WPI-CS-TR-93-11 December 1993

Self-Modifying Finite Automata

by

Roy S. Rubinstein
and

John N. Shutt

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Self-Moditying Finite Automata

Roy S. Rubinstein & John N. Shutt
roy@cs.wpi.edu jshutt@cs.wpi.edu

Computer Science Department
Worcester Polytechnic Institute
Worcester, MA 01609

December 1993

Abstract

We present here a new model of computation: the Self-Modifying Finite Au-
tomaton (SMFA). This is similar to a standard finite automaton, but changes to
the machine are allowed during a computation. It is shown here that a weak form of
this model has the power to recognize an important class of context-free languages,
the metalinear languages, as well as some significant non-context-free languages.
Less restricted forms of SMFA’s may accept even more.

1 Introduction

Many abstract models of computation have been devised over the years, including finite
automata, pushdown automata, linear-bounded automata, and Turing Machines. This
technical report presents a new model: the Self-Modifying Finite Automaton (SMFA).
SMFA’s are similar to standard finite automata, but changes to a machine are allowed
during a computation. While retaining much of the simplicity of finite automata, SMFA’s
have greater power and can recognize many non-regular and even non-context-free lan-
guages.

This paper shows that the classes of linear and metalinear context-free languages
are accepted by a weak form of SMFA’s, and includes a procedure to construct machines
from the appropriate grammars. A subclass of the non-context-free context-sensitive lan-
guages is also shown to be accepted by this model, along with the machine construction.
Discussion of higher-order SMFA’s and their power is also presented.

Although this report is preliminary in nature, lacking formal definitions and answering
only a few of the questions it poses, it provides the basic ideas and framework for much
future work.

2 Introduction to SMFA’s

A self-modifying finite automaton (SMFA) is a (nondeterministic) finite automaton with
the additional property of being able to modify itself during a transition from one state
to another. Depending on the type of SMFA, the modifications may include adding
states, deleting states, adding transitions, and deleting transitions. Modification of the
input alphabet is not allowed, nor is changing the set of final states. The modification
associated with a transition is called a modification action and is part of the transition
function. Clearly the power of an SMFA is dependent on the power of the transition
functions. If they are arbitrarily powertul, then arbitrarily hard sets, even nonrecursive
sets, may be accepted. As such, restrictions will be placed on the transition functions to
create different types of SMFA’s.

The transition function and set of states before any computation (and modification)
are known as the predefined transition function and the set of predefined states, respec-
tively.

An SMFA may be represented as a quintuple (Qo, ¥, b0, o, F'), where Qg is the set
of predefined states, X is the input alphabet, 6y is the predefined transition function,
go € Qo is the start state, and F' C () is the set of final states.

While the description to be given in this report is useful, it is rather informal. Formal
definitions of SMFA’s, including the varieties explained below and definitions of compu-
tations, are currently being worked on. Several have been devised, but none so far seem
as elegant as they should be. Development work is continuing on this, and formal defi-
nitions are expected in the very near future. As such, only informal, though descriptive,
definitions are given here.

SMFA’s can be drawn with transition diagrams similar to those for standard finite
state automata, as a labeled directed graph. Only the predefined states and transition
function are drawn, and the labels on the arcs are of the form “a/modification action”,
where a € (¥ U {A}). The notation of the modification action depends on the type of
SMFA and modification action being represented. As the computation progresses, the
states and transition function may be appropriately modified.

A zeroth-order SMFA is an SMFA where the set of states and the transition function
remain constant throughout the computation. Another way to put this is that none of the
transitions have any modification actions. Zeroth-order SMFA’s are clearly equivalent to
standard finite state automata.

A single-register first-order SMFA is an SMFA where on any transition at most one
transition may be added and no transitions may be deleted. A new transition may
not have any modification action associated with it, and the only states that may be
addressed “by name” are those in the predefined set of states. In the transition of a
modification action a state may be referred to as new, meaning that a new state is added
and referring to that new state. If both states named in a new transition are new, they
refer to the same new state. Referring to a state as old in a transition is a reference to
the last new state created (by a previous transition).

The “single-register” refers to the fact that at most one previously created state may
be referenced, the most recently created one. An r-register first-order SMFA allows
reference to r previously created states. These are indicated by subscripts on new and
old in the range of 1 to r. A O-register SMFA (i.e. one that can only create transitions
between predefined states) can be readily seen to be no more powerful than a standard
finite automaton. For the remainder of this and the following section, unless otherwise

specified, all SMFA’s will be first-order single-register SMFA’s.

