
Experience with an Interactive

Attribute-Based User Information

Environment

Craig E. Wills

Dominic Giampaolo*

Michael Mackovitch*

Computer Science Department

Worcester Polytechnic Institute

Worcester, MA 01609

WPI-CS-TR-94-2

Abstract

This paper explores an attribute-based approach to storing information

in the context of a �le system that supports extended attributes about �les

and a mechanism to manipulate �les based on logical queries and compar-

isons of attributes. The novel aspects of our system are that it is sophisti-

cated enough to operate as a user's primary method of interaction with the

operating system and that it supports derived attributes whose values are

derived at look-up time. Organizational mechanisms are explored to aid in

the navigation of the system. We implemented our system as a user-level

NFS server that supports attribute-based naming of �les and other objects.

We discuss its details, our experiences with it and performance comparisons

between it and a traditional hierarchical �le system.

*Current address: Silicon Graphics, Inc. Mountain View, CA.

1

1 Introduction

As an increasing amount of information reaches our computers the problem of man-

aging information becomes more important. The traditional means for organizing

information is to store it in individual �les objects and place the �les in directories

of a hierarchical tree structure. Other information objects, such as processes or

users often use a
at name space with access through type-speci�c utilities.

Either of these approaches works well with a limited amount of information,

but breaks down as the information grows. When a user tries to maintain large

numbers of �les and directories, navigation becomes problematic. Deep hierarchies

require long path names to identify �le objects. Shallow or
at hierarchies make

it di�cult to identify individual objects because many unrelated objects may exist

in the same directory. Further, once a user establishes a hierarchy, attempting

to view a subset of the objects in a di�erent organization becomes quite di�cult.

Hierarchical systems are rigid in that once established, it becomes an arduous task

to reorganize the hierarchy.

As an example, if a user organizes �les by project and then by subcomponent

(such as source code, documentation, examples, etc), it is problematic to try and

invert the hierarchy to view the �les by component and then by project. Even

though hierarchical systems may provide tools to locate �les matching certain

criteria, they do not allow the user to easily manipulate the group of �les as an

entity.

Rather than organize �les in �xed directories, our work has explored attribute-

based naming and manipulation of �les. Attribute-based naming of �les and other

information works by associating attributes (name/value pairs) with the objects

to be named and supporting queries about desired attributes. Each object has

an arbitrary set of attributes, and users query the system to determine which

objects match a given set of criteria about the attributes. In this manner, users

declaratively state the set of objects desired instead of trying to locate speci�c

2

items in a �xed hierarchy. An attribute-based naming system separates an item's

location from how one accesses it.

Our prototype system, referred to as AttrFS, supports the capability to in-

teractively work in a dynamically-updated, attribute-based �le system, which is a

signi�cant departure from the traditional hierarchical interface to a �le system and

even other attribute-based work. Our work seeks to discover what bene�ts accrue

and what issues arise in using such a system as the main mode of interaction with

the computer. The novel aspects of our system are that it is sophisticated enough

to operate as a user's primary method of interaction with the operating system and

that it supports attributes whose values are derived at look-up time. The support

of derived attributes makes it possible to integrate many types of volatile informa-

tion into the name space in a clean fashion. A prototype implementation based

on a user-level Network File System (NFS) server is used to test this approach.

Although its use has primarily been for �les it can and has been used for other

types of objects found in a distributed environment such as machines, users and

processes. Work on the system has also led us to explore mechanisms for better

organization and user orientation in an attribute-based system.

The paper begins with an overview of the system followed by a demonstration

of the system through examples. It continues with examples of organizational and

navigational improvements in the system along with a description of the implemen-

tation. The performance of the system is compared with a traditional hierarchical

�le system. The paper concludes with a description of related work, our experi-

ences and future work to be done on the project.

2 Overview

Initial work on the system concentrated on designing and building an attribute-

based �le system [Gia93]. The resulting system supports the following features:

� an arbitrary number of attributes per �le,

3

� arbitrary sized attribute values of either ASCII or binary data,

� Full logical queries about �les, including and, or, and comparison (=, ! =,
<, >, <=, >=) operators as well as parenthesization to indicate precedence,

� comparisons of attributes that have their values derived dynamically at lookup
time through internal or user-de�nable functions,

� interactive use and immediate update of changes made to �les and attributes,

� a complete read/write �le system supporting all standard �le semantics, and

� integration with the Unix �le system as a user-level NFS server.

