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Abstract

This paper describes the application of multi-scale relaxation to

automatically detect pavement distress. Pavement distress detection
is a di�cult task which simple edge detection schemes perform poorly.

We have chosen to use relaxation labeling to improve upon an initial
edge-based segmentation. This work is based upon a fractal model of

pavement distress. The scale-invariance property of fractals suggests
that information at di�erent scales of resolution may be combined

to improve segmentation. Thus, we have developed a multi-scale re-
laxation technique for use in a pavement distress detection system.

Straightforward linear interactions fail to capture the complexity of
pixel interactions for this problem. To better model pixel interac-
tions, we have included non-linear terms in the relaxation process.

Symmetry arguments and careful engineering allow a 93% reduction
in the complexity of this approach. To demonstrate the necessity of

the multi-scale approach, examples with and without multi-scale re-
laxation are shown. We found that performance was greatly improved

by multi-scale relaxation.

1



1 Introduction

This paper describes the application of multi-scale relaxation to automati-

cally detect pavement distress. Pavement distress detection is a di�cult task

for several reasons:

� There is great variability in the appearance of both sound and dis-

tressed pavements.

� It is necessary to detect features as small as 2 pixels wide.

� There is typically much sensor noise present in pavement imagery.

� Traditional computer vision models fail to capture the complexity of

pavement distress.

Because of these problems, simple edge detection schemes perform poorly.

We have chosen to use relaxation labeling to improve upon an initial

edge-based segmentation. This requires some model of the appearence of

pavement distress. Our approach is to model pavement distress as fractal

structures. The scale-invariance property of fractals suggests that informa-

tion at di�erent scales of resolution may be combined to improve segmenta-

tion. Thus, we have developed a multi-scale relaxation technique for use in a

pavement distress detection system. The system is trained on images whose

labels are known; relaxation coe�cients are estimated using a least-suqares

optimization.

To demonstrate the necessity of the multi-scale approach, a version of the

system was implemented that used only a single level of processing. It was

found that performance was greatly degraded. Examples with and without

multi-scale relaxation are given later in this paper.
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An added complication is that straightforward linear interactions fail to

capture the complexity of pixel interactions for this problem. To better

model pixel interactions, we have included non-linear e�ects that require

819 coe�cients. Fortunately, symmetry arguments and careful engineering

reduce the number to 61.

1.1 Detailed Problem Description

Distress (cracking) occurs on paved surfaces for a variety of reasons. Since

there are no generic sizes or shapes, cracks are particularly hard to de-

tect. The images used in this image have been produced by the PASCO

system [SOL91]. Images generated using this system have a resolution of

.75mm/pixel [ELK91a]. The intensity ranges of the di�erent regions in the

image are often very close together, and distress pixels can be brighter,

darker, or the same as the aggregate pixels [ELK90]. In order to success-

fully model the distress, another property of the distress can be used.

Cracks have been shown to be fractal in [GEN91]. This is a useful prop-

erty of distress which can be exploited to di�erentiate the distress from the

rest of the features in the image. A fractal is de�ned as a set of points

whose fractional dimension is strictly larger than its topological dimension

[MAN82]. An interesting property of fractals which can be exploited is self-

similarity. A fractal object will appear to have the same fractal dimension,

regardless of the scale that is used or the distance from the object [GLE87].

Since a crack is a fractal curve, it will look the same regardless of the scale

at which the it is viewed.

Not all of the data in pavement images are of use for automatic distress

detection. Pixels which correspond to distress larger than 1.5mm within
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pavement images comprise only 0:1% of the image generated from a lane-km

of pavement [ELK91a]. In order to detect such a small component of the

image, the system must exploit the properties of the distress [ELK91b].

Standard image processing techniques applied to pavement inspection

have only met with limited success [CHI83, CUR84, ELK91b, GOS91]. Highly

non-uniform paving material comprises most of the distress image, and bound-

aries between these materials must be eliminated for successful detection of

distress. This requires the use of context in image processing, which we

provide through relaxation.

