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ABSTRACT

The degradation of player performance in network games with
latency is well documented. However, quantifying the effects of
latency on player individual actions is an unmet challenge. Un-
der constrained bitrate conditions, player actions delayed on the
client add additional latency, so network game developers need
tools to help prioritize the sending of player actions. This paper
presents a taxonomy for player actions with latency in network
games, where player actions are defined by their precision, dead-
line & impact. The effects of latency along each dimension of
the taxonomy is analyzed through extensive experiments with a
custom 2d game. Efficacy of the taxonomy in game development
is illustrated by experiments that show improved player perfor-
mance when prioritizing player actions based on their expected
impact derived from the taxonomy dimensions.

1. INTRODUCTION

The growth in capacity and connectivity of computer net-
works has increasingly enabled computer games to connect
multiple players through cooperative or competitive online
play. Capacities have even become sufficient for the emer-
gence of cloud-based games where both single- and multi-
player games are played and rendered on remote servers and
clients only send player commands up to the cloud.

The responsiveness of network games are affected by the
network latency since, under most architectures, a player’s
action must be transmitted by the client to an authorita-
tive server, acted upon and the result transmitted back to
the client before the outcome of the player’s action is real-
ized. An increase in network latency means a decrease in
the responsiveness of the network game and a decrease in
player performance. Studies have shown network latencies
can decrease player performance by 5% to 50% for every
100 milliseconds of latency for traditional network games
and a 25% decrease in player performance a for every 100
milliseconds of latency for cloud-based games.

While traditional network games require only modest server
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bitrates [3], and cloud-based games require video-type bi-
trates down to the client [9], bitrates up from the client are
often limited by capacity constraints. The uplink connection
from a residential client is often asymmetric, smaller than
the downlink. Moreover, the uplink must be shared by other
in-game features, such as voice and chat commands by play-
ers, as well as in game collection and transmission of player
actions and statistics data. This means that packets con-
taining player actions cannot always be sent immediately,
but instead are queued for transmission at the client based
on uplink bitrate limitations. Network game systems, such
as Demonware,! provide clients with uplink capacity esti-
mates, as well as network latency estimates, so that games
can better manage limited network resources.

The limited network resources, shared amongst all the
game subsystems, means the core gameplay itself is often
left with a fixed, limited budget for how many packets it can
send per second. These packets are primarily player game-
play actions. Previous research has shown that not all player
actions are equally sensitive to latency [7]. To explain these
differences, we have proposed [6] a taxonomy of the effects of
latency on different player actions based on two properties:
the precision required to complete the action and the dead-
line by which the action must be completed. Actions with
high precision and tight deadlines are sensitive to even mod-
erate latencies, while actions with low precision and loose
deadlines are resilient to even high network latencies. It fol-
lows from the limited network resources and disparity in the
impact of latencies on player actions, to mitigate the effects
of latency on player performance game clients must priori-
tize their network data, deciding on a transmission order for
player actions to be sent out.

Unfortunately, for game developers, there are currently
no practical techniques to prioritize player actions and help
determine packet order. While precision and deadline are
useful for better understanding the impact of latency on ac-
tions, as proposed, the dimensions are unit-less and are not
comparable with each other. Moreover, even as sensitivity
to latency is explained by the taxonomy, there is no way to
quantify the effects of added delay to a player action. For
example, if a game client has two player actions, A and B,
to transmit, with a gap of 50 milliseconds between them due
to bitrate limitations, there is no easy way to quantify, and
then compare, the impact on delaying A by 50 milliseconds
versus B by 50 milliseconds.

In this paper, we propose to extend our precision-deadline
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technology with a third dimension, called impact, that incor-
porates the effect the player action has on the game world.
Then, we use the model as the basis for measuring the im-
pact of network latency on player actions. Careful experi-
ments with a computer game that simulates latency allows
us to measure, analyze and quantify the effects of latency on
player actions based on their precision, deadline and impact.
Analysis of the results shows latency degrades player actions
approximately linearly, with an exponential degradation fit-
ting slightly better. Player actions with high precision are
more readily impacted by latency, player actions with a loose
deadline are more resistant to latency, and player actions are
scaled linearly based on their impact.

