
WPI-CS-TR-93-3 July 1993

Music Related Computer Science MQP's

by

Roy S. Rubinstein

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Music Related Computer Science MQP's

Roy S. Rubinstein

Computer Science Department

Worcester Polytechnic Institute

Worcester, MA 01609

roy@cs.wpi.edu

July 1993

Abstract

One important way to teach Computer Science (or almost any discipline) is by
getting students involved in projects that interest them. One such area of projects
involves the use of computers with music. This paper presents some experiences I
have had advising music related computer projects. These experiences show that
students are very enthusiastic about music projects, enjoy working hard at them
and learn a lot in the process.

This paper also serves as an introduction to MIDI, the standard interface for
electronic music. It provides enough background so that one may get started ad-
vising or doing MIDI projects.

1 Introduction

The use of projects in teaching Computer Science is standard practice, but it is often
di�cult to �nd appropriate projects. The project must not only be of the proper di�culty
level for learning, but should also be of interest to the students. One area of projects that
greatly interests many students is the use of computers with music. This paper presents
some experiences I have had advising such projects.

As in many areas, computers are becoming increasingly prevalent in music composi-
tion, performance and production. Many types of music and sound equipment may be

controlled by computers, including some instruments themselves. In particular, synthe-
sizers and samplers, which produce sounds, may be controlled remotely by a keyboard or
a computer. The Musical Instrument Digital Interface (MIDI) is the standard through
which the communication is done. Of course specialized software and hardware is needed
to perform this communication with the MIDI standard, and many such projects are
possible in their design and implementation.

This paper is organized as follows. First is an introduction to the Major Qualifying
Projects at Worcester Polytechnic Institute, the program under which these projects were
and are being pursued. This is followed by an introduction to MIDI, the electronic music
communication standard. Today most electronic music uses the MIDI standard, and as
such so do all these projects to some degree.

Next are descriptions of computer music projects that have already been completed,
along with comments concerning their educational value. The objectives and function-
ality of the projects are described here, though the details of the implementations are
omitted. The emphasis here is on what the projects do, not how they do it. Further
information on the projects may be obtained from the project reports.

This is followed by descriptions of current projects, scheduled future projects, and
potential future projects. Problems encountered with the projects are also discussed.

2 Major Qualifying Projects

At Worcester Polytechnic Institute part of the undergraduate degree requirements is the
completion of a Major Qualifying Project (MQP), which is a large project in a student's
major that is equal in credit (and work) to at least three courses. A report on the project
is required at its conclusion.

The types of projects vary greatly, and a topic may be anything whatsoever as long
as a faculty member in the appropriate department approves and agrees to advise it.
While an MQP may be completely theoretical, this is very rare, and large programming
projects are standard in the Computer Science Department. Projects may be done by
individual students or in groups of various sizes, with the size of the project appropriate
to the size of the group.

The purposes of the projects vary somewhat with the project, but in general should
include a reasonable subset of the following list.

� to apply already learned Computer Science knowledge and techniques

� to gain new knowledge in Computer Science

2

� to explore an area in greater depth than time usually permits in classes

� to gain experience in learning new material outside of a classroom

� to learn about a non-Computer Science area

� to explore the relation between Computer Science and other disciplines

� to gain experience in a large scale design and development project

� to gain experience in writing a project report

� to produce a useful, original, high-quality product

Di�erent advisors prioritize these items in di�erent ways, often depending on the
individual projects, though using current and gaining new knowledge is virtually always
expected. While a nice end product is desirable, it is by no means the only goal. Having
students design and develop a product that does not compare favorably to a similar
commercial product (that may have been years in development) may be quite acceptable.
In fact, often while \reinventing the wheel," a new, original technique may be discovered.

There are many projects in computer music that ful�ll many of the above goals very
well. Some of these will be described later in this paper.

3 Introduction to MIDI

The Musical Instrument Digital Interface (MIDI) standard [MID90] is today's standard
for communication between digital musical instruments. It includes standards for real-
time communication between instruments as well as �le formats for storing musical in-
formation. Almost all high quality electronic musical instruments currently being man-
ufactured use the MIDI standard.