There are several important features of our system. First, it is a full read/write

�le system, allowing users to \live" in an attribute-based name space. Previous

attribute-based systems tended to be secondary interfaces, which supported only

a browsing style of interface. Our work seeks to allow all interaction to take place

inside the system. Second, derived attributes allow little-used and space-intensive

attributes to be computed on demand. They also allow an easy integration path

for many types of volatile and non-�le information into a single name space|

simplifying the conceptual model users must master to �nd and manipulate infor-

mation. Third, the complete set of logical and comparative operators allows the

creation of any view on the set of available objects in a straightforward manner.

Finally, the clean integration with traditional �le systems and tools allows imme-

diate use. Together, these features provide a fully functional attribute-based �le

system for interactive use.

3 Usage

We constructed a prototype system of our system as an NFS server so that it could

work with the Unix environment and existing commands. The following script of

commands uses a standard shell to illustrate uses of the �le system with /attrfs

representing the mount point of an \attributized" branch of an existing UNIX �le

4

system hierarchy (typically at the granularity of a user's �le system). The name

space below /attrfs is interpreted by our modi�ed NFS server. An initial set of

attributes is constructed for �les based on their position in the original hierarchy

as well as heuristics about the �le type.

1> cd /attrfs/Tag=papers/Tag=sysint

2> ls

main.aux main.blg paper.aux paper.blg

main.bbl main.tex paper.bbl paper.tex

...

3> la main.tex

Name=main.tex

Tag=sysint

Tag=papers

Type=Text

Type=TeX Input

The �rst two commands create and show the contents of a view of all �les with

the tagged attributes papers and sysint. The `/' character represents the logical

operator and. Because the attribute name `Tag' is common, the use of of Tag=

is optional. The order of the attributes is not important. The la command lists

non-derived attributes for a given �le.

4> cd /attrfs/src/proj1

5> ls

Makefile main.c

func.c

6> vi hello.c

7> rm func.c

8> cc -o hello hello.c

9> ls

Makefile hello.c

hello main.c

10> la hello

Name=hello

Tag=src

Tag=proj1

11> hello

hello world

5

Commands 4-9 illustrate creating another view of source �les, creating a �le

in this view, removing a �le and showing the revised contents of the view. Com-

mand 10 shows that when a �le is created it inherits the attributes of the current

view. Note that in command 10 type attributes are not automatically generated

for the executable �le. Ideally tools would be \attribute aware" and automatically

generate attributes about �les, such as type, in their normal course of process-

ing. Additional attributes can be given at creation time or with the add attribute

command aa. Similarly, the command da deletes attributes. Although there is

no speci�c structure when attributes are created, later queries can utilize the at-

tributes as though an explicit structure had been created. Modi�cations to a �le's

set of attributes cause the contents of the current view to change accordingly.

12> cd '/attrfs/(proj1,proj2,proj3)/Type!=C source'

This command creates a view of all non-C source �les that have the tag proj1,

proj2 or proj3. The `,' indicates or and parentheses indicate grouping. The ca-

pability to use disjunctive queries is a feature not present in previous work. Because

the use of parentheses and other meta-characters con
icts with the shell, special

characters must be quoted. We see this as a short-term problem of this prototype,

which could be overcome with use of an alternate shell or more appropriately with

graphical browsing and selection of attributes.

13> ls /attrfs/src/proj1/days_old=0

hello hello.c

14> ls '/attrfs/src/proj1/Type=C source/mainfunc=true'

hello.c main.c

15> ls '/attrfs/src/proj1/Type=C source/linecount>100'

...

These three commands illustrate the use of derived attributes, which can be

used to compute attribute values that change frequently or are accessed infre-

quently. Command 13 shows the use of a derived attribute that accesses the

inherent age attribute of a �le to show only newly created �les. The days old

6

function is an internal procedure to our �le system. The attribute size is handled

in a similar manner. The other two commands illustrate the use of external Unix

commands to derive attributes. These commands must be located in a special

directory for protection. The boolean attribute mainfunc computes source �les

containing a main function. The numeric attribute linecount counts the number

of lines in a �le. Derived attributes incur run-time costs to compute, particularly

external functions, but they require less space than pre-computing all attributes

as done in other systems. External functions could also be dynamically loaded to

reduce run-time costs.

