
WPI-CS-TR-92-5 August 1992

Relativizations of the P-Printable Sets
and the Sets with Small Generalized

Kolmogorov Complexity
(Revised)

by

Roy S. Rubinstein

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Relativizations of the P-Printable Sets and the Sets with

Small Generalized Kolmogorov Complexity

(Revised)

Roy S. Rubinstein

Worcester Polytechnic Institute1

August 1992

Abstract

Although tally sets are generally considered to be weak when used as oracles,
it is shown here that in relativizing certain complexity classes, they are in fact no
less powerful than any other class of sets and are more powerful than the class of
recursive sets.

More speci�cally, relativizations of the classes of P-printable sets and sets with
small Generalized Kolmogorov complexity (SGK) are studied. It is shown here
that all sparse sets are PTALLY-printable and are in SGKTALLY , and that there
are self-P-printable sets that are neither PREC-printable nor in SGKREC. There
are also sets that are PREC-printable and in SGKREC that are not self-P-printable.
Relativizations to various subrecursive oracles are also presented.

A restriction on the number of oracle queries is also presented, with the result
that relativizing SGK to any oracle with at most O(logn) queries results in a set
that is still in SGK.

1 Introduction

Tally sets have generally been considered weak, often no more useful than the empty

set, when used as oracles ([LS86, BBS86]), though in certain relativized worlds this is

not the case ([HR92]). It is shown here that in relativizing certain structural complexity

classes, the class of tally sets is in fact no less powerful than any other class of sets and is

1Some of these results were obtained while the author was at Northeastern University and was
supported by National Security Agency grant MDA904-87-H-2020.

1

more powerful than the class of recursive sets. Speci�cally, relativizations of the classes

of P-printable sets and sets with small Generalized Kolmogorov complexity (SGK) are

studied. De�nitions of these and other classes are presented in Section 2.

Although much work has been done studying relativizations of the computational

complexity classes, including P and NP (starting with [BGS75]), relativizations of the

structural complexity classes (see [Rub88]) have been neglected. This paper begins the

study of relativizations of the structural complexity classes.

Any set that is PC-printable or in SGKC, for any class C, must be sparse. How powerful

must a class C be so that every sparse set is PC-printable or in SGKC? It is shown here

that there exist sparse, even tally sets, that are not PREC-printable, where REC is the

class of recursive sets, and there are sparse sets (though clearly no tally sets) that are not

in SGKREC. It is also shown that there exist self-P-printable sets that are neither PREC-

printable nor in SGKREC. Additionally, the existence of sets that are PREC-printable and

in SGKREC that are not self-P-printable is shown.

When structural complexity classes are used as oracles, however, not much power is

needed to capture all the sparse sets. In particular, it is shown that every sparse set is in

SGKTALLY and is PTALLY -printable. This improves a result in [Sch86] that every sparse

set is in PTALLY (as a corollary of his result that PTALLY = P=poly).

If the number of oracle calls is restricted, however, the sparse sets may not all

be captured. Speci�cally, it is shown that for every oracle A and every constant k,

SGKA[k logn] = SGK.

2 Preliminaries

It is assumed here that the reader has basic familiarity with the standard notions and

classes in complexity theory.

2

We use the standard lexicographic ordering � on strings, and jwj denotes the length

of the string w. All strings here are elements of f0; 1g�, and all sets are subsets of f0; 1g�.

A tally language is a subset of f1g�. The cardinality of a set A is denoted kAk. A � B

denotes A � B and A 6= B. Whenever a number is used as a string, it is actually the

binary representation of the number that is being used.

PSV is the class of functions computable deterministically in polynomial time. For

any set A, PSVA is the class of functions computable deterministically in polynomial time

using A as an oracle. Similarly, NPSV is the class of single-valued functions computable

nondeterministically in polynomial time, and NPSVA is the relativization to A. EX-

PTIME and NEXPTIME are, respectively,
S
c�0DTIME(2cn) and

S
c�0NTIME(2cn).