3.1 Real-time communication

In its simplest form, MIDI can be used to allow a keyboard to control a separate sound
module, which could then be connected to an ampli�er and speakers. This set-up is shown
in Figure 1. Sound modules typically fall into the categories of synthesizers, samplers

or a combination of the two. Often a keyboard and sound module are combined into a
single unit, but here they will be considered to be logically separate.

3

Sound Module Amplifier & SpeakersMIDI Controller

MIDI cable

Audio cable

Figure 1: Simple MIDI set-up.

Using MIDI allows easy replacement of one component independently of another.
In addition, with the appropriate connections (and possibly other equipment) multiple
sound modules may be controlled from a single keyboard, and multiple keyboards may
share a single sound module.

Most sound modules are capable of producing a number of di�erent sounds, and some
sound modules and/or keyboard controllers may be set up to vary the sound depending
on the pitch (i.e. what note was played), the velocity (how hard the note was hit), the
channel on which the note was sent (which could vary depending on which keyboard the
note was played), or other parameters.

There are a number of MIDI messages that can be sent in real-time communication.
The two primary messages are NOTE ON and NOTE OFF. The NOTE ON message
indicates that a note is to be played, and includes information about what note, what
velocity, and which channel. The NOTE OFF message is used to stop playing a note
previously started by a NOTE ON message, and includes information about what note
to turn o� on which channel. A note can also be turned o� by a NOTE ON message
with velocity 0.

Other MIDI messages have the ability to change the instrument sound associated with
a channel (program change), to bend pitches, to modulate the sound (such as changing
vibrato depth), and to alter the volume of a note already being played.

The MIDI standard includes both the formats of the messages and the hardware
speci�cations for the communication.

If a computer with a MIDI interface and the appropriate software is con�gured into the
MIDI set-up (for example as in Figure 2), the capabilities are greatly increased. When
notes are played on the keyboard, in addition to sending the messages to the sound
module to be played, the computer can save the timing and message information. This
can then be resent to the sound module to play the notes again, without the need to play
on the keyboard. The note sequence may also be edited to correct mistakes, add notes,

4

MIDI Controller Computer Sound Module Amplifier & Speakers

MIDI cable

Audio cable

Figure 2: Simple MIDI set-up with a computer.

change the tempo, etc. One may also play back a stored sequence while playing a new
sequence on the keyboard, possibly with a di�erent instrument sound, which can then
also be stored. This process, known as sequencing, allows a single person to orchestrate
an entire score.

3.2 MIDI �les

The MIDI standard also includes speci�cations for �le storage. This allows a sequence
stored using one sequencing program to be used by another, even by one on a di�erent
type of computer. It also gives other types of programs access to the same information.
An example of a program that may need such access is a scoring program that takes a
MIDI �le and produces sheet music. Or a multimedia application may play any speci�ed
MIDI �le. MIDI �les are discussed in greater detail in the section about PRIMA.

Another type of �le used with MIDI is one that allows storage of groups of instrument
parameters, known as patches. This type of �le is not of a standard format and is not
usually referred to as a MIDI �le. This is discussed below in the section about a patch
editor/librarian.

3.3 Other MIDI applications

The MIDI standard is used in many applications, sometimes with extensions to the
standard. There are many audio e�ects devices (such as reverb, digital delay, chorus,
and combinations of these) that can be controlled via MIDI. There are even mixers and
equalizers that can be controlled via MIDI. This allows easily synchronized control of all
sound. A MIDI standard for lighting control is also in use.

5

4 Completed Projects

This past year I began o�ering MQP's concerning MIDI, and four have been completed.
This section discusses these projects and what computer science and other knowledge
was used and learned in doing them. In the discussion of the projects, more information
about MIDI is provided.