2 Relaxation

The main goal of this research is to derive a consistent set of labelings given

an image which may or may not contain pavement distress. Data input

to the system will not contain consistent labelings of the image but rather

rough initial guesses. Consistently labeled images contain continuous distress

regions, surrounded completely by boundaries which separate the crack from

the aggregate. The initial labelings may be inconsistent. Relaxation is used

to iteratively update the labels in an image, based upon labels at neighboring

points in order to arrive at a more consistent set of labels [HUM83]. In

this work, the labels are treated as probabilities, which imposes additional

constraints on the label set: the labels must be non-negative and sum to one.

2.1 Least Squares Approximation

A least squares approximation is used as the update rule in the relaxation

algorithm. The approximation is used to �nd the best �t to an ideal set of

data. When the system is \trained", a set of data with known labels is used
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to �nd coe�cients which represent the best �t for the relations between the

labels in the data. Neighbor relations, or in
uences which are inconsistent

will have negative coe�cients, relationships which have little in
uence will

have small weights, and relations which are important have large coe�cients.

These coe�cients are used as weights when performing the labeling of the

input images.

A least squares approximation is well suited to this task for several rea-

sons. First, a least squares approximation is used in order to �nd the re-

lationships between variables, and to �nd the best �t to some data. This

best �t approximation can be applied to an ideal set of data which repre-

sents the labeling that the system should derive. This solution to the best

�t can then be applied to the un-labeled images by imposing the same �t

onto the input data. In this system, we have a data point px, with a given

label i 2 fA;B;Cg, and a collection of neighbors for that pixel, each with

a separate label set. The label sets for both px and the neighboring pixels

are de�ned to be probabilities. Since we would like to �nd the relationship

between pxi and the neighbors in the immediate neighborhood of pxi, and

then apply this relationship to later data sets where the correct labeling is

not known, a least squares approximation seems to be an ideal mathematical

tool to use.

Consider a model of a system with k data points, N neighboring in
u-

ences, and L possible labels for each data point. A data point px, has several

neighbors which exert an in
uence on the current data point. pnixj is the

coe�cient for the in
uence on px from label j of px's ith neighbor. Using this

notation, the coordinate vector equations can be rewritten as:
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(1)

We can then write the least squares approximation as a vector equation:

E = k~y �A ~x0k
2 (2)

We assume that At
A is a linearly independent matrix, so the rank ofAt

A

will be equivalent to the rank of A, or NL. If this condition is satis�ed, then

the matrix At
A is invertible, and so we can solve for ~x0 using the following

equation:

~x0 =
�
A

t
A

�
�1
A

t~y (3)

3 System Overview

Each pixel in the distress image can be labeled as either a crack pixel, a

boundary pixel, or an aggregate pixel. Weightings are assigned to each of

these labels, and are used to classify each pixel. A pixel will have a collection

of these weightings, one for each possible label; this collection of weightings is

referred to as the point's label set. Relaxation algorithms adjust these labels

to make a pixel's label set more consistent in the context of the current

neighborhood. In this work, the label set is further constrained by treating

each label as a probability. A label's weighting therefore, is actually the

probability that the data point is correctly labeled with the respective class.
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Initially, zero crossings of a second directional derivative edge detector

[TOR84, GOS91] are used to detect all of the boundaries in the image. After

these boundaries have been detected, initial crack and aggregate regions are

set up in the image using simple intensity value comparisons.

The self-similarity property of fractal distress curves can be exploited

to aid in the labeling process. One way to exploit this property is to use

multiple resolutions of the input data. Data at any given resolution will

have neighboring pixels at the same resolution as well as neighbors at higher

and lower resolutions. These scales are constructed by averaging the input

data to generate a coarser resolution. Because the distress retains the same

properties at all scales, relaxation can be performed at each scale using the

same set of rules.