The analysis also provides a blueprint for other network
games to follow, providing a means to prioritize transmis-
sion of player actions for many games, thus allowing them
to better mitigate the effects of latency on player actions
as compared to non-prioritized transmissions. Detailed ex-
periments with thousands of hours of simulated gameplay
show the efficacy of our approach, with prioritized player
actions providing for up to 100% better performance over
non-prioritized player actions. This improvement increases
with higher action impact and precision, but is independent
of deadline.

The rest of this paper is organized as follows: Section 2
provides related work; Section 3 introduces our expanded
taxonomy; Section 4 describes the methodology used to eval-
uate the proposed taxonomy; Sections 5 and 6 detail experi-
ments to measure expected impact and player performance,
respectively; and Section 8 summarizes our conclusions and
mentions possible future work.

2. RELATED WORK

The effects of latency on traditional games has been stud-
ied for many game genres, including car racing [13], role
playing games [11], and first person shooters [1]. While such
work has helped better understand the impact of latency on
traditional games, the results have generally not analyzed
the effects of latency on specific actions but have instead
treated the games as a whole.

Recent efforts have focused on latency and cloud-based
games, measuring the responsiveness of a cloud-based gam-
ing platforms with added latency [15, 4], and conducting
user studies measuring the effects of latency on cloud-game
players [12, 8]. Similar to earlier studies with traditional
games, the results have generally not analyzed the effects of
latency on specific actions.

Lower level studies have examined the effects of latency
on user interactivity for a variety of game-like tasks, such
as target acquisition [14], or have showed gamers have more
refined temporal processing [10]. While helpful to better
understand human sensitivities to latencies for interactive
tasks, the results were not been applied to computer games.

Our previous work has isolated player actions and ex-
plored the effects of latency for real-time strategy games [5]
and first person shooter games [2], and has attempted to
classify player actions with regard to latency sensitivity [6].
However, such work has not generalized the effects of la-
tency on player actions, nor yet led to a method to apply
the results in game development.

3. PLAYER ACTION TAXONOMY

For traditional network games, when a player performs
an action, the client sends a message to the server, which
processes the action and sends any changes to the game
state back to the client, which renders the game on the local
display. Cloud-based games do the same, except that the
server renders the game and sends the frames down as video.

All player actions in this client-server architecture are
delayed by the round-trip latency between the client and
server. If the delay between the client and server is large
enough, the player is not only aware of the delay between
the commands given to the game (the player action) and the
response of the game, but the delay can also degrade player
performance. How much the player’s action (and hence per-
formance) is impacted by the delay is determined by the
deadline and precision requirements of a given player action.

Across all genres, player actions vary along two primary
axes, deadline and precision. Deadline is the time required
to complete the action, that is the length of time it takes
to achieve the final outcome of the action. For example, in
Diablo, deadline for a portal spell is the time it takes for an
avatar to read a magic scroll and invoke a portal that will
transport the avatar back to town. Precision is the degree of
accuracy required to complete the interaction successfully.
For example, in Call of Duty precision is the accuracy re-
quired to shoot a distant enemy with a sniper rifle. Different
player actions have disparate deadline and precision require-
ments. For example, moving an avatar in a computer game
requires high precision but typically has a relatively looser
deadline requirement than does shooting, implying the pre-
cise location will determine if a player’s avatar is hit, while
moving from one location to another takes on the order of
seconds.

As first presented in [6], Figure 1 shows a taxonomy of the
different player interactions along the precision and deadline
axes. The x-axis is the deadline requirement and the y-
axis is the precision. The shooting sniper in the bottom
left has high precision and a tight deadline, building in a
construction game in the bottom right has a high precision
but a loose deadline, and third-person combat in the middle
has a lower precision than either sniper shooting or building,
and a looser deadline than sniping but a tighter deadline
than building. In general, the further an action is from the
origin in the precision-deadline plane, the less the impact
that latency has on player performance. Thus, sniping and
racing are sensitive to latency, while casting an area spell
and explore are less sensitive to latency.

While the taxonomy is descriptive for most player actions
and can help categorize genres of games (as indicated by the
“Avatar First Person”, “Avatar Third Person” and “Om-
nipresent” labels in Figure 1), by itself it is not sufficient for
prioritizing player actions in order to mitigate the effects of
latency while a game is running. In particular, the axes are
of different units, so are difficult to compare quantitatively,
even if they could be normalized. Moreover, the taxonomy,
as stated, does not account for the effect the player action
has on the game world. This means a priority transmission
based solely on the distance of an action from the origin may
transmit a “more important” action after a “less important”
action.

