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Abstract

Time is essential in modeling the constantly changing world. However, conventional database systems represent
the real world with only a tenseless snapshot that is inadequate for many applications where facts and data need
to be interpreted in the context of time. In this work we examine some of the issues applicable to temporal
modeling, including examples which illustrate the demands imposed by database management systems for global
change research. The main contribution of this paper is the proposal of a framework for managing temporal
information in scienti�c databases. The characteristics of this model are: (1) Time is treated as a basic data type
and property. (2) Attribute stamping is adopted whereby the granularity of time can be de�ned by the user. (3)
Time is treated explicitly in the query language. (4) A helical view of time is used for measuring the distance
between two time points, and (5) the implications of temporal analysis are addressed.

I. Introduction

Time is essential in modeling the constantly changing world. However, conventional database systems represent
the real world with only a tenseless snapshot|the current status. This is inadequate for those applications where
time is an indispensable part of the information system, for example, medical information systems, sophisticated

MIS tools, and information systems for global change research 27. In these systems, facts and data need to be
interpreted in the context of time.

The need to provide temporal support in data base management systems (DBMS) has been recognized for
at least a decade. Four bibliographies appearing in journals give a comprehensive survey of the work that has

been done in this area 8; 17; 30; 31. However, research on temporal databases is far from mature. Up to now, no
temporal data models and query languages have gained wide acceptance and no commercial systems are available.
Much work remains to be done on both theoretical and implementation-related aspects of temporal databases.

One important application of temporal databases is in Geographic Information Systems for Global Change
Research (GCIS�). Temporal support is necessary for a GCIS to answer historical queries, trace and analyze
changes, make predications, and perform planning. A general discussion of some requirements and research issues

of temporal GISs can be found in 4; 6; 16.

We have outlined a system to provide support for both spatial and temporal analysis of global change in 14. An
important requirement imposed on the model of time was that it be compatible with an object-oriented system
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design, although the precise model of time to be used was left unspeci�ed. In the present work we examine some
of the other issues applicable to temporal modeling, including examples which illustrate the demands imposed by
database management systems for global change research.

In Section II we brie
y review some problems related to temporal databases. Then, we overview several
proposed temporal database systems and evaluate them with respect to their applicability to GCIS. In Section
III we present our main contribution, a framework for managing temporal information in scienti�c databases. We
conclude this paper in Section IV with a discussion of some important issues and on-going research.

II. Overview of Temporal Database Issues

A. Data Model

The understandings of time di�ers between people and di�erent societies. This has a direct in
uence on the
ways temporal support is provided in DBMSs. Some of the questions are: (1) Is time a point or an interval?
(2) Is time discrete or dense (complete)? (3) Is time linear or branching? Discrete means that there are only a
�nite number of points between two time points, i.e., a speci�c granularity must be assumed. Dense means that
between any two points there lies a third one. Complete means that if a series of points is bounded from above
by another point, then there is a point that is the least upper bound of that series. (Completeness is the property
that distinguishes real from rational numbers; both are dense, but the reals are complete while the rationals are
not.)

There are no correct and incorrect answers to the above questions. We can choose the appropriate assumption
depending on the application. In most temporal database systems the discrete and linear time assumptions are
adopted, and three answers exist to the �rst question: time as a point, time as an interval, and mixed. Branching
time is adopted in version control in CAD and engineering databases.

It is common to think of time as another dimension in the real world, in which we have objects and their

attributes as two dimensions and the third dimension is the history of the object. In 27 the real world time (or
valid time) and system time (or transaction time) are distinguished, resulting in a four- dimensional view. Four
types of databases are de�ned based on the type of support for time:

1. Snapshot databases where neither valid time nor transaction time are supported.

2. Historical databases where only valid time is supported.

3. Rollback databases where only transaction time is supported.

4. Temporal databases where both valid time and transaction time are supported.

Usually temporal support in a database system is provided by extending the existing data model. In the
relational paradigm, the three- or four- dimensional view is reduced to two dimensions by adding some invisible
time attributes on the relations, which is called time stamping. According to the concept of time adopted, a

point (instant) or an interval, there are four possible approaches: instant-stamping of tuples 5, interval-stamping

of tuples 15; 20; 28, instant-stamping of attributes 9, and interval-stamping of attributes 11. A similar method

is also adopted in extending the E-R model 10.