So (single-register) first-order SMFA’s are very limited, as they allow only one new
transition to be added at a time, and that one can have no modification action attached
to it. There is also only one register allowed. In addition, these SMFA’s are limited by
not having the power to delete transitions.

In spite of these limitations, the class of first-order SMFA’s includes an important
subclass of the context-free languages and also some non-context-free languages.

3 First-Order SMFA Results

It will be shown that the linear and metalinear context-free languages are all accepted
by first-order SMFA’s. First, a review of some definitions is in order.

Definition 1 A context-free grammar G'= (V, X, P, S) is linear if each production in P
is of the form A — uBv or A — u, where A, B €V and u,v € ¥*.

A context-free language is linear if it is generated by a linear context-free grammar.

In other words, a linear context-free grammar is a context-free grammar with at most
one nonterminal on the right hand side of each production. (In a context-free grammar
definition as above, V is the set of nonterminals, ¥ is the set of terminals, P is the set
of productions, and S € V is the start symbol.)

Definition 2 A context-free grammar G = (V, X, P, S) is metalinear if each production
in P is of the form S — A1 Ay...A,, A — uBv or A — wu, where each A;, B €V — {5},
AeV, and u,v € ¥*.

A context-free language is metalinear if it is generated by a metalinear context-free
grammar.

So every metalinear language is a finite union of concatenations of linear context-free
languages.

Theorem 1 FEvery linear context-free language is accepted by some first-order SMFA.

Proof Let L be generated by a linear context-free grammar G = (V, X, P, S). We may
assume without loss of generality that each production in P is of the form S — A,
A — aBbor A — a, where S is the start symbol, A, B € V — {S} and a,b € (¥ U {)}),

as it is easy to build an equivalent grammar of that form.

We will construct a first-order SMFA M = (Qo, X, 60, .5, {¢s}) to accept L as follows.
Qo =V U {qs, qs}, where ¢, and g5 are not in V.
0o consists of exactly the following transitions:

e For each production in P of the form S — A, where S is the start symbol and
A€V —{S}, add an arc from S to A labeled “\/add new —2¢q;”.

4

af add new—2- old

S — A

A — aAb| A H@/\/addnewl»qf A ,\/adquddO
N A

Figure 1: Grammar and SMFA for {a"6" | n > 0}

al add new—-2 old,
b/ add new—2- old

S — A

A — aAa | bAb| A M add new—- 5 o
@\/wd qfw\/addqx Id@

Figure 2: Grammar and SMFA for {ww! | w € {a,b}*}

e For each production in P of the form A — aBb, where A, B € V — {5} and
a,b € (X U{A}), add an arc from A to B labeled “a/add new —2»old”.

e For each production in P of the form A — a, where A € V—{S5} and a € (XU{)}),
add an arc from A to ¢, labeled “a/add ¢, —2+ old”.

The idea of this is that the grammatical derivation is simulated by the states of
the SMFA. As the input is processed matching the terminals before the nonterminals
on the right hand sides of the productions, states are created backwards from the final
state that can be traversed to the final state only by processing input that matches the
appropriate terminals that occur to the right of the nonterminal on the right hand side
of the productions. This “stack” of new states will only be accessible from the state ¢,
and only after no more grammar productions are to be used. a

Thus, through a very simple mechanism, an important subset of the context-free
languages may be recognized. As examples, Figure 1 shows a grammar and a first-order
SMFA for {a"b" | n > 0}, and Figure 2 shows a grammar and a first-order SMFA for
{wwh | w € {a,b}*}.

Corollary 2 Fvery metalinear context-free language is accepted by some first-order SMFA.

Proof It is easy to see that the class of languages accepted by first-order SMFA’s is
closed under union and concatenation. Union is done by creating a new start state with
A-transitions to the old start states. Concatenation is done by adding a A-transition from
the final state(s) of the first machine to the start state of the next. O

First-order SMFA’s can also recognize a number of non-context-free languages, as the
following theorem demonstrates.

Theorem 3 [f L is a regular language, then {ww | w € L} is accepted by some first-order
SMFA.

Proof Let L be a regular language, generated by a regular grammar G = (V, X, P, 5),
so each production is of the form A — aB, or A — a, or A — A, where A, B € V and
a € M.

We will construct a first-order SMFA M = (Qo, X, 60, 5", {¢s}) to accept {ww | w € L}
as follows.
First, build the augmented grammar G' = (VU{5'}, X, PU{[S" — 5]}, 57), where S ¢ V.
G’ is clearly equivalent to G.
o=V U{5, ¢, qs}, where ¢, and ¢s are not in V.
0o consists of exactly the following transitions:

e Add an arc from S’ to S labeled “\/add ¢, — new”.

e For each production in P of the form A — aB, where A, B € V and a € ¥, add an
arc from A to B labeled “a/add old —% new”.

e For each production in P of the form A — a, where A € V and a € (XU {)}), add
an arc from A to ¢, labeled “a/add old —%¢;”.