4.1 PRIMA: Translation of MIDI �les to sheet music

The PRIMA project (as the students involved named it) was the development of a system
for creating sheet music from a MIDI �le. After generating its \best guess" at what the
sheet music should look like, it allows adjustment via an X Windows graphical user
interface. The output is a �le that is run through TEX with MusicTEX. (MusicTEX is a
package of macros and fonts for producing music with TEX. It is very unstructured and
detailed, and one does not want to use it directly.) By using standard interfaces such as
X Windows and TEX, this can be quite portable.

Although there are many commercial programs available to print sheet music from
standard MIDI �les, sometimes incorporated into sequencer programs, there are none that
I am aware of that are designed for workstations running in an X Windows environment.
With workstations becoming more prevalent, powerful and a�ordable, particularly in
academia, this is a very useful tool.

A MIDI �le contains all the timing and note information needed to properly play
the music, though it may not explicitly contain the necessary information for producing
sheet music. For example, there is information that a given note is started at a certain
time (a NOTE ON message) and later information that that note is turned on (NOTE
OFF), without explicitly giving the duration of the note. This must be calculated and,
using other information about how the timing relates to quarter notes, determine what
type of note (quarter note, half note, etc.) this translates into. If this note continues
into the next measure (which, of course must be determined { a MIDI �le does not give
timing information in terms of measures but in terms of time units known as ticks or
delta times from the beginning), further processing must be done.

It is also not always clear from the MIDI �le just where on the sta� a note is to be
placed. The pitch is represented as a number, so, for example, note 58 can be interpreted
as either B-
at or A-sharp (the one nearest to middle C). It is up to the program inter-
preting the �le to make this determination. Also, if the the same note occurs twice in
the same measure, the second would not typically need the accidental.

There are actually more than one type of MIDI �le. A type 0 MIDI �le contains a

6

single multi-channel track, while a type 1 �le allows more than one simultaneous track
of a sequence. Type 2 �les, not as commonly used, allow one or more sequentially
independent single-track patterns. Speci�cation of time signature, key signature, and
other miscellaneous information is allowed but optional. PRIMA will accept type 0 and
type 1 �les, guessing at the time and key signatures if they are not provided.

The basic action of PRIMA is as follows. When begun, a window is drawn with
two staves and several buttons to control the program. The �rst action is to read in
a MIDI �le, which involves parsing the MIDI �le, calculating and storing information
in the process. The output of this phase in an intermediate �le (whose format was
designed as part of the project) that contains information about notes (in terms of pitch,
note duration, accidentals, etc.), MIDI-clock equivalents, page layout, etc. Once this
intermediate �le has been generated, the MIDI �le is no longer used.

Next, the information from the intermediate �le is used to draw several measures of
the score in the window. This may be scrolled about to access di�erent parts of the score.
Changes may be made here, including moving notes, adding accidentals, changing key
and time signatures, etc. When changes are saved, it is in the intermediate �le format,
with the original MIDI �le unchanged.

Another action is to translate and display the music. This will translate the interme-
diate �le into MusicTEX format, run TEX on the �le, and display the output with xdvi
(a standard utility for displaying a TEX .dvi �le on an X Window display). If further
changes are needed, they can be made and the process repeated. When a �nal version
is obtained, the .dvi �le can be printed by the usual means for the computer system
con�guration. The intermediate �le can also be saved, so that one need not go back to
the original MIDI �le to make additional changes at a later time.

The PRIMA project turned out to be an extremely large undertaking. It involved
learning the MIDI �le format, some music theory (to break the input into di�erent
\tracks" to put on separate staves, allow proper beaming, etc.), some music notation,
MusicTEX and TEX, X Windows, and some process communication (to run TEX and xdvi
while running the other programs). Many complex data structures and algorithms were
used and developed to e�ciently implement this.

In fact, it turned out to be too large for the three students involved. As a result much
of the functionality was trimmed, but the basic structure was still built. The graphical
interface editing capability was not fully implemented, and the only changes that can be
made there are movements of notes, and this still has some problems. Additionally, the
user interface is not as comfortable and intuitive as it should be. As a result, the program
as it now stands is far less functional than many commercial products (and equivalent
to a public domain MIDI to MusicTEX program).