In 22; 25 a temporal data model which is independent of the existing data models was presented. This model is
called TSC (Time Sequence Collection). In TSC, a temporal data value is de�ned for some object (e.g., a person)
at a certain time point (e.g., March 1986) for some attribute of that object (e.g., salary). Thus, a temporal data
value is a triplet < s; t; a >, where s is the surrogate, t is the time, and a is the attribute value. The representation

of TSC in the relational environment is discussed in 23, where the approach of instance-stamping of tuples is
adopted.

B. Query Languages

The support of temporal data in database systems requires extending the query language to be able to ma-
nipulate temporal data. The most common way is to add temporal ingredients to the SQL or QUEL languages.
There are wide variations in the constructs and forms of temporal query languages. The capabilities of these
query languages also di�er a great deal, ranging from supporting only basic queries to full support of querying,



update, and aggregation. This situation arises from the fact that there is no accepted theoretical foundation for

temporal databases, although some temporal algebra and temporal calculi have been proposed 5; 7; 9; 11; 33; 35.
Other problems are: What are the primitives for temporal operations? Should temporal reasoning be supported
in the query language? If so, how much should be supported?

28 compares temporal query languages based on some of the selected properties, such as retrieval semantics
provided, historical queries, rollback, and implementability demonstrated. The issue of temporal query languages
remains one of the great challenges in temporal database research. In the Appendix, we provide a (non-exhaustive)
list of primitive temporal operators. This list includes previously proposed operators as well as new operators to
extend database query languages with temporal support.

C. Query Optimization and Physical Design

The data in temporal databases are typically append-only. Because we want to capture the whole history of an
object, nothing is deleted and updates result in the creation of objects with new time stamps. This scheme has
a high overhead in terms of space. As a result, query processing will also su�er. Furthermore, one expects that
many queries in a temporal database will need data ordered by time. Temporal inferencing may also be included,
resulting in di�erent temporal query patterns from that of conventional database queries.

The performance of temporal databases developed thus far is poor and new storage structures and access
methods are needed to obtain adequate performance in those systems. Some of these issues have been addressed

by 2; 13; 19.

D. Temporal Databases|Present Work and Evaluation

In the last decade, several temporal database management systems have been developed. Almost all these

systems are extensions of earlier relational database systems 18. These systems can be distinguished by the data
model, query language, and underlying system used for implementation. We brie
y describe three such systems:

TQuel 28, HSQL 20, and TEER-GORDAS 10.

TQuel

TQuel bases the temporal database on the snapshot relational model, with time appearing as additional attributes.
In this approach, the logic of the model does not incorporate time at all; instead the query language processor
must translate queries and updates involving time into retrieval and modi�cations on the underlying snapshot
relation.

TQuel has adopted the approach of interval-stamping of tuples in incorporating temporal information. Four
invisible time attributes are added to capture valid time (FROM, TO) and transaction time (START, STOP).
The time granularity is assumed to be constant in TQuel, e.g., one month granularity. Because every tuple has
only one time stamp, every change or update to a tuple will introduce a new tuple in the relation. It should be
noted that the information for the same object is scattered in several tuples (this may seem to be an unnatural
representation). Attributes such as date-of-birth in an employee tuple are identi�ed as user-de�ned time, and
cannot be supported in TQuel.

TQuel extends the QUEL query language with three additional components: WHEN, VALID and AS-OF. The
WHEN clause is analogous to QUEL's WHERE clause; it is used to select tuples based on temporal predicates
using an implicit time attribute. The VALID clause is used to project time attributes, and the AS-OF clause is
used to express rollback.

TQuel has been implemented on an Ingres DBMS by reducing TQuel statements to QUEL statements. This
implementation is simple but ine�cient. The performance degraded rapidly as information was added to the
database.

HSQL

HSQL is also an extension of the relational model. Time in HSQL is assumed discrete and can be either an
interval or a point (instance). There are six time granularities: year, month, day, hour, minute and second. Ways
to deal with the di�erent time granularities in queries are given. The idea is to convert one time granularity
to another when necessary. In HSQL, one can compare time with di�erent granularities. If two time intervals
involved in an operation have di�erent granularities, the coarser interval is converted into the �ner one. HSQL



also includes functions for explicit conversion of granularities. The function UPTO converts a time value to a
coarser granularity by truncating, while the function INTERVAL is used to expand a time instant into a time
interval of �ner granularity.

Two invisible time attributes (FROM, TO) are added to the tables. Therefore, only valid time is supported. The
temporal operators in HSQL are much richer than TQuel, including comparisons of time instants and intervals,
and operations for conversion between time instants and intervals and between di�erent time granularities. An
operation to relate concurrent data from two or more relations is also provided, which is called a concurrent
product.