For example, consider an arcade-style game where a player
has two weapons — Weapon A fires fast, precise bullets and
Weapon B fires slow bombs that explode in a wide area. The
fast, precise bullets place Weapon A actions close to the ori-
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Figure 1: Taxonomy of Different Player Actions
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gin in Figure 1, and the slow, low precision (given the area
of effect) bullets place Weapon B actions farther from the
origin. Weapon A actions, being thus more sensitive to la-
tency would seem to be prioritized first. However, suppose
the damage from the Weapon A bullets was far less than
the damage from Weapon B bullets. In this case, prioritiz-
ing a Weapon A action over a Weapon B action may mean
the Weapon B bullet misses the target, thus impacting the
player performance more.

Thus, we propose to extend the taxonomy of player ac-
tions by a third dimension called impact. Impact is the effect
that the player action has on the game world. For example,
in the case illustrated above, impact is the amount of dam-
age a bullet fired from a weapon causes when it hits a target.
Used all together, precision, deadline and impact allow for a
representative prioritization of player actions that when fol-
lowed for network transmissions, sends the more important
player actions first, thus mitigating the effects of latency on
player performance.

To illustrate the use of the Taxonomy, consider an arcade-
style game where the player has various weapons and shoots
projectiles (bullets) at opponents. As is typical of many such
games, weapon bullets have different speeds, areas of effects
and damage dealt.

The hypothesized effects of delay on player actions in such
a game is depicted in Figure 2. The x-axis is the delay for
player actions, which is the round-trip time from the client to

the server plus any added time due to queuing on the client
during bandwidth limitations. The y-axis is the expected
impact of the action, which, for this game, is how much
damage the weapon is expected to do. The expected impact
depends upon how often the bullet hits an opponent.

The delay value on the x-axis is the sum of the network
latency and any added gap due due bitrate limitations.

A weapon (and the bullets it fires) is represented by a
downward trend, show as a line in Figure 2. Each weapon
has a different line, with a different slope and a different y-
intercept depending upon the bullet speed, area of effect and
damage. The graph depicts Weapon 1 (red, small dashes)
and Weapon 2 (blue, large dashes) as two different lines.

To determine the impact of a weapon, the delay provides
the x value and the line equation for the weapon (e.g., y =
az + b) provides the y, or expected impact value.

For Weapon 2, the horizontal distance between B1 and
Biase indicates the amount of added delay from the network
latency. The horizontal distance between points B1 and B2
indicates the amount of added delay the game system may
have added by adding a required gap between packets.

The slope of the line indicates the sensitivity of the weapon
to delay. The steeper the slope, the more sensitive it is to
delay.

The y-intercept indicates the “base” expected impact of
the weapon — the expected impact if there were no delay
and the weapon’s bullet was fired immediately. The higher
the base, the greater the expected impact.

The base, and all points on corresponding line, are scaled
higher or lower depending upon the weapon’s damage. For
example, increasing the damage by 5 multiplies all points on
the line by 5 (e.g., y = 5 X (az +b)).

4. METHODOLOGY

This section describes the methodology used to evaluate
the efficacy of the proposed taxonomy:

1. Build a computer game that allows for configuration
of player actions and control of delay (Section 4.1).

2. Run experiments to measure the expected impact of
player actions based on precision, deadline & impact
(Section 5).

3. Analyze the results and derive a quantified, algebraic
model for predicting the expected impact versus la-
tency for each player action.

4. Run experiments use the model in priority queue, eval-
uating the benefit to player performance over an un-
ordered queue (Section 6).

4.1 Saucer Hunt

In order to test the efficacy of the proposed Taxonomy in
a controlled fashion within a computer game, we designed
and developed a game that provided the necessary game for
evaluation. For ease of development and customization, we
used the Dragonfly? game engine (version 3.4). The Drag-
onfly project is designed to teach aspiring students about
game engine development, with students building a game
engine from scratch, and, in turn, use their own engines
to make games. The Dragonfly engine is a fully functional
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game engine, with game loop control, game world manage-
ment, game object physics, user input management, and 2d
graphics support, including animated sprites.

We call our game Saucer Hunt, based on the popular Nin-
tendo game Duck Hunt. Figure 3 depicts a screenshot. The
player commands a space ship at the bottom of the screen
and shoots at enemy saucers that fly horizontally across the
top of the screen. The bullets explode when reaching the top
of the screen, destroying saucers that are enveloped in their
explosion. Points are obtained based on how much damage
the bullet does to the saucer.