4 Organization and Orientation

In some cases, orientation and abstraction were found to be di�cult problems in

using the prototype. As opposed to a hierarchy, users must not only explicitly

specify attributes of �les to be viewed, but also not to be viewed. Command 17

shows a partial solution to the problem of helping users be aware of what attributes

can be speci�ed. With the well-known name ATTR:, users can list to �nd what

attributes are available in the current view and the number of �les with each

attribute. This feature is useful, but the contents of ATTR: are not always easy to

compute and can degenerate into a search of many �les.

16> cd /attrfs/proj1

17> ls ATTR:

Tag=RCS:9 Tag=src:27 Type=C source:3

Tag=proj1:40 Type=C header:1 Type=Text:7

Problems with organization and orientation within an attribute-based name

space led to followup work on the system to explore better mechanisms [Mac94].

The principal result of this work was the development of a view object. This mech-

anism allows for an organization structure to be incorporated in the environment

without losing the
exibility of an attribute-based system. View objects allow

7

other types of objects, such as �les, to be organized into groups so that only these

groups and not their contents are shown when navigating the attribute-based name

space. Thus the user does not see a large collection of objects, but rather a small

set of groups of objects. The display of view objects does not a�ect the accessibil-

ity of objects, it only a�ects the image of the environment presented to the user

during navigation and browsing.

These view objects have similarities to directories that are found in hierarchical

name spaces, but have several important di�erences:

� objects are not physically located inside a view object,

� an object can appear in many view objects, and

� objects do not have to be manually placed inside view objects thus allowing
objects to be grouped after they are created.

Examples of how view objects a�ect the display of objects are shown in the

following. Names of view objects use a colon as the last character to distinguish

them from other objects.

18> cd /attrfs/proj2

19> ls

INSTALLATION Makefile README aa.c

attribute.c attribute.h attribute_mod.h block.c

...

20> mkview include: 'Type=C header'

21> mkview src: 'Tag=src'

22> mkview utils: 'Tag=utils'

23> ls

INSTALLATION Makefile README include:

src: utils:

24> la header:

Name=header:

Tag=proj2

Type=C header

25> vi aa.c

These examples illustrate the creation of three view objects using the utility

mkview (views can be deleted with rmview). These view objects collect the objects

8

speci�ed in the associated query for display during navigation. Just as with �les,

the created view objects inherit the attributes of the current view. However, as

shown in command 25, the �les within the view object can still be accessed directly,

unlike the use of a directory. Similar to �les, views and view objects can be created

for other types of objects. View objects can also contain derived attributes, but the

contents of these objects are created on demand. While a�ording no computational

gain, view objects with derived attributes may provide organizational bene�t.

5 Implementation

As previously indicated, our system is implemented as a modi�ed user-level NFS

server as shown in Figure 1. Operations on �les in the /attrfs directory within

the NFS work routines are passed to AttrFS routines on the server side. Because

the prototype does not store the actual data of the �le, operations that operate

on the �le contents are passed through to the local Unix kernel (from the level of

the NFS work function). On the client side, most standard utilities work as is,

including shells, editors and command line utilities. A shared library is used to

avoid some interaction between the pathname queries that the system expects and

processing done by the client kernel. This overloading of the NFS naming protocol

is not ideal, but allows compatibility with existing tools. The AttrFS routines then

treat the entire �le name (after the /attrfs) as a query for processing.

The heart of the system implementation is a set of bitmaps that provide quick

access to the contents of commonly used attributes. These bitmaps are initially

created when the AttrFS is built and are updated as the contents of the �le system

change. These bitmaps are stored on disk and cached in memory as needed. The

organization is shown in Figure 2 with the bitmap containing all �les with the

attribute Tag=dict. All �les with the particular attribute are stored in the bitmap

corresponding to their inode. This implementation limits the number of objects

that may be stored in the prototype system, but experience shows it can still be

9

Unix Kernel

Routines

Routines
NFS Work

RPC

NFS Client User ProcessesNFS Server

Core AttrFS

Shared Library

read()

stat()

open()

Disk

Attributes
Derived

Figure 1: The Design of AttrFS

used for a large user �le system. The actual size of the system can be varied at

system creation.

In followup work the use of common attribute value bitmaps was extended

to also create bitmaps for view objects, which provides better performance for

accessing the contents of these objects. Updates to the view object bitmaps are

handled in a similar manner as the common attribute value bitmaps, although the

view object itself is an object and may be included in other views and view objects.

6 Performance

Table 1 shows the storage requirements for a �le base of 5,093 �les and 498 di-

rectories. As shown, the overhead incurred by our system for storing attributes

and �le-system structures is approximately 2.9 times the storage space of a tradi-

tional hierarchical �le system. However, relative to the amount of data stored, our

overhead is less than 5%. We consider this overhead to be acceptable.