HSQL expands the SQL query language by adding two new ingredients: FROMTIME (TOTIME) clause, which
is used to extract a time slice, and EXPAND BY, which is used to convert the time-stamping of the tuples into
the required time granularity. The time predicates can also be in a WHERE clause, and time attributes can be
in SELECT and GROUP-BY clauses, which means there is no di�erence between time attributes and ordinary
attributes at the conceptual and language levels.

Because HSQL has adopted the same approach as TQuel for time stamping, the drawbacks of TQuel in
representing temporal data also appear in HSQL.

HSQL is partially implemented. The run-time system of HSQL can interpret historical operations. The
implementation of a practical HSQL processor is underway.

TEER-GORDAS

TEER-GORDAS is an extension of the Enhanced Entity-Relationship data model. Time in TEER-GORDAS is
discrete and can be either an interval or a point. The basic construct adopted is the \temporal element"|a �nite

set of intervals de�ned in 11. Only valid time is supported.

In TEER-GORDAS, each entity has associated with it a temporal element, which is called the life span of that
entity. The temporal value of each attribute is a partial function from the life span of the entity to the value
domain of that attribute. The life span of the relationship is de�ned as the intersection of the life spans of all the
participating entities.

GORDAS, a data manipulation language (DML) on the EE-R model, is extended to contain ingredients that
specify temporal selection and projection operations. Here, the temporal projection is actually an operation to
extract a time slice. Aggregation functions are also extended to the time domain.

Because the basic temporal construct is a temporal element, the temporal operators are those de�ned on a
set. However, the predicates used in the temporal selection can only be equal, contains and their negations. No
implementation is mentioned for TEER-GORDAS.

E. Some Comments on the Above Three Systems

The above systems are representative of the endeavors to provide temporal support in a database management
system. All of these systems are endowed with the capability to record time in the database and make queries on
temporal information.

The time concept they adopted is discrete, with time being an interval or a �nite set of intervals. They usually
have some �xed time units, but the granularity problems are only treated in HSQL. In a GIS there are often
situations where some data is missing in a time series, and interpolation may be used to derive them from the
neighboring time. In this case, a type of dense time is needed.

Each of the above systems extends the query language to the time domain by adding ingredients to include
temporal operators, more or less, but none has been analyzed to determine the expressiveness of the query
language with respect to time. The primitives for a temporal predicate are chosen in an ad hoc manner. There is
no justi�cation for the temporal operators set in the query language. None has provided the facility for temporal
analysis (described in Section III), which is especially important for change analysis in GIS.

There is a problem with the semantics of valid time (or lifespan) in the above systems. It is up to the user
to de�ne what should be the valid time for a particular object, and only one valid time can be de�ned. When
di�erent types of time need to be recorded, it is di�cult to choose among them. The worst condition is that
time other than valid time cannot be dealt with properly within the systems (e.g; the date-of-birth attribute in
a employee relation), because they can only be treated as user-de�ned time, and no system support is provided.



Consider the publishing domain: there are at least three meaningful time-stamps associated with each article
published in a journal (submission time, reviewing time and acceptance time). Which should we take as the valid
time for that article? Any choice will leave the other two untreated, unless we semantically tie them together.

Another common problem with these systems is poor performance 22. New access methods and optimization
techniques are needed to develop a practical temporal database system.

III. A Model of Time for GCIS

A. Data Model

In this section, we discuss a model of time which we propose and intend to implement for temporal support

in a Spatio-Temporal DBMS for Global Change Research 14. This model, although discussed as a pseudo-
extension of SQL, is not meant to be a speci�c extension of a relational model. We follow a Non-�rst Normal
Form view of relations (N1NF) and believe that it could be mapped into the object-oriented paradigm as well.
Our research e�orts focus on integrating the spatial and temporal dimensions within a formalism following the
object-oriented model. We advocate extensibility and target future implementations to be extensions of systems

such as POSTGRES 32.

1. Discrete Time Assumption

The �eld of global change research is moving from a data-poor to a data-rich environment. Furthermore, it is
recognized that data in pure GIS are event-driven, whereby information is accumulated as it is made available. In
global change and, more generally, in scienti�c environments, data can be accumulated following a regular time

sampling mechanism. In both cases, some of the data may not be accurate and some may be missing 6.

Di�erent types of time, such as valid time, transaction time, user-de�ned time, linear time, and branching time
are listed in the literature. However, the abstract concept of time can be viewed as a line such as the real number
axis.