N
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Figure 3: Saucer Hunt screenshot

There is only one saucer at a time on the screen. The
saucer starts at either the left or right side of the screen
and attempts to fly to the opposite side, moving at varying
speeds to make it more difficult to shoot. The player’s ship
can only fire one bullet per weapon per saucer - i.e., if a
bullet misses, the saucer must reach the edge of the screen
before the weapon can fire again. A game last for 90 seconds,
with the player trying to score as many points as possible
in that time.

As designed, Saucer Hunt is customizable so as to allow
exploration of the space of precision, deadline & impact.
The bullet explosion provides an area of effect that is the
precision. The bullet speed determines how fast the bullet
reaches the target and explodes, so is the deadline. The
amount of damage a bullet’s explosion that hits the target
causes is the impact. The number of weapons can be cus-
tomized, with each weapon’s bullets having a different area
of effect, speed, and damage.

Saucer Hunt can be configured to simulate both network
latency and bitrate limitations. Network latency is simu-
lated by delaying player commands to fire by a fixed amount
of time. Bitrate limitations are simulated by imposing a
minimum gap time between player commands. Both kinds
of delay, network latency and gap, are in units of the game
loop — e.g., with a game loop time of 33 milliseconds, a net-
work latency of 3 adds 124 milliseconds of latency to the
player commands.

In order to Saucer Hunt easier to run in an automated
fashion, an Al player was created to emulate a human player.
The AI player determines when to fire a bullet based on ob-
servation of the saucer’s speed and distance from the target.
Pilot studies suggest the AI does comparable, but a bit bet-
ter, than most human players.

The Dragonfly engine allows games to be run in “head-
less” mode, as well as provides control over the game loop,

letting Saucer Hunt run as fast as possible. This compresses
a 90 second game session with Al to less than one second
and allows repeated game sessions to be run in the back-
ground. When a game is complete, Saucer Hunt reports
player statistics, including the accuracy and points for each
weapon, as well as the total points the player scored.

The Saucer Hunt source code is available for download via
its git repository, with a link at: http://www.cs.wpi.edu/
~claypool/papers/expected-impact/ Building Saucer Hunt
requires Dragonfly, which can be downloaded from the Drag-
onfly engine Web page: http://dragonfly.wpi.edu/engine/

5. EXPECTED IMPACT

Experiments with Saucer Hunt were run for a single weapon
over an exhaustive set of player actions. The player was Al
controlled, the game set to “headless” and the frame time
set to 0 in order to run the experiments in the background.
All combinations of the weapon for speeds 0.25, 0.5, 0.75, 1,
2, 3 and 4, and areas of effect 0, to 10 were tested, a total
of 77 combinations. For each combination, delays from 0 to
990 milliseconds were tested in steps of 33 milliseconds (one
game loop). For each weapon configuration at each latency,
one-thousand games were played for each combination. In
all, about sixty-thousand hours of gameplay were emulated,
or nearly seven years straight of playing Saucer Hunt.

5.1 Results

When a weapon with damage 1 is fired, the expected im-
pact is the chance that the weapon will hit at that latency
— i.e., the weapon’s accuracy. This value is scaled up for
damages greater than 1. All weapon configurations were
analyzed with respect to latency over the range tested, do-
ing both linear regression and exponential fits to the data.
As expected, the expected impact for all weapons have a
downward trend i.e., the expected impact decreases with an
increase in latency. 80% of the weapons have a linear corre-
lation of -0.9 or stronger and 95% are -0.8 or stronger. The
weakest correlations, around -0.6, are all slow bullets (speeds
less than 1) that require high precision (AoE 0). Exponen-
tial fits showed only slightly better fits for only high speed
weapons (see Section 7).

Due to space constraints, Sections 5.2-5.4 show a subset
of the analysis is shown, choosing results that best typify
weapon precision (area of effect), deadline (speed) & impact
(damage).