This is similar to the previous proof, except instead of building a “stack” of new
states, we build a “queue” of new states. a

Figure 3 shows a first-order SMFA for the non-context-free language {ww | w €
{a,b}7}.

It appears that in many cases a first-order SMFA is like a standard finite automaton
with either a stack or a queue, but without the full power of a stack or queue. Once

6

al add old—2 new,
b/ add old 2 new

S = S

S — aS|bS|A Lﬂﬂ/\/@ ad
| | ﬂ@wwm @/\/add Id qf@

Figure 3: Grammar for {a, b}* and SMFA for {ww | w € {a, b}*}

popping (or the equivalent queue action) is begun, pushing is no longer permitted until
everything has been popped. Once the stack or queue has been emptied, it can be reused,
but only finitely many times. This finite constraint is because the set of predefined states
is finite and the added transitions cannot have any modification actions.

The information is not really popped, however, but merely traversed. In the above
examples it cannot be accessed again, but with a transition back to a state before the
new states, it is possible to reuse the new transitions and states. An example of the
power of this is seen by following theorem.

Theorem 4 [If L is a regular language, then {w™ | w € L and n > 0} is accepted by
some first-order SMFA.

Proof This is exactly like the proof of the above theorem, but with ¢, and ¢y combined,
plus an extra transition to accept A regardless of the regular language. O

Figure 4 shows a grammar for L(ba*) and a first-order SMFA for the non-context-free
language {w" | w € L(ba*) and n > 0}.

Similarly, the SMFA for {a"b" | n > 0} (Figure 1) can be easily modified to accept
{a"b"" | n > 0 and k > 0}. It should be noted that with only one register, while we can
loop through an arbitrary number of times, we have not found a way to set any specific
number of times, except for those < 2. For example, we do not know how to construct

a single-register first-order SMFA for {w® | w € {a,b}*}.

By allowing a simple form of transition deletion, we can construct a single-register
first-order SMFA to accept {w”™ | w € L} for any n > 0 and any regular L. This can
be accomplished by allowing a transition to be “self-deleting.” This means that the
transition may be taken at most once, and it deletes itself when used.

aladd old—3 new,

S = S
S — bA
A — adAlA

Figure 4: Grammar for L(ba*) and SMFA for {w" | w € L(ba*) and n > 0}

al add old—3 new,
bl add old % new

A/ SD, add g~ g,

A/ SD, add g2~

Figure 5: SMFA (with SD) for {w* | w € {a,b}*}

A single-register first-order SMFA to accept {w™ | w € L} for a fixed n > 2 (we
have already seen this for each n < 2) and a regular language L can be constructed by
modifying the SMFA for {ww | w € L} (see Theorem 3) as follows. Add n — 2 additional
states (q1, ..., gn—2) “between” ¢, and ¢, and change the reference of g5 to ¢; in the
modification action of each transition to ¢,. Then add n — 2 self-deleting A-transitions
from ¢; to ¢, each with a distinct modification action to add a A-transition from a ¢; to
git1, 1 <t <n —3, or from g, to ¢;.

By having n — 2 transitions back to ¢, from ¢y, an additional n — 2 repetitions of w in
the input string is allowed, in addition to the two from the original SMFA. And each of
the transitions back to ¢, must be taken, as each creates a transition necessary to reach
the final state. As an example, Figure 5 shows a machine to accept {w* | w € {a,b}*},
where “SD” indicates a transition is self-deleting.

Single-register first-order SMFA’s can also be built to accept non-context-free lan-
guages such as {a"b™c"d™ | m,n > 0}. This has a bit of the flavor of declaring variables
before they are used, indicating that SMFA’s may be useful in compiler construction.

\/ add old,-2~ new

A add old)-2~ new,

\ add old, 2~ old,

a

)\ add old,| -2~ old,

\/ add old,-2~ old, A add old, 2~ old,

A add oldy2~ new,

5]

M addold, A~ S M add S2- new;

\/ add old, -2~ new,

Figure 6: SMFA for same number of a’s and b’s

4 Multiple-Register SMFA’s

With more than one register, it is possible to have more than one stack/queue active at
the same time. If the new transitions cannot have any modification action, there would
still be a finite maximum number of times each stack/queue could be reused.