2poly is
S
c�0DTIME(2n

c

).

Standard polynomial time pairing functions are used, and the pairing of strings x

and y, for example, is denoted hx; yi. The pairing functions have the property that

jhx; yij � 2(jxj+ jyj), that hx; yi can be determined from x and y in polynomial time, and

that x and y can each be determined from hx; yi in polynomial time. Pairing functions

may be applied to tally strings to produce another tally string by de�ning ht1; t2i to

be 1hjt1j;jt2ji, where t1 and t2 are tally strings. In this case jht1; t2ij � 4(jt1j+ jt2j). This

same notation, when used for grouping more than two strings, actually denotes successive

applications of the pairing function.

A ranking function determines the position of a string in a set. More precisely, for

any set A and any string x, rA(x) = kfw 2 A j w � xgk. While this de�nition applies to

strings not in the set as well as those in the set, this paper only uses ranking on strings

in the set.

De�nition 2.1 A set A is sparse if there exists a polynomial p such that the number of

strings in A of length less than or equal to n is less than or equal to p(n).

The Kolmogorov complexity of a �nite binary string is the length of the shortest

3

program that generates it ([Sol64, Kol65, Cha66]). A string is Kolmogorov-random if

there is no program shorter than the string itself that can generate it. Since for every

length n there are 2n strings of length n and only 2n � 1 shorter programs, there are

Kolmogorov-random strings of every length.

Generalized Kolmogorov complexity, a two-parameter version of Kolmogorov complex-

ity that includes information about not only how far a string can be compressed, but

how fast it can be restored, was introduced by Hartmanis ([Har83]), whose de�nition is

presented here.

De�nition 2.2 For a (deterministic) Turing machineM and functions g and G mapping

natural numbers to natural numbers, let

KM [g(n); G(n)] = fx j (9y)[jyj � g(jxj) and M(y) = x in G(jxj) or fewer steps]g:

It was shown in [Har83] that there exists a universal Turing machine Mu such that

for any other Turing machine M there exists a constant c such that KM [g(n); G(n)] �

KMu
[g(n) + c; cG(n) logG(n) + c]. Dropping the subscript, K[g(n); G(n)] will actually

denote KMu
[g(n); G(n)]. This relativizes in a straightforward manner, where

KA[g(n); G(n)] = fx j (9y)[jyj � g(jxj) and MA
u (y) = x in G(jxj) or fewer steps]g:

De�nition 2.3 A set is said to have small generalized Kolmogorov complexity if it is a

subset of K[c log n; nc] for some c. SGK denotes the class of sets with small generalized

Kolmogorov complexity.2

For any setA, SGKA is the class of sets with small generalized Kolmogorov complexity

relative to A. For any class of sets C, SGKC is the union over all A in C of SGKA.

2[BB86] refers to this class as K[log, poly].

4

De�nition 2.4 A set S is polynomial-time printable (P-printable) if there exists a poly-

nomial p such that all the elements of S of length less than or equal to n can be printed

by a deterministic machine in time p(n).

P-printability relativizes (as in a set being PA-printable) by allowing the printing

machine to use an oracle. A set is self-P-printable if it is P-printable relative to itself.

P-printability was introduced in [HY84] and was further explored in [HIS85], [AR88],

and [Rub91].

De�nition 2.5 For any set A, enumA is the function that, for each n, on input 0n

produces a straightforward encoding of the set of strings in A of length less than or equal

to n.

Note that enumA 2 PSV is equivalent to A being P-printable, and that enumA 2

PSVA is equivalent to A being self-P-printable. Other printabilities are de�ned in a like

manner, so A is NP-printable if and only if enumA 2 NPSV.

Allender ([AR88]) de�ned the complexity class FewP, a subclass of NP as follows:

De�nition 2.6 A language is in the class FewP if is accepted by a nondeterministic

polynomial time Turing machine M for which there is a polynomial p such that for all

inputs w, there are fewer than p(w) accepting computations of M on w.