5.2 Damage

Figure 4 depicts the expected impact versus delay for two
weapons that have the same speed (0.5) and area of effect
(7) but differ in their damages, 1 and 3. The x-axis is de-
lay in milliseconds and the y-axis is the expected impact
in damage. Each point is the average of 1000 experimental
runs with the lines showing a linear regression fit through
the data points. Both weapons show a downward trend in
expected impact with an increase in delay. The expected
impact of the damage 3 weapon is higher than that of the
damage 1 weapon since when a higher damage weapon hits,
it does more damage. In fact, the line for the damage 3
weapon is scaled 3 times (i.e., the y values are multiplied by
3) over that of the damage 1 weapon. This both increases
the y-value (expected impact) and also makes the slope of



the higher damage weapon steeper. The higher the weapon
damage, the greater the sensitivity to delay.
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Figure 4: Expected Impact versus Damage

5.3 Speed

Figure 5 depicts the expected impact versus delay for two
weapons that have the same area of effect (7) and damage
(1) but differ in their speeds, 0.25 and 4. The axes, data
points and trendlines are as for Figure 4. Both weapons
show a downward trend in expected impact with an increase
in delay. The expected impact of the speed 2 weapon is
higher than that of the speed 0.25 weapon since it is easier
for the player to hit the target with a higher speed weapon.
The higher speed weapon also has a steeper slope, meaning
it is more sensitive to delay than the speed 0.25 weapon.

Speed
Speed 0. X

0.6 A

pected Impact damage
©
X
X
/N

0 100 00 00 00 00 600
Delay ms

Figure 5: Expected Impact versus Speed

5.4 Area of Effect

Figure 6 depicts the expected impact versus delay for two
weapons that have the same speed (0.5) and damage (1)
but differ in their areas of effect (AoE), 3 and 7. The axes,

data points and trendlines are as for Figure 4. Both weapons
show a downward trend in expected impact with an increase
in delay. The expected impact of the AoE 7 weapon is higher
than that of the AoE 3 weapon since a larger area of effect is
likely to do more damage. Moreover, the slopes of the lines
are nearly the same. Thus, any added delay to fire actions
degrades the impact of each weapon by the same amount.
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Figure 6: Expected Impact versus Area of Effect

6. MITIGATING LATENCY

This section describes how the precision, deadline & im-
pact taxonomy presented in Section 3 can be used to miti-
gate the effects of latency on player performance.

6.1 Predicting Expected Impact

For a game with multiple weapons, when a weapon is fired
and there is a fire command for another weapon already in
the queue, the game has a choice for which player command
to transmit first. In order to minimize the impact of delay
on player performance, the command ordering should try to
maximize the total expected impact.

For example, consider a game with a small amount of
network latency and a large bitrate limitation (i.e., a big
gap between packets) and two weapons. These weapons are
depicted by the two downward sloping lines in Figure 2. As-
sume the player fired the Red Weapon (Wr) and the player
action is in queue ready to transmit. The queue is:

1. Wg (delay = latency)

In Figure 2, point B1 represents the expected impact com-
putation using the Wg line for this weapon. At this time,
the player fires the Blue Weapon (Wg) with the command
for Wg still in queue. The game has two choices:

A) Wg can be placed after Wg in the queue. Since packets
need to be separated by at least a gap delay, the queue would
look like:

1. Wg (delay = latency)

2. Wg (delay = latency + gap)



The impact of W at this point is shown with point R2
in Figure 2.

Or:

B) Wg can be placed before Wgr, adding a gap to the
delay for Wg. This queue would look like:

1. Wg (delay = latency)
2. Wg (delay = latency + gap)

The impact of Wp at this point is shown with point R1 in
Figure 2 and the impact of Wg at this point is shown with
point B2.

Since the goal is to maximize the total expected impact,
the better choice A) or B), depends upon which is larger:

e Impact of Wg at R2 + Impact of Wgr at B1

e Impact of W at R1 + Impact of Wgr at B2

The larger of the two should be chosen for the correspond-
ing queue order. Based on Figure 2, the second option is con-
siderably smaller than the first, thus Wg should be placed
before Wr. Note that a first-in, first-out system or one that
was otherwise ignorant about the impact of latency on player
actions would have chosen sending out Wr before Wp, thus
resulting in a greater degraded player performance.

In summary, handling outgoing player commands in a
first-in, first-out (FIFO) manner can result in a greater degra-
dation on player performance than a priority queue. In order
to decide upon the best order for player actions, the rela-
tionship between precision (area of effect), deadline (speed)
& impact (damage), and delay must be known — i.e., there
needs to be an equation, such as a line, for expected impact
versus delay for each player action in the game. Then, when
a player takes an action, the game should compute the ex-
pected impact for placing the command at each spot in the
queue, re-ordering the queue to maximize the total expected
impact.