An origin (point 0) can be de�ned on this line, so that we can specify other points with respect to it. In our
daily life, we usually choose 0 A.D. to be the origin along the time axis, though for geological processes this is
not a good choice. Although time is continuous, we usually perceive it as discrete, which means we adopt a unit
to measure distance from the origin. There may be di�erent units according to speci�c applications. The basic
units can be year, month, day, hour, minute and second. Other units can be de�ned at will by specifying the
ratio to these basic units, for example, week, decade, or millisecond. With this facility, we can actually simulate
dense time, because there is no restriction on de�ning new units with a smaller or larger scale.

Time can be a point or an interval on the time axis. Concomitantly, every time object should have a cor-
responding point or interval on that line. Therefore, now, tomorrow, last month, and �ve years ago are time.
On the other hand, quantities such as seven days or �fteen minutes are not locations on the time axis, but are
magnitudes of time intervals. We refer to these as durations (in the Appendix, we propose operators to handle
durations in the query language).

2. Time as a Property and Basic Data Type

To provide temporal support in scienti�c databases, we propose to treat time as a basic property, which can be
related to an entity, an attribute, a relationship or an operator. The system will take time as a basic data type
with special operations. It is up to the user to interpret the semantics of time in speci�c applications.

� A temporal object is de�ned as a surrogate S with a set of attribute values. These attributes are divided
into three groups: temporal attributes, non-temporal attributes and time attributes. For every temporal
attribute, a time stamp is associated with it. The value of a temporal attribute is a set of <value, time>
pairs. Non-temporal attributes are conventional attributes and time attributes are attributes with time as
their data type.

� Every time stamp is associated with a time granularity, which can be system-de�ned or user-de�ned. We
assume there is no overlap in time for a temporal attribute.



� It should be noted that we do not identify time as valid time or any other kind of time. We think the
semantics should be interpreted by the user in accordance with the application.

This method of modeling is similar to attribute stamping. The resultant relations may be N1NF. The existence
of time attributes also bears resemblance to tuple stamping. This consideration is derived from our belief that
time can be a property of an entity, attribute, or relationship. We should provide support for it at the attribute
and entity level.

Tuple stamping and attribute stamping each have their own advantages. For tuple stamping, the history of a
single entity is represented with multiple tuples and every change in the value of a temporal attribute will result in

a new tuple. Time normalization is suggested in 20 to deal with the problem of varying rates of change in temporal
attributes. However, this decomposition process is not consistent with the general normalization principle. With
the information of an object scattered in multiple tuples, the process of querying about the history of an object
becomes more complex in tuple stamping. On the other hand, for queries with a concurrent condition of multiple
temporal attributes, the query process will be more complex in attribute sampling. However, it has been shown

in 2 that these two modeling methods are equivalent in terms of their information content.

B. The Query Language and Processor

The query language has not taken its �nal shape yet. We present some of the ingredients of the language and
use two di�erent applications to illustrate some of the ideas. The �rst application is from GIS and is drawn from

the cadastral example in 6. The second application is related to global change and is meant to illustrate some of
the inherent di�erences between the two �elds.

Unlike some of the previously proposed systems, in which the time attributes are implicit to the user, we use
temporal attributes and time attributes which are explicit to the user. Whenever a temporal attribute or time
attribute is involved in a query, the user can specify temporal predicates to choose the speci�c time slice, or he/she
can omit it if the most recent snapshot is desired. Under this condition, temporal predicates are no di�erent than
ordinary predicates.

We explicitly distinguish a temporal retrieval from temporal analysis. A temporal retrieval is a query whose
result can be directly retrieved from the database. A temporal analysis is a query in which some processing
needs to be done on the result of the retrieval to give the required result. For example, the query \What was the
population of Bonn when it became the capital of Germany?" is a temporal retrieval, while the query \Which
area had the greatest change in population during the period of 1949 to 1979?" is temporal analysis. Therefore,
the query can be divided into two parts: retrieval and analysis. The bene�t of partitioning temporal queries into
temporal retrieval and temporal analysis is that on the one hand we have a relatively simple and stable retrieval
module, thus making the implementation and optimization easier, and on the other hand, we can have a more

exible analysis layer with which the user can de�ne new analysis methods when necessary.