In order to perform relaxation labeling, a set of relaxation coe�cients

must be found. Therefore, a two phase process is de�ned. The �rst (train-

ing) phase produces the coe�cient vector which is used by the relaxation

algorithm in the second phase. The second (relaxation) phase uses the coef-

�cient vector and input data to generate new labelings of the image. These

updated labelings are then re-input to the system for further updates, until

the system converges.

4 Algorithm Design

The goal of this work is to consistently label the distress (cracks) in input

images. A model of correct pavement labeling must be de�ned for the system

to use. This model de�nes the possible classi�cations, or labels for a data

point, as well as the neighbors which will in
uence a data point.
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Data points labeled as Crack are data points which lie directly over crack

pixels in the input image. Data points labeled as Boundary are the points

which lie on the immediate edges of Crack data points. Boundary points

are also de�ned as points which have both Crack and Aggregate points as

neighbors. Finally, data points labeled as Aggregate are any points which

are neither Crack nor Boundary points.

Continuous labeling was chosen as the relaxation method, and an addi-

tional constraint was placed on the label set which makes each label in a

data points label set a probability. Treating the label set as a probability

o�ers added bene�ts over standard continuous relaxation labeling, since a

data point will have a probability of belonging to a given class in the label

set, rather than just a continuous label weighting. This allows classi�cations

to be easily made by simply using the greatest probability in the label set as

the current point's classi�cation.

A data point will have a number of neighbors both at the same scale and

at multiple scales which will each assert a di�erent in
uence on the current

data point's label set. The neighborhood that is considered is de�ned using

the following model. A data point has eight neighbors on the same level as

itself, one neighbor on the level above the current level, and four neighbors

on the level below, for a total of thirteen neighbors (Figure 1).

4.1 Edge Detection

Detected edges are used to generate the initial set of data used by the re-

laxation algorithm. The zero crossings of the second directional derivative

method [HAR84, TOR84] was chosen because it guarantees closed contours,

keeps good localization of edges, and responds well to actual edges. The
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Figure 1: Neighbor Label Sets for Data Point X
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magnitude of the gradient, krIk is used to generate a weighted boundary

image. This weighted boundary image is then normalized into the range of

[0 � � � 1], so that edge strength is replaced by a probability.

4.2 Terms in Relaxation

We consider an image to be a set of data points, pi. Every data point in the

data set will have possible classes or labels. If there exist L possible labels,

then pxj represents one label j, for data point px. The i
th neighboring pixel

for px, represented as pnix will have associated con�dences for each label, j in

its label set. An additional constraint is placed upon px's label set, allowing

us to consider each label in the label set as a probability.

LX
j=0

pxj = 1 (4)

The goal of relaxation is to adjust the label set for each px in the data

set, based upon its current neighbors. Therefore, each pixel has N neighbors,

each with L possible labels; there will be NL in
uences for each label in px's

label set, with exactly one in
uence for each label in Pnix 's label set.

One of the initial requirements of the relaxation algorithm is a constraint

relation between the labels at neighboring data points and the labeling at

the current data point. This constraint relationship is used as an update rule

in order to adjust the label sets for each data point. In this project, a least

sum of squares approximation is used to �nd coe�cients which represent an

ideally labeled image. Using the equation for the least squares �t, (Equation

5) the update rule minimizes the distance between the current label set and

the best �t of the ideal data.

10



E = k~y �A ~x0k
2 (5)

Standard relaxation algorithms work by considering the in
uences of

neighboring points upon a given data point. These neighbors can consist

of the immediate neighbors in a four-connected or eight-connected scheme,

where points which are not \touching" the current point are not considered.

Neighbors could also consist of pixels which surround the current pixel for

some distance around the current pixel. In this work, additional considera-

tions are needed since a neighborhood does not just consist of points which lie

around a data point, but also neighbors which lie on the image at scales both

above, and below the current scale at higher and lower resolutions respec-

tively. Therefore a third dimension is added to the in
uences on a current

data point. The possible neighbors that a data point can have are the eight

data points immediately surrounding the current data point on the current

level, the data point on the level above which the current data point in
u-

ences, and the data points on the lower level which the current data point is

comprised of. In this implementation, four data points on a lower level com-

prise one data point on the level above, so a data point has four neighbors

on the level below the current level. In total, a data point at a given level

has thirteen neighbors, as shown in Figure 1.