7

But the overall structure { setting up the X Windows interface, translating to the
intermediate �le, translating to MusicTEX, and interactively running TEX and xdvi {
works. This is an ideal situation for a future project, which can �x the bugs and increase
the functionality.

Although the �nal product was not completely successful in terms of the original
plans, the students learned a great deal and accomplished much. At the same time, they
enjoyed themselves (well, most of the time). As such, I would say that the project, in
terms of the experience it is meant to provide, was undoubtedly a success.

4.2 Sheet music and MIDI �le format for an expert system

This project, completed by one student, produced a pair of programs to translate from
the nonstandard musical notation output by an expert system to sheet music (in the
form of a MusicTEX �le) and to a type 0 MIDI �le. These programs work completely
and properly as speci�ed.

An instructor in our department for her Masters thesis wrote an expert system that
produces variations in the style of Telemann [Mer91]. The output (as well as the input)
for this system is a unique system that consists of triples, each representing a chord, a
rhythm and a note. Without an enormous amount of practice, this is virtually unreadable.
The programs produced by this project allow the expert system format to be easily read
and listened to.

This project involved learning the format of the expert system output (which was not
fully speci�ed and, it turned out, had ambiguities), MusicTEX and MIDI �les. Parsing
and translation techniques were used to read the input and convert it to the appropriate
output formats. Additionally, the student doing this project delved deeply into musical
notation, and the sheet music produced is high quality, including beaming and proper
stem direction.

The report included recommendations for extensions to the expert system notation
to allow better processing of output. A number of these will most likely be adopted, as
a project due to begin in the fall (not advised by me) will deal with the expert system.

4.3 MIDImapper: A multiport MIDI router

The MIDImapper is a hardware/software project completed by two students, one a Com-
puter Science major and the other an Electrical and Computer Engineering major. The
project was co-advised by Prof. WilliamMichalson of the ECE Department, who was far

8

more helpful with the hardware than I could have been. My discussion here will focus
on the software and programming aspects of the project.

The MIDImapper is a user-programmable MIDI merger/splitter that takes two MIDI
input streams and, in real-time, routes each message to either, both or neither of the
two MIDI output streams. This device allows two MIDI controllers (such as keyboards)
to share two sound modules. It can also be used for merging two separate streams
(perhaps from two separate keyboards) into one (such as to share a single sound module
or to simultaneously record the two streams with a single computer sequencing program).
Many other uses are possible as well.

Because of the nature of the digital MIDI messages, even for the relatively uncompli-
cated merge operation, a simple \Y" connector can not be used. It could cause parts of
incoming messages to be interspersed, and as such will not work correctly. A device such
as the MIDImapper is needed that will store incoming messages from one input until the
message from the other input has been completely output.

The routing of a particular message can be based on a number of factors, including
channel, pitch and velocity. This allows, among other things, range splitting (so that
di�erent notes on a keyboard will play di�erent instruments) and velocity sensitive map-
ping (so that a di�erent instrument will sound if a note is hit hard). Transposition and
channel number changing may also be done. Similar products are currently on the mar-
ket, but this could be produced to be quite competitive. It was also designed so that it
could be easily expanded to a greater number of input and output ports.

Two standard program settings are provided (straight, where messages from one input
port go directly to one output port and messages from the other input port go directly
to the other output port, and merge, where messages from both input ports go to both
output ports), and battery-backed RAM is available for storing many user-programmed
settings. The programming is done via a keypad and LCD display, which can also be
used to view current programs. The LCD display also shows when MIDI messages are
passing through.

This project involved designing and building everything, including the hardware as
well as the software. In addition to learning the MIDI speci�cations (hardware and
messages), the students had to program the system at a level quite di�erent from what
they were used to. Designing and developing software speci�c to the unique hardware
architecture was a new experience for them. There was no operating system, and all the
ports and memory locations had to be directly addressed. Timing was also critical.

The programming environment was also not one that most Computer Science students
experience. Emulators were needed in the early stages, and the program (written in C)
had to be compiled on one machine then loaded into ROM to be used in the MIDImapper.