This class relativizes (such as FewPA) in a straightforward manner.

In [Lon85] and [LS86] it is shown that for every sparse set S, enumS 2 PSVpre�x (S)�S,

where pre�x (S) = fhy; 0ni j 9z[yz 2 S and jyzj � n]g. (� denotes disjoint union, such

as A � B = f0x j x 2 Ag [f1y j y 2 Bg.) With the observation that x 2 S ()

hx; 0jxji 2 pre�x (S), this is strengthened to enumS 2 PSVpre�x (S), or equivalently, the

following proposition:

5

Proposition 2.1 Every sparse set S is Ppre�x (S)-printable.

A relativization with a numeric expression enclosed in brackets after the oracle denotes

a bound on the number of queries to the oracle. For example, PA[k] represents the class

of sets that are recognizable by a deterministic polynomial time bounded oracle Turing

machine making at most k queries to the set A.

For the remainder of this paper, unless otherwise stated, S will denote a sparse set

and T will denote a tally set. TALLY is the class of tally sets, SPARSE is the class of

sparse sets, and REC is the class of recursive sets.

3 Relativizations with Structural Complexity Classes

The following theorem shows that when using structural complexity class oracles, the

class of sets with small generalized Kolmogorov complexity needs very little power in an

oracle to encompass the same class of sets as a more powerful oracle.

Theorem 3.1 SGKTALLY = SGKSGK = SGKSPARSE = SGKP=poly .

Proof The inclusions from left to right are immediate, as the oracle classes are (prop-

erly) included from left to right. All that is needed to complete the proof is to show that

SGKP=poly � SGKTALLY. Let B be a set in SGKA for some set A 2 P=poly. Because

every set in P=poly is polynomial time Turing reducible to some tally set ([Sch86]), let T

be a tally set such that A �P
T T . Any query to A by a polynomial time machine can then

be replaced by one or more queries to T using the reduction. Thus B 2 SGKT . 2

Corollary 3.2 SGKSGKSGK = SGKSGK. (There is no in�nite SGK hierarchy.)

6

Proof The inclusion of SGKSGK in SGKSGKSGK is immediate. For the other direction,

because SGKSGK is sparse, SGKSGKSGK � SGKSPARSE = SGKSGK. 2

Theorem 3.1 will now be strengthened to show that the class SGKTALLY is equal to

the class of all sparse sets. One other result is needed �rst.

It was shown in [HH88, BB86, Rub86, AR88] that a set is P-printable if and only

if it has small generalized Kolmogorov complexity and is in P. This result and its proof

relativize to give the following proposition.

Proposition 3.3 For all sets A and S, S is PA-printable if and only if S 2 SGKA and

S 2 PA.

The notation in this proposition generalizes to using a class of sets for the oracle,

meaning that some set in that class is used.

We can now strengthen Theorem 3.1 to all sparse sets.

Theorem 3.4 SGKTALLY = SPARSE.

Proof The left to right inclusion is immediate. For the right to left inclusion, let S be

a sparse set. By Proposition 2.1, S is Ppre�x (S)-printable. Because S is sparse, pre�x (S)

is sparse, so S is PSPARSE-printable. By Proposition 3.3, S is then in SGKSPARSE =

SGKTALLY . 2

Corollary 3.5 SGK � the class of self-P-printable sets � SGKTALLY.

7

Proof These proper inclusions are already known and may be found in [BB86, Rub91].

2

While every sparse set is PSPARSE-printable, not every sparse set is self-P-printable.

A sparse set may need a more powerful sparse set to enumerate itself in polynomial time.

As the following theorem shows, all that is needed is a tally set.

Theorem 3.6 Every sparse set is PTALLY-printable.

