we have introduced di�erent semantics into our system.

Semantic networks are an appropriate tool to capture the relationships among a
set of data objects. This formalism has been used in the USD system [43]. Although
the intention was to make use of the exibility of semantic networks to represent un-
structured data, it can also be adequately used to model an experiment. The problem
with semantic networks is that they might become too complex with a large database
system. In addition, data derivation relationships are not explicitly represented in
the network.

Data Analysis Management is necessary to help an inexperienced analyst learn
how expert analysts conduct experiments [8]. It requires interaction and recording
of intermediate events, to prove that the analysis was rigorous and complete. The
proposed technique is based on the concept of save-state, a collection of metadata
and data that captures signi�cant information about the state of the analysis at a
certain point in the analysis process. Although save-states encapsulate metadata, no
indication on how to implicitly manage save-states is provided.

The process-oriented scienti�c data model, proposed in [37], is used to capture,
organize, manipulate, and retrieve experimental process data such as seed growing
into a plant [37]. The proposed model is such that in a given process, when a state
is changed, knowledge of the previous state is lost. For example, once the seed is
transformed into a plant, the seed state does not exist anymore with respect to the
same entity (plant). As the entity gets transformed, any further information about
the original entity cannot be obtained at a later point in time.

The objectives of the MDBS project [47] is to overcome the problems of large,
distributed and heterogeneous sources of data. At present, the data are assumed
to be in �les and lacks database support. The authors propose modeling scienti�c
data around the concept of domains of entities and transformations between such
domains. Two kinds of domains are proposed: conceptual domains (C-domains),
which relate to abstract views of entities and transformations, and corresponding

32

representational domains (R-domains) which relate to symbolic representation
of the entities and transformations. An example of a C-domain is a polygon with a
variety of R-domains based on sequences of points, sequences of line-segments and sets
of half-planes. New R-domains are created through the application of constructors.

Although the MDBS system and Gaea have similar goals, the approach taken is
very di�erent. One similarity lies in the notion of a project which is similar to the
concept of an experiment in Gaea. Also, in the application of constructors to previ-
ously de�ned domain elements to obtain new R-domains is similar to the operators in
Gaea. Finally, The notion of representing C-domains and R-domains is interesting.
The structure of an R-domain is similar to the structure of a process de�nition in
some respects. Both include the name of the domain, sets of transformations on the
domain elements and the constraints of the domain elements. However a process def-
inition does not include the structure of the domain elements, the latter is provided
by the class de�nition.

The Sequoia 2000 research project aims at providing the basic computational
resources necessary to support global change research and to build a data store and
server for virtually unlimited geographic information [16]. The Sequoia prototype
provided GIS functionality within an enhanced DBMS environment. The project was
called POST-GRASS and it was implemented with GRASS as the engine for GIS
primitives and Postgres as the DBMS. There are a lot of similarities between the
Gaea project and Sequoia 2000 as both encompass a lot of aspects of global change
research. However the philosophies are di�erent and the Sequoia 2000 research does
not address the problem of implicitly managing derivation metadata and data.

6 Conclusions

We have presented a model for the management of data derivation relationships so
that data can be shared in scienti�c databases. The main contributions include:

� Derivation Nets, an extension of Petri Nets, were introduced to represent and
manage the semantics of data derivation in scienti�c databases. Derivation
Nets can be used to 1) browse data following their derivation relationships, 2)
compare derivation procedures and their resulting data classes, and 3) derive
data not stored in the database.

� Some properties of Derivation Nets were stated and proven, including closure
with respect to database states, order independence, query and update seman-
tics, reachability, reverse reachability, and reversibility.

� A three-layered view of the Gaea scienti�c database management systems, which
includes DNs as a core component, was described.

The proposed Derivation Net model has many potential long term extensions: 1)
They provide a knowledge acquisition environment that can be used for learning and

33

automated derivation of scienti�c data. 2) There are some known limitations of the
model, i.e., the current model does not provide for nested abstractions of derivations
nor does it provide for the capture and management of scienti�c user interactions
during an experiment. To overcome these limitations, we are currently looking into
extensions of the model to include hierarchical networks which may also represent
user interaction.

References

[1] \Contents Standards for Digital Geospatial Metadata," Federal Geographic Data Com-
mittee, Washington, D.C., 1994.

[2] \Next-Generation Database Systems," Comm. of the ACM, Special Issue, Vol. 34, No.
10, Oct. 1991.

[3] T. Agerwala, \Putting Petri Nets to Work," IEEE Computer Magazine, pp. 85{94,
Dec. 1979.

[4] Advanced Visual System Inc., 300 5th Avenue, Waltham, MA 02154. AVS Technical
Overview, Oct. 1992.