Table 1: Storage Requirements

File System Overhead Data Storage Total Storage
AttrFS 3.8 MB 76.3 MB 80.1 MB
SunOS4.1.1 1.3 MB 76.3 MB 77.6 MB

10

Tag

dict

Bitmap

0110110100...

First Tier

Attributes

Second Tier

Attributes

Super

Block

Common Value Attribute List

Figure 2: The Structure of Common Value Attributes in AttrFS

11

In terms of performance of operations, Table 2 shows the average performance

of various �le operations. The �rst test was the creation of views consisting of

the conjunction of a number of tagged attributes with no view objects. This

operation is comparable to the Unix system chdir() command. The second test

was the creation of views consisting of the conjunction of tagged attributes with

view objects. The third test was an extended query using the and, or and not

operators for which no straightforward Unix operation exists. The �nal two test

involved creation and deletion of a �le. For all operations, the performance of our

attribute-based �le system is within an order of magnitude of the hierarchical �le

system. There is increased overhead for the addition of view objects in the system,

which is re
ected in the times.

We �nd these �gures encouraging because they indicate that it is possible

to implement a full attribute-based name space with performance acceptable for

interactive use. A key to this good performance is the use of the bitmap structure

for �les, which allows logical operations to be performed quickly and the contents

of common queries to be pre-de�ned with view objects.

Table 2: File Operation Performance

AttrFS Sun SPARC/SunOS4.1.1
create view (chdir with no view objects) 0.03 sec 0.002 sec
create view (chdir with view objects) 0.004 sec {
extended query (chdir) 0.11 sec {
create �le (creat) 0.38 sec 0.05 sec
delete �le (unlink) 0.22 sec 0.02 sec

7 Related Work

The integration of naming environments within a hierarchical environment has

been explored in previous work such as Plan9 [PPT+93] and the Spring operating

12

system [NR94]. The Plan9 work integrates objects using the existing the Unix

operating system �le space while the Spring work uses name objects, which are

contexts in which objects can be placed. In each case the resulting name space is

hierarchical.

Attribute-based naming has been used in such applications as directory lookup

services for access to information contained in a directory or phone-book like

database [BPY90, Neu89]. However these systems do not work on everyday infor-

mation such as �les.

More speci�c to our work are previous e�orts at attribute-based naming of �les

[Mog86, GJSO91, Sec91, Ols93]. Mogul did early work on exploring the use of

properties with �les [Mog86]. Properties represent information about �les, but do

not store information based on derivations of the contents of the �les.

The Semantic File System (SFS) interfaces to the rest of the computer as a

regular, read-only �le system, overlaying its extended semantics on top of standard

operations [GJSO91]. The SFS processes path names as requests about �les and

uses the components of the path name to specify attributes. It determines which

�les match the criteria and creates a pseudo-directory containing the �les that

match. It only allows conjunctions of attributes. The SFS generates attributes for

�les by using \transducer" programs, which are similar to our external functions,

but these operations are done o�ine, usually once per evening. This approach

results in much storage being used and the chance of these pseudo-directories

becoming out-of-date, which limits their use on information users are manipulating

on a daily basis.

The work done by Sechrest in [Sec91] describes a simulation that implements

a
exible attribute-based approach to naming of �les. Their system supports

attribute rules that de�ne implicit attributes for a �le. If the attributes of a

�le satisfy a rule then additional attributes are de�ned for the �le. Other work by

Sechrest [SM92] explores a hybrid approach that blends attribute-based naming

and hierarchical naming so as to impose structure on a attribute-based system,

13

although little experience is reported with actual use.

The InversionFS [Ols93] provides a set of �le manipulation function calls that

interface with the postgres database [SK91]. Although the focus of the Inver-

sionFS is not speci�cally attribute-based naming of information, it is one of the

features they support. Because �le data are stored in a database, full logical queries

about �le attributes are possible. Although the function call interface to the sys-

tem is analogous to the standard �le I/O calls, they are di�erent and programs

must be speci�cally written to take advantage of them. In contrast, our system

easily integrates and is used with traditional tools.

