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ABSTRACT

With the increasing complexity and wide diversity of spatio-
temporal applications, the query processing requirements
over spatio-temporal data far exceed the traditional query
types beyond range, kNN, and aggregation queries along with
their variants. Most spatio-temporal applications in domains
from traffic monitoring, transportation and emergency ser-
vices, surveillance to and healthcare systems require sup-
port for evaluating powerful spatio-temporal pattern queries
(STPQs) that form higher-order correlations and composi-
tions of sequences of events to infer real-world semantics
of importance to the targeted application. STPQs can be
supported by neither traditional spatio-temporal databases
(STDBs) nor by modern complex-event-processing systems
(CEP). While the former lack the expressiveness and pro-
cessing capabilities for handling such complex sequence pat-
tern queries, the later mostly focus on the Time dimension
as the driving dimension, and hence lack the power of the
special-purpose processing technologies established in STDBs
over the past decades. In this paper, we propose to de-
velop an efficient, scalable spatio-temporal engine for com-
plex pattern queries (STEPQ). STEPQ has several inno-
vative features that will advance the research not only in
spatio-temporal databases, but also in complex event pro-
cessing. First, the project is unique in addressing, in a fun-
damental way, complex pattern queries over spatio-temporal
data currently overlooked by state-of-the-art systems. Sec-
ond, the proposed approach of the extensible architecture
for pattern-matching queries is applicable not only to spatio-
temporal pattern queries, but also to complex event process-
ing techniques in general. Third, the project addresses several
novel optimization strategies that arise from the integration of
spatio-temporal and pattern-matching techniques into one in-
tegrated query processing technology. With the STEPQ sys-
tem currently under development, we sketch several example
scenarios demonstrating the applicability of this technology.

1. INTRODUCTION
Several emerging and life-critical applications inherently

depend on spatio-temporal data processing includings traf-
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fic monitoring and transportation systems [29], surveillance
systems [23], geographic information systems (GIS) [27],
location-based services (LBS) [6], healthcare systems [25], and
environmental sciences [30]. The recent advances and wide-
spread popularity of mobile devices, wireless cellular phones,
and Global Positioning Systems (GPS) have enabled these ap-
plications to continuously monitor and track all objects of in-
terest. With such continuous streams of spatio-temporal data
being produced and the increasing complexity and wide diver-
sity of spatio-temporal applications, the query and data ex-
ploration requirements of these applications now reach far be-
yond the traditional spatio-temporal query types, e.g., range,
k nearest-neighbor (kNN), and aggregation queries, e.g., [10,
11, 13, 14], to more expressive and semantics-rich spatio-
temporal pattern queries (or STPQ). Examples of these pow-
erful new query types include: “Q1: Report child-abuse crim-
inals who stay in school area A1 for more than x minutes and
then move to another suspicious area A2 within one hour”,
“Q2: Report the kNN cars that are continuously getting closer
to my moving car over interval T”, and “Q3: Send an alert to
patient P, e.g., patient with a weak immune system, if (s)he
stays in contact (within distance D for at least interval T)
with another patient having a transferable disease”. See Ta-
ble 1 for more STEPQ examples.

Evidently, spatio-temporal pattern queries are prevalent in
many applications as they capture real-world semantics that
otherwise would have been lost or delegated to the application
layer for ad-hoc and inefficient processing. It is not meaning-
ful to assume that a suspicious criminal activity in Q1 or the
alert condition for a patient in Q3 depend solely on a single
data instance (or even snapshot) of the data stream - rather
separate snapshots of instances in the high-speed stream must
be trapped at the right moments of time and synchronized to
determine the correct match of such a complex STPQ query.
In spite of this complexity, the real-time processing of spatio-
temporal pattern queries is imperative for a wide range of
mission-critical applications.

In this paper, we propose the STEPQ system—Spatio-
Temporal Engine for complex Pattern Queries— that ad-
dresses the unique challenges of handling STPQ queries, in-
cluding: (1) They embed powerful semantics not captured
by current spatio-temporal query types, (2) Unlike tradi-
tional query types, such as range or kNN queries, that can be
evaluated on each instance of the database in isolation (e.g.,
a stream query window), STPQs require correlation among
spatio-temporal events (both in time and in space) over mul-
tiple instances of the database, (3) They require a full-fledged
query engine equipped not only with efficient event-processing
techniques but also with effective spatio-temporal processing
capabilities, and (4) Unlike state-of-the-art event-processing
techniques that ascert no control over the input stream of



Q1 Report child-abuse criminals who stay in a school area A1 for more than x minutes and then
move to a suspicious area A2 within one hour (E.g., suspicious criminal activity).