The query processor is divided into two layers in accordance with the above partition, the �rst layer is the
(temporal) information retrieval or query, the second is (temporal) information analysis. Within this structure,
each query is decomposed into basic subqueries having three steps:

1. Retrieve (or input) temporal information from the database.

2. Make temporal analysis and inferences based on the result of the retrieved data.

3. Output the result (which can be storing the result back, displaying it, or other means).

For example, the �rst step of the above query is: retrieve the population in each year of each area during the
period of 1949 to 1979. The second step is: calculate the di�erence of the population in the sequences and �nd
the area with maximum di�erence. Finally, display the results.

We believe that this approach is important as the inferencing or analysis part may be computationally intensive.
In some (possibly most) cases, it needs to be shipped to a high performance engine for analysis. With this scheme,
the problem of query processing and optimization in scienti�c databases becomes one of optimizing the combined
query and analysis steps. This is a subject on which we are presently focusing.



1. Temporal Retrieval

A retrieval step fetches a set of data that exists in the database. The process may have two steps: selection and
projection. Selection is used to choose the relevant data and projection is used to get the resultant data. (In
relational databases, another important operation is join, which we will discuss later).

Corresponding to the above two steps, there are two major parts in a retrieval statement: a condition clause
and an output clause. The condition clause is a Boolean expression used to specify the object to be selected and
the output clause is an attribute list.

If a temporal attribute is in the output clause, we use the following convention:

1. Attribute name only ) current time.

2. Attribute name followed by ALL ) all history.

3. Attribute name followed by a time point or interval ) speci�c time period.

4. Attribute name followed by RESTRICT ) speci�c time period designated by the condition.

If a temporal attribute is in the condition clause, we use the following convention:

1. No temporal predicate ) most recent snapshot.

2. Temporal predicate on the attribute is speci�ed ) speci�c time period.

3. ALL ) all history.

The complete set of temporal operators has not yet been decided. We use some common ones in our query

examples. In the rest of this section, we use some examples from a cadastral system 6, which is a type of GIS
system, to illustrate how to construct a temporal retrieval statement. The relations are as follows:

OWNER(SSN, name, date-of-birth, profession)

PARCEL(parcel_no, area, class, price, owner)

Where SSN, name, and parcel_no are non-temporal data

date-of-birth is a time attribute

profession, area, class, price, and owner are temporal attributes

In practice, every parcel is also associated with some spatial information. (e.g., location, boundary) which we will
ignore for simplicityy.

An object(tuple) in the OWNER or PARCEL relations might look like:

OWNER
SSN name date-of-birth profession
024-71-1858 Smith 01/06/1949 <manager, (03/90, now)>

<sales-rep, (09/74, 02/90)>
<salesman, (07/71, 08/74)>

PARCEL
parcel no area class price owner
831-5004 3.5 <commercial, <260k, 1991> <028-51-2323,

(07/89, now)> <257k, 1990> (02/88, now)>
<residential, <256k, 1989> <024-71-1850),
(01/60, 06/89)> <254k, 1988> (01/60, 01/88)>

In the following examples, we use V(attribute) to denote the value of a temporal attribute and T(attribute) to
denote the time stamp of that attribute. A temporal predicate is in the form T(attribute) rel-op Time constant.

yWe are studying the spatial dimension as well. Our objective is to integrate the spatial and temporal dimensions into

a Spatio-Temporal DBMS for Global Change Research.



� Simple temporal query:

EXAMPLE 1. Retrieve the parcel_no and the price history of parcels

which are now worth more than 230k.

SELECT parcel_no, price ALL

FROM PARCEL

WHERE V(price)>230k

� Complex temporal query:

EXAMPLE 2. Retrieve the parcel_no and current price of the parcels

which used to be commercial and whose price was less than 20k at that time.

SELECT parcel_no, price

FROM PARCEL

WHERE V(class)='commercial' AND T(class) overlap T(price)

AND V(price)<20k

EXAMPLE 3. Retrieve the parcels which were the same class as parcel 831-5144,

whose area was smaller but whose price was higher.

SELECT PARCEL.parcel_no

FROM PARCEL X

WHERE X.parcel_no='831-5144' AND V(PARCEL.class)=V(X.class)

AND PARCEL.area<X.area AND V(PARCEL.price)<V(X.price)

AND (T(PARCEL.class) intersect T(X.class)) overlap

(T(PARCEL.price) intersect T(X.price))

� Temporal Join:

The complexity of a temporal join is caused by the di�erence in the semantic constraint that the join result
is required to satisfy. There are di�erent de�nitions of a temporal join. The most general form is a join that
involves both non-temporal and temporal predicates. In most cases the temporal predicate is T1 overlap

T2, i.e the time interval between joined tuples must intersect; while others may have a temporal join based

on the union of time interval 13; 18. Both kinds of de�nition may be used in practice. Examples 4 and 5 are
examples of such semantic di�erences.