9

The memory locations of various code (such as startup code) were critical, and there were
numerous problems to overcome.

The project, both hardware and software, worked quite well. The students are plan-
ning to add additional functionality, not for credit, but for fun and to improve the
MIDImapper.

4.4 RAGE MIDI guitar signal processor

The RAGE MIDI guitar signal processor was an ambitious project undertaken by one
student to modify a digital guitar e�ects processor (analog input to analog output) to
additionally provide a real-time MIDI output stream, allowing the guitar to be played
with the sound of other instruments or sequenced. This involves polyphonic pitch de-
tection, an area currently under research that is not considered to be fully explored or
solved.

The student doing this project was a double major, Computer Science and Electrical
and Computer Engineering, and as such had to do two MQP's. For his ECE MQP he
designed and built, with another student, the RAGE (Rabid GEcko Electronics) digital
guitar processor. For his CS MQP, he modi�ed it to give MIDI output.

Even though most of the hardware was already built (a MIDI output port needed to be
added, plus a MIDI input port was added for testing and future use), much work needed
to be done. An in-depth study of algorithms to convert waveforms from the time domain
to the frequency domain was done, and it was determined that Goetzel's algorithm
was most appropriate (more so than standard Fast Fourier Transform algorithms). One
major problem here is that a greater number of waveforms is needed to more accurately
determine the pitch, and with lower frequencies this may take more time than acceptable.

Once the input is in the frequency domain, it must be determined what was played
and at what volume. While this is not easy when only one note is played at a time, it is
extremely di�cult with multiple (up to six, with a standard guitar) notes. A harmonic of
one note may be louder than the fundamental of another note, making it quite di�cult to
determine just what was played. Additionally, the relative amplitudes of a fundamental
and its harmonics may be di�erent if the note is played di�erently and may vary with
time. A number of algorithms were proposed, but there was not su�cient time to try
them all. Good quality polyphonic note detection was not achieved by the end of the
project, though it worked well (and impressively) when only one note at a time was
played. It should be noted that commercial MIDI guitar processors avoid the problem of
polyphonic pitch detection by having six pickups, one per string, and doing monophonic
pitch detection on each.

10

The programming was also quite di�erent from what most Computer Science majors
(or computer scientists anywhere) are used to. In addition to programming a standard
microprocessor and the need to address everything without the assistance of an operating
system, a digital signal processing (DSP) chip had to be programmed in its own unique
way. In order to do this, all programming was done in assembly languages.

The student also set up his own development environment. He built a MIDI interface
for his Macintosh computer, enabling him to edit and assemble his code on the Mac,
then download it (through the MIDI interface) to RAM on the RAGE board for testing.
When a debugged revision was done, it could be burned into ROM and plugged into the
circuit board. The student intends to continue to work on this, not for credit, in order to
add functionality (such as string bending) and to try di�erent polyphonic pitch detection
algorithms.

5 Current and Future Projects

5.1 A Windows MIDI sequencer

A MIDI sequencer on a computer is similar to a multitrack tape recorder but using MIDI
messages instead of audio signals. In fact, usually there is a \control panel" that is
designed to look like the controls of a tape recorder, with stop, play, record, fast forward,
and rewind buttons. With such a sequencer one usually has the ability to play back any
combination of the tracks already recorded and to record new tracks at the same time.

In addition, most sequencers have the ability to edit the sequences recorded to correct
mistakes, adjust timing, copy passages, transpose, etc. Usually the editing is simple
(adjusting one note at a time or a group of notes as a unit for copying or moving), but
some allow algorithmic editing (such as de�ning a curve for velocity over a time interval).
They usually also allow one to read in MIDI �les and store sequences as MIDI �les.

This project is to write a sequencer that runs on PC-compatibles under Microsoft
Windows. There are already many sequencers available for PC-compatibles, some which
run under Windows, but this one is to be easily extensible. If one wants to add new
editing functionality or a new type of display, for example, it should be relatively easy to
incorporate that new module into the system without the need to recompile the entire
system. In fact, it should not even be necessary to have the source code to the rest of
the system.