Q2 Report cars that stay in my kNN over interval T and continuously are getting closer to my moving car.
Q3 Send alert to patient P, if she stays in contact (within distance D for at least interval T)

with a patient having a transferable disease (E.g., health threat).
Q4 For consecutive areas A1, A2, and A3, report speeding cars (over the speed limit for at least x mins)

in A1 and A3 but not in A2 (E.g., testing effect of radar signs over A2 on drivers’ behavior).
Q5 Report restaurants located in kNN of two moving cars and getting closer to both cars over

interval T (E.g., find common nearby restaurants in direction of moving cars ).

Table 1: Examples of spatio-temporal pattern queries (STPQs).

events, STPQs not only generate these streams of higher-
order events using underlying traditional queries, e.g., range,
kNN, or aggregation, but also employ crucial optimization
strategies to control which higher-order events to generate
and when. These challenges combined make the state-of-art
in complex event processing (CEP), e.g., [31, 4, 12], not appli-
cable since CEP techniques cannot process traditional range
or kNN queries efficiently, let alone the more complex spatio-
temporal pattern queries. These special processing require-
ments also make the state-of-art in spatio-temporal databases
(STDBs), e.g., [9, 18, 20, 21], fall short since they lack the
expressiveness power and processing capabilities of handling
complex pattern queries.

The proposed STEPQ system is an extensible spatio-
temporal engine for complex pattern queries that enables
the scalable evaluation of complex spatio-temporal pattern
queries over high-speed data streams. The key novel contri-
butions of STEPQ include: (1) Coherent integrated sys-
tem, where spatio-temporal and pattern-matching processing
are fully integrated into one consistent system, (2) Cross-
cutting optimizations, where the pattern-matching queries
themselves contribut to the optimization of the execution of
the underlying spatio-temporal queries by controlling when
to run/suspend a query and what events to generate, and
(3) Extensible architecture, where the system does not
only provide well-defined query operators, but also abstract
interfaces that can accommodate a wide range of applications
through user-defined pluggable modules.

2. STATE-OF-ART TECHNIQUES AND

THEIR LIMITATIONS
Conceptually, STPQs can be viewed as two-layered queries

where the first layer runs traditional spatio-temporal queries,
e.g., range and kNN, on top of the raw input stream com-
ing from moving objects (we refer to these queries as base
queries). The second layer runs complex pattern-matching
queries on top of the results generated from the base queries.
Thus neither of the STDBs nor CEP techniques can solely
support STPQs especially that the latter use only the Time
dimension as the driving dimension, and hence they lack all
the research technologies established in STDBs over the past
decades to efficiently answer spatio-temporal queries. More-
over, the caching techniques deployed in STDBs, e.g., [32, 24,
28] have very limited capabilities in correlating events and
composing patterns—they focus only on incremental evalua-
tion or result validation— and hence they cannot be used in
the context of STPQs.

Combining the existing technology, there are two possi-
ble approaches to support STPQs, namely application-level
and middleware-level as depicted in Figures 1(a) and (b).
In the application-level approach (Figure 1(a)), STDBs exe-
cute the base queries, e.g., range, kNN, or aggregation, needed

within the complex pattern query, and then stream the results
back to the application (application refers to the software em-
bedded in mobile devices). Then, all of the pattern match-
ing and event correlation is done at the application level to
impose the query semantics. Clearly this approach is ad-
hoc since each application applies its own semantics indepen-
dently. Moreover, it has several drawbacks including: (1)
mobile devices usually have limited power and processing ca-
pabilities, and hence the required processing may not be even
feasible on these small devices, (2) STDBs may send streams
of unnecessary results that will be later dropped by the ap-
plication, and (3) lack of many possible optimizations that
could have been performed by the execution engine.