8 Experience and Future Work

Our use of the system has yielded much experience about the navigation and

manipulation of �les in the name space. The use of logical queries and derived at-

tributes allow views to be formed that are not readily available in a hierarchical �le

system. Previously hidden �les in obscure parts of the hierarchy were rediscovered

when they appeared in queries that matched their attributes. On the other hand,

other view speci�cations may require explicit negation of particular attributes to

capture the desired set of viewed �les. The addition of view objects helped with

organization, but additional work needs to be done in re�ning their use.

The use of derived attributes is a powerful feature for dynamically adding

attributes to the system and more easily adding new types of objects. One issue

is the security involved in maintaining external functions.

The use of the NFS protocol was good for its integration with existing systems

and utilities. However this decision caused problems with trying to �t attribute-

based queries and concepts into the semantics of NFS operations, which were

designed with a hierarchical system in mind. Another problem with this approach

was con
icts with the syntax of existing command-line shells and of some utilities

that tried to interpret �le names themselves.

14

A point that obviously needs to be addressed is scaling the prototype beyond

the set of �le objects available to a user. The performance we obtained in the

prototype is acceptable, but directly scaling the same system will not work for a

large number of users. One approach that could be explored is to reorganize the

name space into high-level contexts, which each could represent a user's �le space

or other system objects. Within each context, an attribute-based name space could

be used. More work could also be done on the implementation itself.

The last issue in moving to an attribute-based name is the need to have bet-

ter means of automatically assigning attributes to objects as well as using these

attributes. Tools need to be more \attribute-aware" both in generating attributes

for objects at creation time and using attributes of objects to automatically control

processing.

9 Summary

The paper describes work on an attribute-based environment to help users more

exibly and uniformly organize their information. The signi�cance of this work is

that it is capable of interactive use, full logical queries and dynamically derived

attribute values. Our system supports
exible speci�cation of views and derived

attributes while integrating with the rest of the operating system as an NFS server.

Through the use of derived attributes, it is possible to incorporate non-traditional

information into a single �le system name space. Our experimentation with the

system indicates that attribute-based naming is powerful, but that some of the

features of hierarchical systems (such as levels of abstraction) are also desirable

and need to be merged with attribute-based naming. We have made a step in this

direction with the de�nition of view objects to capture a set of objects. Overall

we feel the work thus far has been successful by demonstrating the feasibility of

an attribute-based environment that can be a user's interface to the underlying

system.

15

References

[BPY90] Mic Bowman, Larry L. Peterson, and Andrey Yeatts. Univers:
An attribute-based name server. Software{Practice and Experience,
20(4):403{424, April 1990.

[Gia93] Dominic Giampaolo. CATFS|a content addressable, typed �le system.
Master's thesis, Computer Science Department, Worcester Polytechnic
Institute, May 1993.

[GJSO91] David K. Gi�ord, Pierre Jouvelot, Mark A. Shelton, and James O'Toole
Jr. Semantic �le systems. Operating Systems Review, 25(5):15{25, Oc-
tober 1991.

[Mac94] Michael S. Mackovitch. Organization and extension of an attribute-
based naming mechanism. Master's thesis, Computer Science Depart-
ment, Worcester Polytechnic Institute, May 1994.

[Mog86] Je�rey C. Mogul. Representing Information about Files. PhD thesis,
Department of Computer Science, Stanford University, March 1986.
Also available as Technical Report STAN-CS-86-1103.

[Neu89] Gerald W. Neufeld. Descriptive names in X.500. In SIGCOMM '89
Symposium, Communications Architectures and Protocols, pages 64{71,
September 1989.

[NR94] Michael N. Nelson and Sanjay R. Radia. A uniform name service for
spring's unix environment. In Proceedings of the 1994 Winter USENIX
Conference, pages 201{209, January 1994.

[Ols93] Michael A. Olson. The design and implementation of the Inversion �le
system. In Proceedings of the 1993 Winter USENIX Conference, pages
205{217, January 1993.

[PPT+93] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil
Winterbottom. The use of name spaces in plan 9. Operating Systems
Review, 27(2):72{76, April 1993.

[Sec91] Stuart Sechrest. Attribute-based naming of �les. Technical Report CSE-
TR-78-91, Department of Electrical Engineering and Computer Science,
University of Michigan, January 1991.

[SK91] Michael Stonebraker and Greg Kemnitz. The postgres next gener-
ation database management system. Communications of the ACM,
34(10):78{92, October 1991.

16

[SM92] Stuart Sechrest and Michael McClennen. Blending hierarchical and
attribute-based �le naming. In Proceedings of the 12th International
Conference on Distributed Computing Systems, pages 572{580, June
1992.

17