[5] M. Atkinson, F. Bancilhon, D. DeWitt, D. Maier, and S. Zdonik, \The Object-
Oriented Database System Manifesto," Proc. Int. Conf. Deductive and Object-
Oriented Databases, pp. 40{57, 1989.

[6] J.-L. Baer, \Modeling Architectural Features With Petri-Nets," Lecture Notes in Com-
puter Science, Springer-Verlag, No. 255, pp. 258{277, 1986.

[7] A. Beller, \Spatial/Temporal Events in GIS," GIS/LIS 91, Vol. 57, No. 4, pp. 407{411,
1991.

[8] P.J. Cowley, M.A. Whiting, \Managing Data Analysis Through Save-States," 17th
Symp. Interface Of Computers In Kentucky, Paci�c Northwest Laboratory PNL-SA-
13023, Mar. 1985.

[9] J.B. Cushing, et. al. \Object-Oriented Database Support for Computational Chem-
istry," Proc. SSDM '92, pp. 58{76, 1992.

[10] A.M. Davis, \A comparison of techniques for the speci�cation of external system be-
havior," Comm. of the ACM, Vol. 31, No. 9, pp. 1098{1115, Sept. 1988.

[11] Y. Deng, and S.-K. Chang, \A G-Net Model for Knowledge Representation and Rea-
soning," IEEE Trans. Knowledge and Data Engineering, Vol. 2, No. 3, pp. 295{310,
Sept. 1990.

[12] J. Dozier, \Access to data in NASA's Earth Observing System," Keynote Address,
Proc. ACM SIGMOD Int. Conf. Management of Data, San Diego, 1992.

34

[13] J.R. Eastman and J.McKendry, Change and Time Series Analysis in GIS, UNITAR,
1991.

[14] J.R. Eastman, IDRISI|-A Grid-Based Geographic Analysis System (User's Manual),
Clark University, Worcester, MA, Nov. 1990.

[15] J.C. French, A.K. Jones, and J.L. Pfaltz, \Summary of the Final Report of the NSF
Workshop on Scienti�c Database Management," SIGMOD Rec. 19-4, pp. 32{40, 1990.

[16] K. Gardels, \Sequoia 2000 and the Post-Grass project," GrassClippings, pp. 40{41,
Winter 1992.

[17] M.A. Gennert, N.I. Hachem, N. Serrao, and A. Bansal, \Distributing Computations
Among GIS Servers," to appear in Proc. 7th Int. Conf. Parallel and Distributed Com-
puting Systems, Las Vegas, NV, Oct. 1994.

[18] R. K. Grady, \Data Lineage in Land and Geographic Information Systems," Proc.
GIS/LIS '88, Falls Church, VA: American Congress Surveying and Mapping, pp. 722{
730, 1988.

[19] N.I. Hachem, \Petri-Net Driven Knowledge Base System for Automated Microcode
Generation in VLSI," Proc. IASTED Int. Symp. MODELING and SIMULATION,
Calgary, Canada, July 1991.

[20] N.I. Hachem, K. Qiu, M.A. Gennert, and M.O. Ward, \Managing Derived Data in the
Gaea Scienti�c DBMS," Proc. VLDB Conf., pp. 1{13, 1993.

[21] N. I. Hachem, M.A. Gennert, and M.O. Ward, \Distributed Database Management for
Scienti�c Data Analysis," Proc. Int. Wkshp. Global GIS, Int. Soc. Photogrammetry
and Remote Sensing WG IV/6, Tokyo, Japan, pp. 85{93, Aug. 1993.

[22] N.I. Hachem, M.A. Gennert, and M.O. Ward, \A DBMS Architecture for Global
Change Research," Proc. ISY Conf. Earth and Space Science Info. Systems, Pasadena,
CA, pp. 186{194, Feb. 1992.

[23] M.A. Holliday and M.K. Vernon, \A Generalized Timed Petri Net Model for Perfor-
mance Analysis," IEEE Trans. Soft. Eng., Vol. 13, Dec. 1987.

[24] R. Huber, K. Jensen. R.M. Shapiro, \Hierarchies in Colored Petri Nets," Lecture Notes
in Computer Science 483, pp. 313{341, Springer-Verlag, 1990.

[25] Y. Ioannidis et. al., \Desktop Database Management," IEEE Data Engineering Bul-
letin, Vol. 16, No. 1, pp. 19{23, Mar. 1993.

[26] K. Jensen, \Coloured Petri Nets: A High Level Language for System Design and Anal-
ysis," EATCS Monographs on Theoretical Computer Science, pp. 342{416, 1992.

[27] R.H. Katz, E. Chang, and R. Bhateja, \Version Modeling Concepts for Computer-
Aided Design Databases", Proc. ACM SIGMOD Conf., pp. 379{386, May 1986.

35

[28] D.P. Lanter, \Lineage in GIS: The Problem and a Solution," NCGIA Technical Paper
90-6 Sept. 1990.