EXAMPLE 4. Retrieve the classes of parcels which were owned by professors

sometime in 1960.

SELECT class RESTRICT

FROM OWNER, PARCEL

WHERE OWNER.profession='professor' AND

OWNER.ssn=PARCEL.owner AND

(T(OWNER.profession) intersect T(PARCEL.class))

overlap (01/60, 12/60)

EXAMPLE 5. Retrieve the class history of parcels once owned by professors

which were commercial in 1980.

SELECT class

FROM OWNER, PARCEL

WHERE OWNER.profession = 'professor' AND

V(PARCEL.class) = 'commercial' AND



T(PARCEL.class) overlap (01/80, 12/80) AND

OWNER.ssn = PARCEL.owner

Because there is no particular constraint on the join result, di�erent joins can be simulated by specifying
appropriate join condition(s) and target list.

2. Temporal Analysis

The above examples, although drawn from GIS applications, are still in the domain of traditional query systems.
However, the query patterns are quite di�erent for scienti�c databases. In scienti�c databases the queries usually
are not about one object, but about groups of objects with speci�c features, and the query conditions are not so
complex as those above. However, analysis may be needed before the results of the queries can be useful.

Most traditional query languages provide aggregate functions such as AVG, SUM, COUNT, MAX and MIN.

We can de�ne the corresponding functions in the time domain 10. Other useful functions might be FIRST and

LAST. Some other useful analysis methods based on time are suggested in 21. However, we feel that a system
which can support temporal analysis should be extensible, as one cannot anticipate all possible temporal analysis
constructs which might be needed in scienti�c databases. Furthermore, some of the queries that include temporal

analysis might be di�cult to express in a single statement 35.

Assume we have collected data on carbon dioxide and temperature in some places in the following relation:

CO2-TEMP(location, CO2, temperature, date)

Where location, CO2, temperature are nontemporal attributes

date is a time attribute, with granularity being day.

Typical queries might be:

EXAMPLE 6. Calculate the rate of increase of CO2 concentration from 1986 to

1989 for every location.

SELECT location, change-rate(CO2 RESTRICT)

FROM CO2-TEMP

WHERE date IN (1986, 1989)

Here the change-rate is an analysis operator, and the processing might include: average the CO2 of every day
to obtain yearly data and calculate the change rate between consecutive years.

EXAMPLE 7. Retrieve the locations where the annual average temperature increased

the most in the last decade.

This query should be broken down in multiple query/analysis subqueries. A tentative scheme to complete this
complex query is:

1. For each location retrieve the temperature data, and compute the average yearly temperature for the last 10
years. Store the results in a temporary relation.

2. For each location retrieve and compute the yearly rate of change of the temperature.

3. Finally, compute the maximum and report the location(s).

This process can be actually a series of pipelined processes each of them consisting of a subquery of the form:
input, analyze, output.

An even more complicated scienti�c query, which requires the extension of the language with new operators,
can be illustrated with the following example:



EXAMPLE 8. What is the relationship between the change in CO2 and temperature

in Hawaii from 1970 to 1990.

In this case, a new correlation operator is needed. This operator will be applied to two groups of data in a time
series.

Compared with conventional applications, temporal inferencing and analysis play a more important role in
scienti�c database systems. This is one of the foci of our research.

3. Dealing with Di�erent Time Granularities

Di�erent temporal attributes may have di�erent time granularities. When the temporal predicate involves di�erent
time granularities, we can always convert the coarser one into the �ner one. This is a simpli�cation of the actual

situation. More elaborate work which deals with time granularity is reported in 36.

Functions UPTO (�ne to coarse) and DOWNTO (coarse to �ne) can be provided for explicit conversion of time
granularity. Another useful conversion function is ELAPSE, which gives the time units in a time interval. It can
be used in expressing such a query as:

EXAMPLE 9. Find the parcels that have been for commercial use for more

than two years.