A basic sequencer is a rather large project, and depending on the functionality, this
could be extremely big. A basic sequencer will need an extensive graphical user interface,

11

including many displays, menus and buttons. It will need to access the MIDI interface
and do precise timing. Complex data structures will also need to be developed to properly
handle the information. Windows and MIDI (both �le format and messages) need to be
mastered.

The project is being done by one highly motivated student. (I tried to convince him it
was too big to do on his own, but he was determined to do a Windows based sequencer.)
Sketches have already been made as to what the screens will look like and what the
functionality of the sequencer will be, and the implementation should be completed this
fall.

I expect this to be another project to be extended by a future project group.

5.2 Computer-aided harmony

This project is being pursued by an individual student as a one-term independent study
(as opposed to as an MQP, as the other projects discussed here are). The idea is to take
as input a melody line perhaps with some other lines (such as a bass line) in the form of
a MIDI �le and to generate an additional harmony line. This project requires extensive
musical knowledge as well as computer expertise.

The student started this and soon discovered the enormity of such a project. He
also became overwhelmed with other coursework and took an incomplete on this. He is
expected to �nish it (or at least �nish one term's worth of it) this fall.

5.3 A universal patch editor/librarian

Most sound modules can be programmed to produce di�erent sounds, but the techniques
of programming them vary greatly not only between di�erent manufacturers, but be-
tween di�erent models by the same manufacturer. There are, however, a few principles
that almost all have in common. In general, a particular \instrument" is created for
a particular MIDI channel so that all MIDI messages coming in on that channel a�ect
that instrument. Multitimbral sound modules allow di�erent instruments to be played
at the same time by recognizing messages on more than one MIDI channel. The sound
produced by an instrument depends on the programming of that instrument.

An instrument is programmed by setting a variety of parameters on the sound module.
These typically include one or more waveforms to be used (either generated or sampled),
sound envelopes for the waveforms, information about how they are to be combined, ve-
locity sensitivity, aftertouch sensitivity, transposition, and many others. The parameter
types and value ranges are completely dependent on the particular model of the sound

12

module. Di�erent modules may produce sounds in completely di�erent ways, and new
methods are constantly being introduced. De�ning any kind of standard for this would
not only be virtually impossible, but would limit technological advances. The set of pa-
rameters for a particular instrument is referred to as a patch, and the terms \instrument"
and \patch" are often used interchangeably.

The method of programming most sound modules is by pressing a sequence of buttons
to display the current parameters one at a time on a single line LCD display, with
modi�cation to a displayed parameter allowed. This can be quite cumbersome and slow.
A patch editor is a computer program to allow editing of patches, usually with a nice
graphical user interface displaying many, if not all, the parameters at once. While some
parameters may be displayed with numbers in tabular format, some may be displayed in
the form of graphs (useful for seeing an envelope, for example), meaningful text or other
means, and may be changed by means of mouse clicks and drags, menus, keystrokes, etc.
Patches may be downloaded from the sound module to the computer, edited, and then
uploaded back to the sound module, all through the MIDI interface. This is done via
MIDI system exclusive (SYS EX) messages, which are not standard, but are speci�c to
a module manufacturer and model. Note that the simple set-up shown in Figure 2 will
not su�ce for this; a MIDI connection from the sound module back to the computer is
needed.

Most sound modules have very limited patch storage space, and the manufacturer
may sell expensive sound cards for additional, external storage. If one has a sound
module connected to a computer through a MIDI interface, however, with the appropriate
software the patches may be saved in �les on the computer. This is where the librarian
portion of a patch editor/librarian comes in. This allows patches to be organized and
stored on the computer, either individually or in \banks". Most sound modules have the
capability to have an entire bank of patches loaded at once, which is more e�cient than
loading each patch separately. A patch editor/librarian usually allows editing of banks
as well as individual patches, so that a set of instruments may be easily loaded for a
particular piece of music. There is no standard for the �le format for patches or patch
banks, though often if a software manufacturer produces a patch editor/librarian for the
same sound module but for di�erent computers, the �les will be interchangeable.