Proof Let S be a sparse set. By Theorem 3.4, S is in SGKT1 for some tally set T1. S

is also in PT2 for some tally set T2 ([Sch86]). There is therefore a tally set T = T1 � T2

such that S 2 SGKT and S 2 P T . By Proposition 3.3, S is PT -printable. (Note that

T = T1�T2 is a tally set by de�ning T to be (
S
x2T1fh1; xig)[(

S
x2T2fh11; xi)g.) 2

So every sparse set is P-printable relative to some tally set. If we restrict the sparse

set, how much can we then restrict the tally set? For example could we obtain a result

such as \Every sparse set in P is P-printable relative to some tally set in FewP"? If we

had such a result, by noting that the existence of a sparse set in FewP� P implies the

existence of a sparse set in P that is not P-printable ([AR88]), we could easily prove

\There exists a sparse set in FewP�P if and only if there exists a tally set in FewP�P."

Unfortunately, the techniques usually used for such results (see [HIS85] and [All91]) do

not appear to work in this setting, and the veracity of these statements is unknown.

The techniques of [HIS85] can, however, be extended to yield the following result.

Theorem 3.7 Every sparse set in FewP is P-printable relative to some tally set in NP.

Proof Let S be a sparse set in FewP witnessed by machineM , and let p be a polynomial

such that for all n, the number of strings in S of length less than or equal to n is at most

8

p(n). De�ne the tally set

T = f1hn;i;j;k;di j 9x1 < x2 < ::: < xi � x < y1 < y2 < ::: < yj 2 S;

jx1j = jyjj = n and the kth digit of x is dg:

It will be shown that T 2 NP and S is PT -printable.

The following algorithm shows that T 2 NP.

input 1hn;i;j;k;di { reject if wrong format

if i+ j > p(n) then reject

nondeterministically guess x1; x2; :::; xi; x; y1; y2; :::; yj and

an accepting computation for machine M for each

check that each of the above computations is correct,

that x1 < x2 < ::: < xi � x < y1 < y2 < ::: < yj,

that jx1j = jyjj = n, and that the kth digit of x is d

accept if and only if all of these checks succeed

An accepting computation would require guessing i+j+1 strings each of which would

be of length n, each with polynomial length accepting computations. As i and j are each

less than or equal to p(n) and the length of the input is �(n), this algorithm shows that

T 2 NP.

Next it needs to be shown that S is PT -printable. The following algorithm demon-

strates this.

input 0n { want to print strings in S of length at most n

for each length ` from 0 to n

�nd c` = kS=`k (the number of strings in S of length `) { see below

for each z between 1 and c` (print the zth string of length ` in S)

w := �

for each position k := 1 to `

9

if 1h`;z;c`�z;k;0i 2 T

w := w0

else

w := w1

print w

To �nd c`, the number of strings in S of length `, the following p(n) pairs of strings

are queried to T :

1h`;1;0;1;0i and 1h`;1;0;1;1i

1h`;2;0;1;0i and 1h`;2;0;1;1i

1h`;3;0;1;0i and 1h`;3;0;1;1i

:::

1h`;p(n);0;1;0i and 1h`;p(n);0;1;1i

c` will be equal to i� 1, where i is the least integer such that both 1h`;i;0;1;0i 62 T and

1h`;i;0;1;1i 62 T , signifying that there is no ith string of length ` in S.

By checking 1h`;z;c`�z;k;0i 2 T , the x whose kth bit is checked must be the zth string of

length ` in S as follows. Having z as the second element in the quintuple ensures that

there are at least z strings of length ` in S that are less than or equal to x, and having

c` � z as the third element guarantees that there are at least c` � z strings of length ` in

S that are greater than x. But there are exactly c` strings of length ` in S, so x must be

zth such string. 2

10

4 Relativizations with Computational Complexity

Classes

In the previous section we have seen that it takes only a simple structural complexity

class, the class of tally sets, to be used as oracles to the class of P-printable sets and to

SGK in order to capture all the sparse sets. What computational complexity class oracles

are needed to these classes in order to capture the sparse sets? Also, what classes of sets

are captured with other oracles?