SELECT parcel_no

FROM PARCEL

WHERE V(class)='commercial' AND T(class) contains NOW

AND UPTO YEARS (ELAPSE T(class)) >2

4. Interpolation in Time

In scienti�c databases, the query data might not exist in the database. However, if we have some knowledge about
the properties of the data, interpolation methods may be used to obtain the needed data. For example, suppose
we did not record the rainfall for every day in a year. We can still deduce the rainfall for a speci�c day by taking
the average of the data recorded before and after that day. Or we could derive the curve for a sequence of days
spanning an interval including the missing measurements, and interpolate the missing values. An error term may
need to be attached to deduced data if appropriate.

It should be noted that interpolation is not always applicable. For example, if we have records of rainfall for
spring and autumn, it is meaningless to obtain the rainfall for summer by taking averages or other interpolation
methods, because we may get much rain in spring and autumn, but no rain in summer.

In 21, four types of time sequences are de�ned, i.e., step-wise constant, continuous, discrete, and user-de�ned
types. For the step-wise constant type, a single value spans a given time interval. Interpolation is not needed.
With the continuous type, the value is a continuous function of time, and a curve �tting function can be used for
interpolation. For the discrete type, the value at one time point is not related to others and the value cannot be
interpolated. For the user-de�ned type, the value can be computed based on a user-de�ned interpolation function.
For the above rainfall example, we may interpolate the rainfall in summer from the summer rainfall in neighboring
years because the rainfall exhibits a cyclic property.

This raises an interesting perspective on time. First, we note that it is only possible to perform temporal
interpolation if the time for which data are desired is \close" to times for which data are known. By \close"
we mean semantically close, and as the above examples illustrate, closeness may not be equivalent to Euclidian
distance along the time line. For the purpose of rainfall interpolation, time points a year apart are closer than
points three months apart. This leads to a helical view of time, in which the time line winds upward with a period
of one year (Figure 1).

The helical model of time operates at other scales as well. At �ner scales, some patterns of human activity
suggest a helix with a period of seven days, other activities follow a diurnal rhythm. At coarser scales, the 11-year
sunspot cycle may be useful for modeling time for certain climatological analyses. We believe that the helical
view of time merits further investigation and plan to do so.
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Figure 1: a Helical model of time. Time points that are far apart on the time line can be semantically closer.

IV. Conclusions and Future Work

In this paper, we gave an overview of our present work and some issues in temporal database systems. A
framework for a data model and query language was also proposed to provide temporal support in a spatio-
temporal DBMS for scienti�c databases. The main features of the proposal are:

1. Time is treated as a basic data type and property. We do not distinguish valid time, user-de�ned time, etc.;
the semantics of time is decided by the user. Time can be a property of an entity, relationship or attribute,
which will provide full support for temporal data (in previous systems, user-de�ned time was not supported.)

2. Attribute stamping is adopted. The time granularity can be de�ned by the user and incorporated into the
system. Time interpolation is also considered.

3. Time is treated explicitly in the query language. There is no di�erence between a temporal predicate and
an ordinary predicate, thus providing a uniform way to express queries on temporal and non-temporal data.

4. Temporal analysis is considered. Dividing temporal queries into temporal retrieval and temporal analysis
can simplify the system structure.

5. Propose a helical view of time for the determination of time distance.

However, much work needs to be done before an actual implementation; many problems must be solved. Some
of them are:

1. The de�nition of a temporal query language: most of the current systems have extended SQL or QUEL
to include temporal ingredients. However, these extensions have been done in an ad hoc manner, and no
investigation has been done on the temporal primitives set and basic temporal constructs.

2. Temporal analysis: it is clear that some degree of temporal analysis should be supported in the temporal
query language. But how much support should be provided? Although a temporal relational algebra and
calculus (both are expressed in temporal logic) have been proposed as the bases for temporal relational
completeness, they are not widely accepted.

The partition of a temporal query into retrieval and analysis can solve this problem to a certain degree,
because new (analysis) methods can be de�ned by the user and incorporated into the system. However,
for an arbitrary temporal query, it is not straightforward or even possible to give a distinction between
temporal inferencing and temporal retrieval. Temporal analysis might be included in the selection condition
of temporal retrieval. For example, in a company database, consider the query \Find the department in
which the employee got the largest increase in salary in the last year." If we treat temporal analysis as
operators that can be extended, then the problem of interfacing them with temporal retrieval needs to be
addressed.



3. Query optimization and access methods: one of the critical problems in implementing a temporal database
system is performance. This may partially account for the absence of commercial temporal database systems
at this time. Little work has been done in this area.