[29] D.P. Lanter, \Design of a Lineage-based Meta-data base for GIS," Cartography and
Geographic Information Systems, Vol.1 8, No. 4, pp. 255{261, 1991.

[30] K. Lautenbach, \Linear Algebraic Techniques for Place/Transition Nets," Lecture
Notes in Computer Science 254, pp. 142{167, Springer-Verlag, 1986.

[31] V.M. Markowitz, \Representing Processes in the Extended Entity-Relationship
Model," Proc. Int. Conf. Data Engineering, pp. 103{110, 1990.

[32] M.A. Marsan, G. Balbo, A. Bobbio, and G. Conti, \A Class of Stochastic Petri Nets
for the Performance Evaluation of Multiprocessor Systems," ACM Trans. Computer
Systems, Vol. 2, No. 2, pp. 93{122, May 1984.

[33] J. Martin and C. McClure, Diagraming Techniques for Analysis and Programming,
Prentice-Hall, New Jersey, 1985.

[34] J.D. Noe \A Petri Net Model of the CDC 6400," Proc. ACM SIGOPS Wkshp. System
Performance Evaluation, pp. 362{378, 1971.

[35] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, 1981.

[36] J. L. Peterson, \Petri Nets," Computing Surveys, Vol. 9, No. 3, pp. 223{252, Sept.
1977.

[37] J.M. Pratt and M. Cohen, \A Process-Oriented Scienti�c Database Model," SIGMOD
Record, Vol. 21, No. 3, pp. 17{25, Sept. 1992.

[38] R. Rada, P.E.S. Dunne, and J. Barlow, \EXPERTEXT: From Semantic Nets to Logic
Petri Nets," Expert Systems with Applications, Vol. 1, pp. 51{62, 1990.

[39] C.V Ramamoorthy and G.S. Ho, \Performance Evaluation of Asynchronous Concur-
rent Systems Using Petri Nets," IEEE Trans. Soft. Eng., Vol. 6, Sept. 1980.

[40] J. Rasure, D. Argiro, T. Sauer, and C. Williams, \A Visual Language and Software
Development Environment for Image Processing," Int. J. Imaging Systems and Tech-
nology, Vol. 2, pp. 183{199, 1990.

[41] C. Reutenauer, The Mathematics of Petri Nets, Prentice-Hall, 1990.

[42] J.A. Richards, \Multispectral Transformations of Image Data," Chapter 6 in Remote
Sensing Digital Image Analysis, Springer-Verlag, pp. 127{145, 1986.

[43] R. R. Johnson, M. Goldner, M. Lee, K. McKay, R. Shectman, and J. Woodru�, \USD|
A Database Management System for Scienti�c Research," Video presentation at the
ACM SIGMOD Int. Conf. on Management of Data, San Diego, 1992.

36

[44] N. Serrao, \Design and Implementation of the Derivation Semantics Layer in the Gaea
Prototype," M.S. Thesis, Worcester Polytechnic Institute, Worcester, MA, Dec. 1993.

[45] M. Shapiro et. al., \GRASS 4.0 Programmer's Manual (Draft)," U.S. Army Construc-
tion Engineering Research Laboratory, April 1992.

[46] C.U. Smith, \Robust Models for the Performance Evaluation of Software/Hardware
Design," Int. Wkshp. Timed Petri Nets, 1985, pp. 172{180.

[47] T. R. Smith, J. Su, D. Agrawal, and A.E. Abbadi, \Database and Modeling System
for the Earth Sciences," Data Engineering, Vol. 16, No. 1, pp. 33{37, Mar. 1993.

[48] M. Stonebraker, L.A. Rowe, and M. Hirohima, \The Implementation of POSTGRES,"
IEEE Trans. Knowledge and Data Eng., Vol. 2, No. 1, pp. 125{142, 1990.

[49] T. Suzuki, S.M Shatz, and T. Murata, \A Protocol Modeling and Veri�cation Approach
Based on a Speci�cation Language and Petri Nets," IEEE Trans. Soft. Eng., Vol. 16,
No. 5, pp. 523{536, May 1990.

[50] Y. Zhang, M.O. Ward, N.I. Hachem, and M.A. Gennert, \A Visual Programming
Environment for Supporting Scienti�c Data Analysis," Proc. Int. Wkshp. Visual Prog.
Languages, Aug. 1993. (extended version as WPI-CS-TR 93-01, Mar. 1993)

[51] Y. Zhou, M.A. Gennert, N.I. Hachem, and M.O. Ward, \Requirements of a Database
Management System for Global Change Studies," ASPRS/ACSM/RT 92, pp. 186{194,
1992.

[52] W.M. Zuberek, \Timed Petri Nets and Performance Evaluation," Proc. Symp. Com-
puter Architecture, May 1980.

37