Let us begin with relativizations of the P-printable sets. Proposition 2.1, that every

sparse set S is Ppre�x (S)-printable, yields a number of interesting results. First, it must

be observed that for any sparse set S, pre�x (S) is sparse and in FewPS . With this we

have the following, which may be considered corollaries of Proposition 2.1.

Corollary 4.1 The following are equivalent:

1. S is a sparse set.

2. S is P-printable relative to some sparse set in FewPS .

3. S is P-printable relative to some sparse set in NPS .

4. S is �P;S
2 -printable.

Corollary 4.2 (1)) (2)) (3)) (4):

1. S is a sparse set in P.

2. S is P-printable relative to some sparse set in FewP.

3. S is P-printable relative to some sparse set in NP.

11

4. S is �P
2 -printable.

Corollary 4.3 (1)) (2)) (3):

1. S is a sparse set in �P
k .

2. S is P-printable relative to some sparse set in �P
k+1.

3. S is �P
k+2-printable.

The following theorem is essentially a relativization of a result in [AR88]. The proof

is slightly di�erent, but the original proof relativizes as well.

Theorem 4.4 For every class C, there are no sparse sets in FewPC � PC if and only if

every sparse set in PC is PC-printable.

Proof For the left to right direction, assume there are no sparse sets in FewPC � PC,

and let S be a sparse set in PC. Then pre�x (S) is a sparse set in FewPP
C

, and because

a polynomial time machine's using an oracle in PC is no more powerful than using an

oracle in C, pre�x (S) is a sparse set in FewPC. By assumption, pre�x (S) is then in PC.

Because S is Ppre�x (S)-printable, S is PP
C

-printable, and therefore is PC-printable.

For the right to left direction, assume that every sparse set in PC is PC-printable, and

let S be a sparse set in FewPC via a nondeterministic polynomial time oracle machineM

with oracle A 2 C. The set of accepting computations of all strings in S by machine M

using oracle A, each of which contains the string in S being accepted, is a sparse set in

PA. By our assumption, this implies that this set of computations is PC-printable, and

therefore S is also PC-printable and hence is in PC.

2

12

Corollary 4.5 The following are equivalent:

1. S is a sparse set in PH.

2. S is PPH-printable.

3. S is PH-printable.

Corollary 4.6 The following are equivalent:

1. S is a sparse set in PSPACE.

2. S is PPSPACE-printable.

3. S is PSPACE-printable.

Similar results are easily obtained for nonsparse classes as well, but by a di�erent

technique.

Proposition 4.7 Every set in 2poly is 2poly -printable.

Proof To print all the strings of length less than or equal to n, simply run through each

of the 2n+1 � 1 possible strings, check each for membership in the set (time 2poly each),

and print if appropriate. 2

This technique also yields the following result.

Proposition 4.8 Every set in EXPTIME is EXPTIME-printable.

13

These results do not, however, imply P-printability relative to an appropriate oracle.

P-printability, regardless of the oracle used, implies sparseness. What about restrictions

to the sparse sets? Is every sparse set in EXPTIME PEXPTIME-printable? The method

of testing each possible string does not work, as that still requires exponential time.

Another technique does give us this result.

Theorem 4.9 Every sparse set in EXPTIME is PEXPTIME-printable.

Proof Let S be a sparse set in EXPTIME witnessed by a machine with maximum

running time 2cn. By Proposition 2.1, S is Ppre�x (S)-printable, so all that needs to be

shown is that pre�x (S) 2 EXPTIME. The following algorithm determines membership

in pre�x (x).

input 1hy;0
ni { reject if wrong format

for each z of length 0 to n� jyj

if yz 2 S halt and accept

halt and reject

The maximum number of z (if jyj = 0) is 2n+1 � 1, and the maximum time to

check yz 2 S (when jyzj = n) is 2cn, so the maximum time for the loop is bounded by

(2n+1 � 1) � 2cn < 2cn+(n+1) = 2(c+1)n+1 < 2(c+2)n. So pre�x (S) 2 EXPTIME and S is

PEXPTIME-printable. 2

Is every sparse set in PEXPTIME PEXPTIME-printable? The above method would require

showing that for a sparse set S 2 PEXPTIME, pre�x (S) 2 EXPTIME, but the above

algorithm may run too long. There appears to be no obvious solution to this. We do

have a similar result for NEXPTIME, though by a di�erent technique.