In our research, we are studying query/analysis processing techniques for query optimization of spatio-
temporal DBMSs. We expect that our e�orts may be used as a starting point for such systems.
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Appendix: Temporal Operator List

The temporal operations depend on the concept of time, whether it be continuous or discrete. They are also
determined by the underlying data model adopted to incorporate temporal information. In the following, we
list temporal operators based on the discrete time concept. Three basic categories of time are assumed: POINT,
INTERVAL and DURATION. A POINT is of primitive type TIME and is an absolute location along the time line.
An INTERVAL consists of an ordered pair of points in time and is also of primitive type TIME. A DURATION is a
di�erence of times, and so, strictly speaking, is not of primitive type TIME, but represents a relative displacement
along the time line (i.e., the magnitude of an interval). For clarity we partition the operators into four groups:
comparison, arithmetic, conversion and aggregate. The convention will be to use variables starting with p for a
point, d for a duration, i for an interval, and l for a logical or boolean (true or false) value.

A. Comparison

Comparison operators require two operands of the same time category and result in a logical value.

1. Time as a point

By considering time as a point, the usual numeric comparison operators <, <=, =, >=, >, <> can be used

(HSQL 20). If the discrete assumption is adopted, it may be meaningful to specify such comparisons operators
as precede, succeed and is-adjacent-to. These operations are of the form

l = p1 op p2

2. Time as an interval

The relationships between time intervals derived from 3; 4; 20 are:

l = i1 before i2 (i1 precedes i2)

l = i1 equal i2 (i1 = i2)

l = i1 meets i2 (i1 meets i2)

l = i1 overlaps i2 (i1 overlaps i2)

l = i1 during i2 (i2 contain i1)

l = i1 starts i2 (begin at the same time point)

l = i1 finishes i2 (end at the same time point)

and the reverse relationships as above. The �rst �ve relationships are from 20, while the last two are from
3. In addition, Sarda also lists an adjacent relationship i1 adjacent i2 i� i1 meets i2 or i2 meets i1.
By comparison, there are fewer temporal predicates in TQuel. They are precede, overlap and equal. These
operations are of the form

l = i1 op i2

3. Durations

Durations, like points, can be compared with numeric operators <, <=, =, >=, >, <>. Operands of di�erent
granularities can be converted to a common granularity explicitly or by default (to the �ner of the two). These
operations are of the form

l = d1 op d2

B. Arithmetic

Arithmetic operations can be de�ned as those whose result is also a POINT, INTERVAL, or DURATION.



1. Time as a point

p2 = p1 + d (to shift the time point on the time axis)

d = p1 - p2 (to compute a duration)

2. Time as an interval

i3 = i1 overlap i2 (intersection)

i3 = i1 extend i2 (union, +)

i3, i4 = i1 difference i2 (subtraction results in one or two intervals)

i2, i3 = negate i1 (all except that interval)

i2 = i1 offset d (move start and end of interval)

The �rst two are de�ned in TQuel and in HSQL, while we propose the addition of the last three operators.

C. Conversion

Conversion operations are used between time points and intervals. There are also some conversion operations
used to coerce times to di�erent granularities.

1. Point to interval

i = make_interval(p1, p2) (combine two points to form an interval t1..t2)

2. Interval to point

p = begin_of(i)

p = end_of(i)

Variants of these are used in TQuel to obtain the start and end points of an interval.

3. Conversion between di�erent time units

p1 = coarse_to_fine(p2)

p1 = fine_to_coarse(p2, truncation/round)

Similar operations are available for INTERVALS and DURATIONS.

D. Summary of Basic Operators

Table 1 summarizes the basic temporal operators in terms of mappings between POINTS P , DURATIONS D,
INTERVALS I, and LOGICALS L. Samples of each type are given.

E. Aggregate Operations

There are some operations we classify as aggregate, either because they include further processing on the result
of the query, or they correlate multiple objects with some temporal relationships. Some of these are:

get first event later than point p

compute average time between events over interval i

correlate events separated by duration d over interval i
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Table 1: Temporal Operators

Mapping Example
P ! P change point granularity
P � P ! L �rst point before second point
P � P ! I make an interval
P � P ! D compute a duration
P � P ! P compute the midpoint in time
P �D ! P o�set a point
P �D ! I de�ne an interval
P � I ! L point is within interval
P � I ! I extend interval to include point
I ! P get �rst point in interval
I ! I change interval granularity
I ! D compute magnitude of interval
I ! L check if interval is empty
I � I ! L �rst interval contains second interval
I � I ! I intersection between intervals
I � I ! D duration of union
I � I ! P �rst common point
D ! D change duration granularity
D �D ! L durations are equal