Let us assume a linear relationship between the current data point and

each of its neighbors. Given thirteen neighbors, with three labels each, thirty-

nine terms will enter the equation; these terms are described as the linear

in
uences upon the current data point. Each neighbor e�ects each pxj dif-

ferently, and therefore separate weighting sets must be used for each class of
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px.

Linear in
uences do not provide enough information for suitable relax-

ation, since accurate classi�cation is not possible using just information about

any one surrounding neighbor. Most situations require more than one neigh-

bor's in
uences for accurate classi�cation. Consider Figure 2:

B B B

C ? C

B B B

Figure 2: An Obvious Labeling

It should be clear that the best labeling for the unknown data point is

Crack, using information on both sides of the unknown data point. Informa-

tion about any single neighboring data point is not su�cient to determine the

correct label of an unknown data point. Therefore,the interactions between

groups of neighbors, called non-linear interactions, must be incorporated for

the correct labeling of the system.

Pair-wise interactions are the in
uences that two neighbors in combina-

tion will have on the current data point. A pair-wise interaction, PnixkPnjxl

is the relationship on the current point from label i of the kth neighbor and

label j of the lth neighbor. As one might guess, there are substantially more

in
uences when considering the pairwise in
uences, since we are combining

the labels of neighbors. In the same system considered above, the number

of pair-wise interactions are:
�
NL

2

�
= (NL)!

2(NL�2)!. These interactions do not

include square terms. Square terms are terms which are considered as pair-

wise interactions with themselves. If square terms were included in pair-wise
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interactions, there would be an additional NL terms. However, technical

complications (matrix non-invertibility) make training the square terms im-

possible.

Higher-order interactions could be considered; In this work, only linear

and pair-wise terms are considered. Therefore, including theNL linear terms,

and the NL square terms, the total number of in
uences upon a single data

point is given by:

2(NL) +
(NL)!

2(NL � 2)!
=

NL(NL + 3)

2
(6)

4.3 Multiple Levels

The use of multiple scales o�ers several improvements over normal single-

scale relaxation algorithms which do not incorporate information from sev-

eral levels. Higher scales (coarser resolution) allow the system to re-connect

discontinuous regions. At some given scale, two disconnected regions will

both be represented by a single parental data point. Through the use of the

relaxation algorithm, this information will eventually propagate down to the

level where the two disconnected regions lie. This information will allow the

regions to be reconnected based upon that information from the higher scale.

Higher scales also remove noise and other non-relevant information.

4.4 Relaxation Updates

In order to update a data point, a coe�cient matrix A must be supplied

and a new vector ~y must be computed. The vector ~y is the current label set

for the data point px. The matrix A represents the in
uence matrix for the

neighbors of px. In a system with L possible labels in a label set, and N

possible neighbors for a given data point px, the vectors are represented as:
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~y =
h
px0 � � � pxL

i
A =

h
pn0x0 pn0x1 � � � pnNx L 1

i
(7)

To perform the relaxation labeling, we form the scalar product of the cur-

rent neighbor in
uences, A by the coe�cient vector, ~x0. In a linear system,

this scalar product is a linear mapping of the current label set to a more

consistent label set. The labels in the set will still sum to one, but the values

can lie outside of the range between [0; 1]. This creates a need for a mapping

function to map the values of the label set back to a probabalistic domain. In

a non-linear system, values in the new label set are not necessarily mapped

to points still within the probabilistic plane. Therefore, the new label set

must be mapped back into probabilities.