Theorem 4.10 Every sparse set in PNEXPTIME is PNEXPTIME-printable.

14

Proof It was shown by Hemachandra [Hem87] that the strong exponential hierarchy

collapses to the PNEXPTIME level, i.e. PNEXPTIME = NPNEXPTIME, so PNEXPTIME =

FewPNEXPTIME. There are thus no sparse sets in FewPNEXPTIME � PNEXPTIME, so by

Theorem 4.4 every sparse set in PNEXPTIME is PNEXPTIME-printable. 2

Via Proposition 3.3, the above give the following results regarding small generalized

Kolmogorov complexity:

Corollary 4.11

1. Every sparse set S is in SGKFewPS .

2. Every sparse set in P is in SGKFewP.

3. Every sparse set in �P
k is in SGK�P

k+1 .

4. Every sparse set in PH is in SGKPH.

5. Every sparse set in PSPACE is in SGKPSPACE.

6. Every sparse set in PNEXPTIME is in SGKNEXPTIME.

Turning our attention to printability relative to the class of recursive sets, the following

theorem shows that it is precisely the recursive sparse sets that are P-printable relative

to a recursive oracle.

Theorem 4.12 For any set S, S is PREC-printable if and only if S is recursive and

sparse.

Proof Every set that is PREC-printable must be in PREC and must therefore be recursive.

It must also be sparse to be able to be printed in polynomial time, regardless of the oracle.

15

For the right to left direction, assume S is recursive and sparse. Because S is sparse, it

is Ppre�x (S)-printable. Since S is recursive, so is pre�x (S), therefore S is PREC-printable.

2

This technique actually yields a more general result than that above. While this

theorem deals with PREC-printability and sparseness, other deterministic printabilities

(relative to REC) and other densities work as well. The time needed for the printing is

based on the length of the output (or the length of the input, if that is greater). All the

\work" is done by the recursive oracle.

Corollary 4.13 There exist sparse sets and tally sets that are not PREC-printable.

Corollary 4.14 There exist self-P-printable sets that are not PREC-printable.

Corollary 4.15 Every recursive sparse set is in SGKREC.

Note that the converse to the last corollary is false because there exist nonrecursive

tally sets, all of which are in SGK. The question arises whether or not this corollary

can be strengthened. Is every sparse set, including nonrecursive sparse sets, in SGKREC?

The answer to this question is \no", but it is not as immediate as for the PREC-printable

case, as there are nonrecursive sets, including all the tally sets, that are in SGKREC. A

more general result is presented.

Theorem 4.16 For all fully time constructible functions f(n) 2 o(n) and g(n), there

exist sparse sets that are not subsets of KA[f(n); g(n)] for any recursive oracle A,

Proof Let f(n) 2 o(n) and g(n) be fully time constructible functions, and let B be

an in�nite set of Kolmogorov-random strings that is sparse enough so that for all n, the

16

number of strings in B of length less than or equal to n is at most f(n). Assume that B is

a subset of KA[f(n); g(n)] for some recursive set A. Let l be the size of a Turing machine

that determines membership in A, and let m be the size of the oracle Turing machine

that restores the compressed strings. Thus, there is a constant k such that any string

of length n in B can be generated by a program of length k + l +m + f(n). This is so

because this program could contain the program that determines membership in A, the

program that restores the compressed strings, and the compressed string \hard-coded"

in. But for any k, l, m, and f(n) 2 o(n) there exist n greater than k + l + m + f(n),

contradicting the Kolmogorov-randomness of the strings in B with long lengths. 2

Corollary 4.17 There exist sparse sets that are not in SGKREC.