In the middleware-level approach, the system consists of
two layers where existing CEP systems, e.g., [31, 2, 16], act
as a middleware layer deployed on top of STDBs as illustrated
in Figure 1(b). In this case, applications need to decompose
a given STPQ into one or more spatio-temporal base queries
that can be executed by the STDBs and separate pattern
queries that can be executed by the CEP system. The results
from the base queries will act as input streams to the CEP
system. Although this approach is more feasible, it has seri-
ous drawbacks and limitations including:
(1) Coupling hurdles: There are several linking prob-
lems that emerge between the STDB and CEP layers. First,
STDBs deploy incremental evaluation techniques for purposes
of efficiency and scalability, whereas CEP systems do not han-
dle incremental updates of the input events. Second, base
queries may produce empty results, e.g., empty range query,
which will be mistakenly interpreted by CEP systems as no
input events. Interestingly, empty results still need to be
processed as special events since they may invalidate or re-
set patterns looking for continuity, e.g., Query Q3 in Table 1
requires continuous range-existence for at least interval T.
Third, base queries can themselves be moving objects, e.g.,
Queries Q2, Q3, and Q5 in Table 1, and hence CEP systems
need to get as input not only the query answer, but also the
query points. Although coupling issues are the easiest among
the other hurdles, they are still not straightforward to solve.
(2) Optimization hurdles: Since STPQs generate both the
base queries and the pattern-matching queries, then several
optimization opportunities arise. However, since the STDB
and CEP layers are loosely coupled and queries are isolated,
these cross-cutting optimizations cannot be performed. For
example, in Query Q4, the three range queries over areas A1,
A2, and A3 will be concurrently running, although queries
over A2 and A3 should run only if there is a match in the
previous areas. The two latter queries can be further opti-
mized by considering only the cars that matched the pattern
in the previous areas. These types of optimizations are not
feasible in the middleware-level approach.
(3) Synchronization and Transformation hurdles: A
STPQ may require not only executing multiple base queries
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Figure 1: Possible architectures for supporting spatio-temporal pattern queries.

to generate events, but also synchronizing their execution.
For example, Query Q5 in Table 1 requires synchronizing
the execution of two moving kNN queries, i.e., they should
produce results almost simultaneously and then intersecting
thier results. Such synchronization and transformation over
the event streams are not feasible in the middleware-level ap-
proach and not even supported by current STDBs.

3. OVERVIEW OF PROPOSED SYSTEM
Given the above limitations, it is clear that engineering ex-

isting systems to handle STPQs is not the right approach.
The proposed STEPQ system, on the other hand, is a co-
herent system that addresses all of the above limitations
with extensible interfaces that enables expressing complex
and diverse query semantics. The architecture of STEPQ
is summarized as follows (See Figure 1(c)). The system
consists of two standard layers; compilation/optimization
and execution layers. In the compilation/optimization layer,
we introduce the pattern-query compiler & optimizer (PQ-
CompilerOptimizer) component which is the central com-
ponent of the system responsible for compiling and opti-
mizing the entire query. Given a spatio-temporal pattern
query, PQ-CompilerOptimizer decomposes it into one or more
traditional queries (the base queries) and pattern-matching
queries. The individual base queries, e.g., range or kNN
queries, are compiled and optimized using an extended spatio-
temporal compiler & optimizer (ST-CompilerOptimizer) that
works under the control of the PQ-CompilerOptimizer. In
contrast, pattern-matching queries are fully compiled by
PQ-CompilerOptimizer. The base queries will be exe-
cuted by the extended spatio-temporal execution engine (ST-
ExecutionEngine), while the pattern-matching queries will
be executed by the pattern-matching execution engine (PM-
ExecutionEngine). The continuously generated results from
the base queries will drive the progress of the pattern-
matching queries. The ST-CompilerOptimizer and ST-
ExecutionEngine components will inherit and leverage the
state-of-art technologies from spatio-temporal databases and
will be extended with new features as needed. For exam-
ple, new operators will be introduced such as: (1) material-
ization operators that materialize the incremental updates
produced from the base queries to complete answer sets be-
fore feeding them to the PM-ExecutionEngine, (2) synchro-
nization operators that ensure synchronized execution over
multiple spatio-temporal queries, and (3) transformation
operators that apply any required transformation over the

answer sets produced by the base queries. Regarding the PM-
ExecutionEngine, our plan is that pattern-matching queries
will be evaluated using a variant of Non-deterministic Finite
Automata (NFA) as well as a set of operators that manipulate
the automata results. The choice of NFAs is based on their ef-
ficiency and flexibility in answering pattern-matching queries
as in SASE [31], Cayuga [16, 15], and SnoopIB [2, 1]. The
PM-ExecutionEngine will leverage the work from these sys-
tems while including substantial and core extensions crucial
to STPQs such as extended event model, abstract automata
interfaces for extensibility, and new event operators.