4.5 Relaxation at Multiple Scales

Relaxation commences at the lowest scale and proceeds in the following man-

ner:

1. Perform relaxation labeling at current scale, utilizing data at current

scale, and scales above and below where appropriate.

2. Compute error measure using least squares approximation for the entire

level.

3. Add level error measure to system error measure

4. Move to next level in the current direction of traversal

5. Repeat procedure until either at top or bottom level

6. If system error measure is below some threshold, stop
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7. Start at current level, reversing the level traversal direction

Relaxation Pass N + 1Relaxation Pass N
Low Levels (fine resolution)

High Level (coarse resolution)High Level (coarse resolution)

Low Levels (fine resolution)

Figure 3: Traversal of Levels at Successive Iterations

This algorithm provides a hierarchical structure which allows the updated

information to be passed from the lower levels upwards, and from the higher

levels downwards as illustrated in Figure 3.

4.6 Linear and Non-linear Terms in the Relaxation

A simplistic model which considers only the direct linear in
uences upon the

current point was implemented originally. We found this simple model to

be inadequate, but recount it here for explanatory purposes. A given data

point, px, is de�ned to have 13 neighbors which exert in
uences upon the

current point's label set to bring it closer to the best �t to the ideal data.

If just linear in
uences are considered, there will be 13 � 3, or 39 possible

in
uences on pxj . Since there are 3 labels in the px's label set, we would have

to solve for ~x0 which would be a 39�3 matrix. This matrix can be simpli�ed
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using arguments of symmetry and the probabilistic nature of the label sets,

reducing the number of terms.

Consider the matrix of neighboring in
uences, A, which is used to solve

for ~x0, where pnix represents the ith neighbor of px, and pnixA represents the

probability of pnix being labeled as Aggregate, and likewise pnixB, pnixC rep-

resents the neighbor's probability of being labeled as Boundary and Crack,

respectively.

A =

2
664
pn0

0
A pn0

0
B pn0

0
C � � � pn12

0
C

...
...

... � � �
...

pn0
k
A pn0

k
B pn0

k
C � � � pn12

k
C

3
775 (8)

Since C = 1 � (A +B), we can substitute this eliminate all occurrences

of C. After performing the multiplications in Equation 3 to solve for ~x0, and

combining like terms, the crack terms will reduce to a single one in the last

column of the matrix. Therefore, the new matrix, A is written as:

A =

2
664
pn0

0
A pn0

0
B pn1

0
A � � � pn12

0
B 1

...
...

... � � �
... 1

pn0
k
A pn0

k
B pn1

k
A � � � pn12

k
B 1

3
775 (9)

Refering to �gure 1, note that neighbors n7 and n3 should have the same

in
uence, since they are symmetric about the current data point. Extending

this a bit, since fn1; n3; n5; n7g are all symmetric about px, they all should

have the same in
uence for the same label in each of their respective label

sets. Therefore, these four terms with the same label can be grouped together

to form a single in
uence. Likewise, the eight connected diagonal neighbors,

fn2; n4; n6; n8g should be grouped together since they are also symmetric.

These symmetry arguments can also be applied to group the lower level

pixels, fn9; n10; n11; n12g together. After combining similar terms, there will
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be four in
uences from each label. With 2 labels, the 26 total terms are

simpli�ed to 8 groups of terms. The additional term of 1 is added in to

account for the crack in
uences, bringing the total number of terms to 9.

Extending the model to incorporate pair-wise in
uences increases the

number of terms dramatically. Using the existing de�nitions of 13 neighbors,

and 3 labels in the label set, the total number of in
uences is found using

Equation 6 to be 819 terms. We can immediately drop all references to

Crack terms and add a single 1 to the end of the matrix. Grouping similar

in
uences together in order to simplify A further is not as straightforward

as in the linear model. For example, when considering the pair-wise term

n3n7, if we use the same groupings as in the linear model, this term would

be grouped with n1n5. However, n1n7 cannot be grouped in this set, since

the two pairwise in
uences are not symmetric about px. After like terms are

grouped together, there are 61 terms in the A matrix. Therefore, the size of

the matrix is decreased by about 93%!