We can improve on this theorem a bit by showing that there are even self-P-printable

sets that are not in SGKREC. First, it should be noted (and is not shown here) that for

any sparse set S, pre�x (S) is self-P-printable ([Rub88]).

Theorem 4.18 There exist self-P-printable sets that are not in SGKREC.

Proof Let S be a sparse set that is not in SGKREC, as in the above corollary. Note

that the set S0 = fhy; 0jyji j y 2 S g is also a sparse set that is not in SGKREC. Let

R = pre�x (S), so R is self-P-printable. But S0 � R, so R is not in SGKREC. 2

The question then arises whether or not every set in SGKREC is self-P-printable. The

answer to this is \no", as the following demonstrates.

Theorem 4.19 There exists a set that is PREC-printable that is not polynomial time

Turing equivalent to any tally set.

17

Proof Long ([Lon85]) shows that there exists a sparse recursive set that is not poly-

nomial time Turing equivalent to any tally set. By Theorem 4.12, this set must be

PREC-printable. 2

Corollary 4.20 There exists a set in SGKREC that is not polynomial time Turing equiv-

alent to any tally set.

Corollary 4.21 There exists a set that is PREC-printable that is not self-P-printable.

Proof Every self-P-printable set is polynomial time Turing equivalent to some tally set

([BB86, Rub91]), so the set in Theorem 4.19 that is PREC-printable and is not polynomial

time Turing equivalent to any tally set is not self-P-printable. 2

Corollary 4.22 There exists a set in SGKREC that is not self-P-printable.

Thus, SGKREC and the class of self-P-printable sets are incomparable.

Using the class of recursive sets as the class to be relativized, once again the class

of tally oracles is more powerful than the class of recursive oracles. RECREC = REC,

which clearly does not contain all sparse sets. RECTALLY , however, includes REC, all

the sparse sets and more. In fact, every set is in RECTALLY , as an arbitrary set A is in

RECT , where T = f1x j x 2 Ag.

5 Query Restriction and Sparse Characterization

If the number of queries to any oracle is restricted to O(log n) for inputs of length n,

however, we no longer get the entire class of sparse sets. In fact, all we get is SGK. A more

18

general result of restricting the number of oracle queries to a generalized Kolmogorov

complexity class is presented here.

Theorem 5.1 For all fully time constructible functions f(n), g(n) and h(n) and every

oracle A, KA[h(n)][f(n); g(n)] � K[2(f(n) + h(n)); k(g(n) + p(n))] for some polynomial p

and some constant k.

Proof Let B be a set in KA[h(n)][f(n); g(n)], where f(n), g(n) and h(n) are fully time

constructible, and machineM is the oracle machine that restores an original string from

its compressed string. Let x be a string in B of length n, let y be its compressed string,

and let a1; a2; :::; ah(n) be the answers to the queriesM makes to the oracle A { 0 for \no"

and 1 for \yes" { in the restoration of x from y.

Consider now the pair z = hy; a1a2:::ah(n)i. Because y has length at most f(n)

and a1a2:::ah(n) has length h(n), z has length at most 2(f(n) + h(n)). z will be the

compressed string for x for a machine that will restore x from z in time k(g(n) + p(n))

without an oracle, for some constant k and some polynomial p. This then demonstrates

that B � K[2(f(n) + h(n)); k(g(n) + p(n))].

To restore x from z, simulate M 's restoration of x from y (which is contained in z)

using the answers to the oracle calls contained in z instead of actually making the oracle

calls. The polynomial p is needed for the overhead of the unpairing and machine simu-

lation if g is too small, and the constant is necessary in case g and h are large.

2

Corollary 5.2 For every oracle A and every constant k, SGKA[k logn] = SGK.