The main characteristics of STEPQ system are:

• Leveraging & extending state-of-art in STDBs:
This is achieved by the ST-CompilerOptimizer and ST-
ExecutionEngine components that retain all the innova-
tions in STDBs such as continues and incremental evalua-
tion, spatial-aware operators and access methods, and scal-
able execution. In addition to that, base queries will be
subject to several new optimizations triggered by the PQ-
CompilerOptimizer.

• Coherent integration between spatio-temporal and
pattern-matching techniques: This is achieved by hav-
ing a single system with interacting components orchestrated
by the PQ-CompilerOptimizer. The PQ-CompilerOptimizer
along with the newly introduced operators, e.g., material-
ization, synchronization, and transformation operators, will
ensure seamless interaction and communication between the
base and pattern-matching queries.

• Cross-cutting optimizations: This is achieved by
the PQ-CompilerOptimizer component that enables PM-
ExecutionEngine to provide feedback information to ST-
ExecutionEngine to control the execution of the base queries
depending on the progress of the pattern queries. Cross-
cutting optimizations are essential for system-wide scalability
and efficiency, otherwise base queries can be continuously and
unnecessarily running to produce unused results.

• Event Model and Extensible Language for Pattern
Queries: This is achieved by the ST-ExecutionEngine and
PM-ExecutionEngine components. The core extensions intro-
duced over existing systems include: (1) Extending the event
model with a new concept called event sets that provides
logical grouping of events produced from the base queries.
An event set is the unit of processing in STEPQ contain-
ing a set of simultaneous events (either primitive or compos-
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Figure 2: Examples of executing spatio-temporal pattern queries.

ite) with no order imposed between them. Each event set
E = {e1, e2, ..., en} has an associated schema SE , where each
event ei follows that schema. The significance of event sets is
two-fold. First, each answer set produced from a base query
can be pipelined and processed as one unit, and hence further
operations, e.g., synchronization and transformation, can be
applied on the event sets. Second, Event sets provide an ef-
ficient mechanism for anticipating when events should occur
in the future, and hence they enable continuity/persistency
operations, e.g., event ek is persistent over interval T if it
appears in each event set produced over T . (2) Proposing a
new approach in the automata design and construction that is
based on abstract interfaces for the automata states (the ba-
sic units of the automata execution) to enable extensible pro-
cessing beyond the provided query operators. (3) Building a
communication layer between the base and pattern-matching
queries to enable cross-cutting optimizations.

4. RESEARCH ISSUES AND CHAL-

LENGES
In this section, we highlight in more details some of the

research issues addressed by STEPQ.

4.1 Integrated Spatio-Temporal and Pattern
Queries

PQ-CompilerOptimizer is the heart of the proposed system
as it is responsible for compiling (and ultimately optimiz-
ing) the entire STPQ. Given a STPQ, PQ-CompilerOptimizer
decomposes the query and generates the needed base and
pattern-matching queries as illustrated in Figure 2. To cou-
ple the base queries with the automata states in the pat-
tern queries, PQ-CompilerOptimizer uses a tagging scheme in
which a tag will be assigned to each base query, the query’s
output, and the corresponding automata states receiving this
output. It is possible that a single base query may feed mul-
tiple states (in the same automaton or different automata),
hence the same tag can be assigned to multiple states.

It is also possible that different STPQs may involve the
same base query. In this case, PQ-CompilerOptimizer should
detect that a single base query can be re-used to feed multiple
automata states. Sharing partial execution among multiple
base queries is also feasible but it requires communication
between ST-CompilerOptimizer and PQ-CompilerOptimizer
where the former decides on the shared components while the
latter decides on the tagging scheme to appropriately couple
the outputs from each query to the automata states—Recall
that ST-CompilerOptimizer is not aware of the pattern-
matching subqueries.

Another important issue is that most STDBs support
incremental evaluation of results for efficiency purposes,
e.g., [18, 21, 22]. Therefore, there are two options for

handling incremental updates in STEPQ system; either
the PM-ExecutionEngine becomes aware of the incremen-
tal updates and capable of processing the positive- and
negative-tuples generated from the base queries, or the an-
swer set becomes fully materialized before it is sent out
from the ST-ExecutionEngine. We favored the latter ap-
proach to decouple the pattern-matching subqueries from the
way the base queries are evaluated. Thus, we introduced
a new materialization operator that will added by the PQ-
CompilerOptimizer on top of the base-query plans whenever
needed to fully materialize the output before passing it to the
PM-ExecutionEngine.