6.2 Experiments

We ran experiments to measure the efficacy of using knowl-
edge of the precision, deadline & impact of player actions in
Saucer Hunt.

For evaluation, Saucer Hunt was configured to have two
weapons. The first weapon always fires bullets with damage
1, speed 0.25, and area of effect 4. The second weapon has
the same base characteristics as the first weapon, but varies
one of the characteristics for each experimental run: damage
1, 2, 4, 8, and 16; speed 0.25, 0.75, 1.25, 2 and 4; and area
of effect 4, 6, 8, 10 and 12.

The typical uplink for an role-playing game or real-time
strategy game is about 10 packets/second [16, 5]. Assuming
this rate is imposed by a capacity limitation, this suggests
a minimum gap between subsequent packets of about 100
milliseconds. Thus, a minimum gap of 99 milliseconds (the
equivalent 3 game loops) between packets is used for all
experiments.

Internet latencies can vary, but 2014 data on over 28 mil-
lion game sessions from the popular game League of Leg-
ends found that the most common ping time for players is
around 50 milliseconds [17]. Thus, a network latency of 66
milliseconds (the equivalent 2 game loops) is used for all
experiments.

Saucer Hunt was extended with implementations for two
different types of outgoing queues for player actions: a) a
FIFO queue that sends player actions without regard to ex-
pected impact, and b) a priority queue that orders outgoing
player actions so as to maximize total expected impact. For
the priority queue, Saucer Hunt used the linear prediction
for each weapon in computing the expected impact.

For each queue type and each weapon configuration com-
bination, Saucer Hunt was run 100 times, computing mean
values with 95% confidence intervals.

Figure 7 depicts the result. The y-axis for all three graphs
is the player’s performance, the total points, over a 90 second
game. The points in each graph is the average total points
achieved by the player across all games at that configura-
tion, shown with 95% confidence intervals.® Each graph has
two trendlines — the blue ‘*’ uses a first-in, first-out (FIFO)
queue and the green ‘x’ uses a priority queue where player
commands that are separated by a gap are enqueued so as to
maximize the total expected impact. The top graph varies
the area of effect (AoE) of bullets fired from the second
weapon, from the same AoE as the first weapon (4) to 3
times the AoE. The middle graph varies the speed of bul-
lets fired from the second weapon, from the same speed as
the first weapon (0.25) to over 30 times faster than the first
weapon. The bottom graph varies the damage of bullets
fired by the second weapon, from the same damage as the
first weapon (1) to 16 times the damage as the first weapon.

From Figure 7 top, prioritizing player actions based on
differences in weapon AoE does not have much benefit to
player performance. As seen from Figure 6, while AoE does
change expected impact, weapons with different AoEs have
similar slopes. Thus, the total points a player receives is not
changed based on prioritizing bullets from one weapon with
a different AoE over another.

From Figure 7 middle, prioritizing player actions based
on differences in weapon speed does not have much ben-
efit to player performance. This is somewhat surprising
given the results in Figure 5 that shows weapon with differ-
ent speeds have different slopes, therefore considering their
expected impact when transmitting should result in higher
player performance. However, the lack of a difference can
be explained by the Saucer Hunt game itself. Since the
player fires weapons with slower speeds sooner than weapons
with faster speeds, effectively leading the Saucer more the
slower the weapon is, by the time the second weapon is
fired, the outgoing queue has cleared. In other words, there
is no queue to no opportunity for optimization. For games
with a higher rate of player actions, especially those where
the player takes several actions simultaneously, prioritizing
player commands based on speed should show some benefit.

From Figure 7 bottom, prioritizing player actions based
on differences in weapon damage can have a big impact on
player performance. This is explainable from Figure 4 that
shows the expected impact of a weapon is scaled directly
with damage. Prioritizing weapons that do more damage
over those that do less damage makes it more likely the high
damage bullets hit, thus improving player performance.

Overall, it is most important to prioritize player actions
based on the slope of their expected impact versus delay.
When player actions have the same slopes, differentiating
between them is not important — basically, player perfor-

3The confidence intervals are so small for most points as to
be indiscernible.
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mance is the same no matter which action is prioritized.
When player actions have different slopes, actions that have
a steeper slope are more sensitive to latency and should be
favored.