The question arises as to whether there are any context-free, non-metalinear languages
that are accepted by single-register first-order SMFA’s. At this point, we cannot prove
that there are any, but we also cannot prove that there are none. We do know, however,
that there are context-free, non-metalinear languages that are accepted by 2-register first-
order SMFA’s. Figure 6 shows a 2-register first-order SMFA that accepts the set of strings
over {a,b} with the same number of a’s and b’s, a language known to be context-free but
non-metalinear.

The idea is that before reading any of the input, the machine nondeterministically
guesses how many a’s and b’s there will be (actually, the maximum differences between
the number of a’s and b’s in any prefix of the input string) and builds the appropriate
machinery. A 2-register first-order SMFA can similarly be built to accept the set of
balanced parentheses.

There are also some non-context-free languages accepted by multiple-register SMFA’s
that appear not to be accepted by single-register SMFA’s. It can be easily seen that for
any regular language [and any r > 0, {w"™™" | w € L} is accepted by some r-register
first-order SMFA. This is done as in the proof of Theorem 3, except that when an input
symbol is read in, r additional transitions (and states) are created so that that same
symbol must be matched in the input r additional times in the correct position. We
conjecture (but have not yet proven) that there exist regular L such that for all r, no
r-register first-order SMFA accepts {w"** | w € L}. This would provide an infinite
hierarchy of first-order SMFA’s based on the number of registers.

As mentioned above, the class of (single-register or multi-register) first-order SMFA’s
is closed under union and concatenation. It does not appear to be closed under comple-
ment or intersection, but no proof of this is apparent. This needs further investigation.

Interestingly, even though the class is closed under concatenation, it does not appear
to be closed under Kleene star, since without a “delete” modification action, there is
no way to undo an addition to restore the machine to its initial state. The original
machine cannot instead be cloned, as modification actions cannot add transitions with
modification actions. There is still no proof of this.

It we allowed a “delete” modification action, we could get a limited version of closure
under Kleene star. We could, for example, accept L* for any linear context-free language
L. The construction would be similar to that for accepting L (see Theorem 1), but with
a transition from the final state back to the start state. On this transition would be
the modification action to delete the transition out of ¢, (there must be exactly one), or
equivalently to delete the transition into gy. This prevents taking a path created for a
previous string from L.

5 Higher-Order SMFA’s

There are a number of ways SMFA’s may be made less restrictive. One important way
is to allow modification actions to create transitions which themselves have modification
actions.

One way to define this is to define a hierarchy of modification actions, where a mod-
ification action may create a transition with a modification of a lower order. Definitions
are as follows:

10

Definition 3 A zeroth-order modification action is the empty modification action. (In
other words, the machine stays the same — no transitions or states are added or deleted.)

A k + 1%"-order modification action allows adding one transition which itself has a
k" -order modification action.

A k"-order SMFA is an SMFA with k' -order or lower modification actions.
A general SMFA is > kY -order SMFA.
An unrestricted SMFA s an SMFA with modification actions of unbounded order.

So the modification actions on a k + 1°"-order SMFA are the transition labels of a
E-order SMFA. Just how the modification actions would be specified still would need
to be defined. The idea of “cloning” a state and/or transition seems like it may be useful
as well. As there are as yet no results concerning higher-level SMFA’s, it remains to be
seen if these definitions are appropriate, and they may need revision.

Additionally, allowing modification actions to delete transitions might do more (as
previously discussed), and may even make the model Turing powerful. Allowing multiple
modification actions on a single transition creates an additional flavor of SMFA. How
these fit in with the other SMFA’s in regards to power has yet to be determined. Other
variations include prohibiting A-transitions and nondeterminism. How these variations
would fit appropriately into definitions of higher-order SMFA’s are as yet undetermined.

6 Future Work

At this point, while there are languages that intuitively seem to be unrecognizable by
first-order SMFA’s, proofs have been elusive. No proofs have yet been found to show
that any language that is recognizable by a Turing machine is not recognizable by a
single-register first-order SMFA. There appears to be evidence of such languages, but
no proof. We conjecture that every language accepted by a first-order SMFA must be
context-sensitive, but that has yet to be proven.

The idea of having a machine modify itself may also be applied to other types of
machines, such as pushdown automata, linear-bounded automata, and Turing machines.
These topics need further investigation.

Finally, this research may spawn new research in the area of complexity theory, as
time- and space-bounded versions of these machines may be of interest.

11

References

[Har78] M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Read-
ing, Massachusetts, 1978.

[HUT79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, Massachusetts, 1979.

[LP81] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation. Pren-
tice Hall, Inc., Englewood Cliffs, NJ, 1981.

12