Since the training data are ideal, the probabilities for a given label will

be either 1 or 0. This creates problems in the solution of the least squares

approximation. The quantity At
A must be invertible. If linear in
uences as

well as the square terms are considered, and n2 = n for n 2 f0; 1g, then each

of the square terms will be equal to some linear term and the matrix would

not be linearly independent. Therefore, the square terms were dropped from

consideration and the linear in
uences were left.

4.7 Training

The least squares approximation requires a set of training data to derive

the coe�cient vector from. In the training phase, the data set is considered
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ideal. Ideal data are data which have been correctly and consistently labeled

by some previous method. Guaranteeing that the data are consistent and cor-

rect allows the system to mathematically \learn" the allowable (consistent)

label combinations. Allowable label combinations are represented as positive

weights in ~x0, which serve to strengthen correct combinations of neighboring

label sets that arise when performing the relaxation labeling. Likewise, in-

consistent (forbidden) label combinations will have a negative weighting in

~x0, which serves to weaken the inconsistent labelings that exist in the data.

Inconsistencies are not \hard-wired" into the system through explicit do-

main knowledge. Inconsistent labels are represented negatively in the ~x0

vector because such inconsistent combinations never arise in the ideal case.

When the system uses the �ts to the ideal data set in the relaxation algo-

rithm, points which lie far from the ideal �t are considered inconsistent, and

can be adjusted to be closer to the ideal data.

5 Results

Image 4T was used as the training image. The image is a 512 � 512 image

of portland concrete. This image was hand labeled for training purposes.

A single-scale system was implemented to demonstrate the need for a

system which incorporates information from the multiple scales. Image 4B is

the input image and image 5T is the initial labeling to the system. Note the

regions of aggregate which are incorrectly labeled as crack, and the regions

of the aggregate which lie in the crack. After four iterations, the system is

hopelessly lost, as shown in image 5B.

Since the two dimensional relaxation system was unable to correctly label
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Figure 4: Top: Training Image. Bottom: Portland Concrete Distress Image.

19



Figure 5: Top: Initial Solution. Bottom: After Fourth Iteration.

20



the images correctly, the multiple scale relaxation system was used instead.

The same image and initial guess are used as in the single-scale experiment

(Images 4B and 5T, respectively). Figure 6 depict the progress of the relax-

ation updates 5 and 25 iterations.

6 Conclusions

Single-scale relaxation methods were shown to be inadequate. This can be

attributed to several factors. First of all, the fractal property of distress

images was not capitalized upon. Second, distress images are very noisy.

Third, in single-scale relaxation, if erroneous adjustments are made, there is

no information to help revert the label set to its previous state, and therefore

any bad changes get perpetuated.

When the multi-scale relaxation method was implemented, it was shown

to address each one of these problems. By using multiple levels, the fractal

property of the distress could be exploited. The use of multiple levels helps

to handle image noise Finally, since the method is hierarchical in nature,

there is some degree of history. This allows the system to stay consistent

between levels. Even a simpli�ed linear model using the hierarchical, multi-

scale system far outperforms single-scale relaxation.

Finally, non-linear in
uences were considered. When the non-linear coef-

�cients are applied to the images, there is an immediate improvement over

all previous methods considered. Noise in the image is removed in just a few

iterations, larger pieces of \non-crack" area are eaten away and eventually

removed. Small cracks are detected, and do not get eaten away due to their

fractal property. Also, the quality of the input images is not a major factor;
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Figure 6: Top: After 5 Iterations. Bottom: After 25 Iterations.
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a better initial image just makes the system converge to the ideal �t quicker.

The process of accurately detecting and isolating distress within pave-

ment images has been demonstrated to be a non-trivial task. Our method

demonstrated encouraging results, and although only a subset of types of dis-

tress were used in this work, we believe that such a system could be expanded

to work on many types of distress with similar success.
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