Corollary 5.3 For every oracle A and every constant k, every set that is PA[k logn]-

printable is in SGK.

19

Finally, a generalized Kolmogorov complexity characterization of the sparse sets is

presented.

Theorem 5.4 A set S is sparse if and only if S � KS[c log n; c2n] for some c.

Proof The implication from right to left is clear. For the left to right direction, let S

be a sparse set, and let x be a string in S of length n. The compression of x is de�ned

to be y = rS(x), the ranking of x in S. To restore x, starting with � check each string

in lexicographic order for membership in S. The yth string in S is x. Because there are

fewer than 2 � 2n strings lexicographically smaller than x, the restoration can be done

within c2n steps for some c. 2

Corollary 5.5 For any complexity class C, every sparse set in C is a subset ofKC[c log n; c2n]

for some c.

Corollary 5.6 Every sparse set in P is a subset of K[c log n; c2n] for some c.

20

References

[All91] E. Allender. Limitations of the upward separation technique. Math. Systems

Theory, 24(1):53{67, 1991.

[AR88] E. Allender and R. Rubinstein. P-printable sets. SIAM J. Comput., 17(6):1193{

1202, 1988.

[BB86] J. Balc�azar and R. Book. Sets with small generalized Kolmogorov complexity.

Acta Informatica, 23:679{688, 1986.

[BBS86] J. Balc�azar, R. Book, and U. Sch�oning. The polynomial-time hierarchy and

sparse oracles. J. Assoc. Comput. Mach., 33(3):603{617, 1986.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP question.

SIAM J. Comput., 4(4):431{441, Dec. 1975.

[Cha66] G. Chaitin. On the length of programs for computing �nite binary sequences.

J. Assoc. Comput. Mach., 13:547{569, 1966.

[Har83] J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible

computations. In Proc. 24th IEEE Symp. on Foundations of Computer Science,

Tucson, Arizona, pages 439{445, 1983.

[Hem87] L. Hemachandra. Counting in Structural Complexity Theory. PhD thesis, Cor-

nell University, 1987.

[HH88] J. Hartmanis and L. Hemachandra. On sparse oracles separating feasible com-

putation classes. Info. Proc. Letters, 28:291{296, 1988.

[HIS85] J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP � P: EXP-

TIME versus NEXPTIME. Information and Control, 65:158{181, 1985.

[HR92] L. Hemachandra and R. Rubinstein. Separating complexity classes with tally

oracles. Theoretical Computer Science, 92:309{318, 1992.

21

[HY84] J. Hartmanis and Y. Yesha. Computation times of NP sets of di�erent densities.

Theoretical Computer Science, 34:17{32, 1984.

[Kol65] A. Kolmogorov. Three approaches to the quantitative de�nition of information.

Prob. Inform. Trans., 1:1{7, 1965.

[Lon85] T. Long. On restricting the size of oracles compared with restricting access to

oracles. SIAM J. Comput., 14(3):585{597, 1985.

[LS86] T. Long and A. Selman. Relativizing complexity classes with sparse oracles. J.

Assoc. Comput. Mach., 33(3):618{627, 1986.

[Rub86] R. Rubinstein. A note on sets with small generalized Kolmogorov complexity.

Technical Report TR #86-4, Iowa State University, Ames, IA, March 1986.

[Rub88] R. Rubinstein. Structural complexity classes of sparse sets: intractability, data

compression and printability. PhD thesis, College of Computer Science, North-

eastern University, Boston, MA, 1988.

[Rub91] R. Rubinstein. Self-P-printability and polynomial time Turing equivalence to

a tally set. SIAM J. Comput., 20(6):1021{1033, December 1991.

[Sch86] U. Sch�oning. Complexity and Structure. Lecture Notes in Computer Science

Vol. 211. Springer-Verlag, Berlin, 1986.

[Sol64] R. Solomono�. A formal theory of inductive inference, Part 1 and Part 2. Info.

and Control, 7:1{22, 224{254, 1964.

22