When patch editor/librarians �rst came out, one needed a separate program for each
sound module, even if the programs were to be run on the same computer. Today
universal patch editor/librarians are becoming more common, where a single program is
run with di�erent con�guration �les for di�erent sound modules. If a new sound module
is added to one's system, it is only necessary to use a di�erent con�guration �le with the
same patch editor/librarian.

13

This project will be to design and implement a universal patch editor/librarian. This
will include the design of the con�guration �le format so that it is as general as possible,
plus complete documentation so that users may create their own con�guration �les. The
project will begin this fall and will be done by three students. It will require knowledge of
MIDI, sound modules (including their programming), data structures, �les, and graphical
user interfaces.

5.4 Potential projects

There are many other computer related music projects that can be done. As above, most
of them have to do in some way with MIDI, though the MIDI portion may only be to
have a standard I/O interface (as with the computer-aided harmony project). Potential
projects include extensions to the aforementioned projects, including porting them to
other computers. Integrating these and other projects into a single, cohesive unit would
also be a worthwhile project.

Other potential projects include MIDI drum machines, ear training programs, wave-
form editors, and MIDI control systems. Projects such as computer-aided composition,
musical analysis, and instrument modeling are possible as well, though they might quickly
get to a level of research beyond the scope of undergraduate education.

6 Problems and Conclusions

The main problem I have had with advising music related projects is the lack of equipment
available. While Computer Science departments often have enough general computing
equipment, music equipment is rarely available. Two of the above projects dealt only
with MIDI �les, as no music equipment was needed for these (except for checking output).
The other projects rely on the students' own equipment (along with my own personal
equipment which I have lent out). As such, it not only limits which students can work on
what types of projects, but to some extent it also constricts the breadth of their learning,
as they are using equipment with which they may already have a great deal of familiarity.

Another problem is that, as a project is usually begun at the beginning of a student's
senior year and sometimes during the junior year, the appropriate background courses
may need to be taken concurrently with project work instead of before, particularly as
some courses are only o�ered every other year. This, however, is a problem with virtually
any kind of project, undergraduate or graduate.

In spite of the aforementioned problems, the use of music and MIDI in Computer

14

Science projects has been very successful. The students tend to be extremely enthusiastic
about it, have fun doing it, and end up with useful products that they take pride in. And
in the process, they learn a great deal.

References

[Cab93] Benjamin \Quincy" Cabell. Computer-aided harmony. Independent study re-
port, 1993. Not yet written.

[CK93] C. Brian Candiloro and Jonathan Kemble. MIDImapper: A multiport MIDI
router. Worcester Polytechnic Institute MQP Report RSR-9204, 1993.

[DMS94] Anthony Defusco, Robert Martino, and Daniel Ste�ann. A universal patch
editor/librarian. Worcester Polytechnic Institute MQP Report RSR-9305, 1994.
Not yet written.

[GSZ93] Carlos Gonzalez, Elizabeth Stewart, and Michael Zarozinski. PRIMA: Transla-
tion of MIDI �les to sheet music. Worcester Polytechnic Institute MQP Report
RSR-9203, 1993.

[Kin93] Brian King. RAGE MIDI guitar signal processor. Worcester Polytechnic Insti-
tute MQP Report RSR-9301, 1993.

[Mer91] Kathy Johnson Merck. An expert system to generate musical variations in the
style of Telemann. Master's thesis, Rochester Institute of Technology, 1991.

[MID90] MIDI 1.0 detailed speci�cation. The International MIDI Association, 1990.

[Sei93] Richard Sei�ert. A Windows MIDI sequencer. Worcester Polytechnic Institute
MQP Report RSR-9303, 1993. Not yet written.

[Szy93] Paul Szymkiewicz. Sheet music and MIDI �le format for an expert system.
Worcester Polytechnic Institute MQP Report RSR-9206, 1993.

15