7. DISCUSSION

While linear fit works for most player actions in Saucer
Hunt, as evidenced by the relatively high correlation coeffi-
cients, there are regions for many of the player actions that
may not be well-represented by a diagonal line. For exam-
ple, consider the graph of expected impact versus delay for a
weapon with high speed (4) bullets with moderate precision
(AoE 4) in Figure 8. For latencies under 30 milliseconds,
the expected impact is 1 (the bullets always hit). From 30
to about 150 milliseconds, the expected impact decreases in
exponentially. From 150 milliseconds and beyond, the ex-
pected impact decreases approximately linearly over the rest
of the measured range. While the correlation coefficient for a
linear fit is still good (-0.9), fitting a line to the entire range
does not match the latency well for some regions. Priori-
tizing player actions for these areas may result in degraded
player performance versus more accurate models.
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Figure 8: Expected impact with linear fit

Ideally, the results here quantifying the expected impact
of delay on precision (area of effect), deadline (speed) and
impact (damage) could be generalized for other games be-
yond Saucer Hunt. Doing so is left as future work. While
exhaustively measuring the impact of delay on all player ac-
tions is not feasible for most games, the results from Saucer
Hunt point to a possible method useful for most games. Ba-
sically for each player action: 1) Determine the expected
impact with no delay — this is the “base” or y-intercept for
the player action, depicted in Figure 2; 2) Measure the ex-
pected impact of the action with a fixed amount of delay —
this is one point along the line, such as point B2 for the Blue
Weapon in in Figure 2; 3) construct a linear from the line
connecting the base and measured point that can be used to
compute the expected impact of that action in the presence
of delay — results over an exhaustive set of player actions
and delays show that a linear relationship well-represents
the impact of delay on player actions in most cases.

The relationship between player actions and latency is not



linear in all cases. In fact, as suggested by [6] and data on
Saucer Hunt with high speed weapons, actions that are the
most sensitive to delay degrade exponentially with latency.
In such cases, an exponential curve likely fits it better. How-
ever, for many actions over many latency ranges, a linear fit
well-represents the degradation to performance for player ac-
tions. Since a linear fit is easy to construct (two points make
a line) and understand, and models should be parsimonious
(explain the relationship with as few predictor variables as
possible), using a line to represent the impact of latency on
player actions has merits.

For Saucer Hunt, for most actions tested over a range
of parameters and delays, a line works quite well with an
exponential fit only slightly better. It is reasonable to as-
sume these results will hold for other games, particularly
those most similar to Saucer Hunt — i.e., arcade-style games
with projectiles. Where the relationships may differ signif-
icantly are for those games with different kinds of actions
(e.g., moving an avatar or melee combat).

8. CONCLUSION

The study of the effects of latency on network and on-
line games is increasingly important with the growth in net-
work games and cloud-based gaming. While the fact that
latency degrades player performance for network games is
well-understood, the exact relationship between latency and
player actions is neither well-understood nor appropriately
quantified. Specifically, quantitative relationships between
player actions and latency are needed in order for game sys-
tems with bitrate constraints to prioritize player actions so
as to mitigate the effects of latency.

This paper takes a step towards better understanding and
quantifying the effects of latency on player actions and la-
tency. The contributions include: 1) a taxonomy of player
actions and latency, based on precision, deadline & impact;
2) illustration of the taxonomy through experimentation
with a computer game, quantifying the relationship between
area of effect (precision), speed (deadline) and damage (im-
pact) and latency; 3) use of the experimental results in a
priority queue system, illustrating how the effects of latency
on player actions can be mitigated for game systems with
network bitrate constraints.

For the game tested, a 2d arcade style shooting game,
the expected impact degrades linearly with latency. The
steeper the slope, the more sensitive the player action is to
latency. The slope is affected most dramatically by the im-
pact, represented as the damage a weapon inflicts on the
opponent. The slope is also affected by the deadline, repre-
sented as the speed of the projectiles, with tighter deadline
actions being more sensitive than looser deadline actions.
The slope is not affected by the precision, represented as the
area of effect of the projectiles, but the base (y-intercept)
is, with lower-precision weapons having a higher base. For
game systems with network latency and bitrate constraints,
prioritizing player actions using the taxonomy of precision,
deadline & impact showed about a 150% improvement to
player performance.

The approach used in this paper was applied to a spe-
cific game, but the results may generalize to other games.
Application of the methodology used in this paper to an-
other game left as future work. In addition, developing a
general model for the effects of delay on player actions with-

out necessarily specifically measuring a working game is also
possible future work.
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