4.2 Synchronized-Query Processing
A single STPQ may require not only executing multi-

ple base queries, but also synchronizing their execution and
jointly processing their results. For example, Query Q5 in Ta-
ble 1 requires synchronization of two concurrent kNN queries
and then intersecting their outputs as illustrated in Fig-
ure 2(b). Notice that Q5 cannot be represented by, for exam-
ple, two consecutive states because automata states can en-
force sequential execution but not synchronized execution. In
contrast, Query Q4 can be represented by a single automaton
having three states plus three base range queries but without
the need for synchronization as illustrated in Figure 2(a).

STEPQ supports two types of synchronization mechanisms,
i.e., time-based where queries execute every ∆ time units, or
event-based where queries execute whenever a triggering event
initiates the execution of any of the synchronized queries. The
synchronization type is either provided as a used-defined pa-
rameter or left for PQ-CompilerOptimizer as an optimization
decision. In either cases, synchronizing the execution still
does not guarantee that the base queries will produce results
at the same time, e.g., one query can be more complex and
takes more time than the other queries. Therefore, we intro-
duce a new synchronization operator that blocks its output
until it receives all inputs coming from the underlying syn-
chronized base queries. This operator is a blocking N-ary
operator that is ready to produce output only when all its
inputs are received. For its output side, given an index i,
where 1 ≤ i ≤ N , the operator returns its ith input set.
For example, Query Q5 in Figure 2(b) uses a binary synchro-
nization operator that pipelines either of its two inputs to the
next operators on request. In addition to the synchronization
operator, base queries may go out-of-synch for some reason,
and hence new mechanisms will be investigated to monitor the
base queries, make sure their execution is correctly aligned,
and re-synchronize queries when needed.

Typically, the outputs from the synchronized queries need
to be transformed and jointly processed to produce a sin-
gle stream of event sets. STEPQ allows any relational plan,
e.g., select, project, join, grouping, and set operators, to be



  Interface Function Triggering Time Description 

Void Initialize(Schema:SL metaData) Once when the state is first created. Initializes the state information. If it is a binary 

state, then it may receive metadata from its 

previous state following schema SL.  

Void RightStatusUpdate(Schema:SR E)    When a new event set E arrives 

from the right input stream 

(following schema SR). 

Updates the state information based on the newly 

arrived event set. 

Void LeftStatusUpdate(Schema:SR E)    When a new event set E arrives 

from the left input stream 

(following schema SL). 

Updates the state information based on the newly 

arrived event set (Left streams exist only for 

binary states). 

Boolean ForwardCondition() After each execution of 

RightStatusUpdate() or 

LeftStatusUpdate() functions. 

Checks the state information and returns True if 

a new output event should be produced from the 

state. Otherwise, returns False. 

Schema:SO ForwardAction() Called when ForwardCondition() 

function returns True 

Creates a new output event set following schema 

SO and pass it to the next state. 

  

!

!

Figure 3: Interface functions of the automata states.

deployed on top of the the synchronized queries. For exam-
ple, Query Q5 in Figure 2(b) uses an intersection operator
to intersect the results from the two underlying queries and
produce a single stream of event sets. Relational operators
will be extended to operate on (and read their inputs from)
the synchronization operator.

4.3 Extensibility for Complex Pattern Queries
As indicated in Section 1, spatio-temporal applications are

very diverse, and hence providing a set of event operators
such as those in SASE [31], Cayuga [16, 15], and SnoopIB [2,
1], may fall short in expressing complex semantics. There-
fore, in addition to the system-provided event and automata
operators, we design STEPQ with abstract and extensible
interfaces through which users can plugin their user-defined
functions that define how a query pattern evolves. Extensibil-
ity has proven to be a desired property in database systems,
e.g., [3, 8], indexing frameworks, e.g., [5, 17], and query opti-
mization [19, 7].

STEPQ abstracts the definition of an automata state using
a set of properties categorized into Structural Properties and
Behavioral Properties. The structural properties define the
inputs and outputs of a given state along with their schemas
including: (i) Right input stream R with schema SR (always
exist), (ii) Left input stream L with schema SL (only for bi-
nary states), and (iii) Output stream O with schema SO. If
the state is binary, then its left input stream is basically the
output stream of the previous states. The behavioral proper-
ties define the functionality and actions of the state and can
be abstracted using the five interface functions presented in
Figure 3. The Initialize() function initializes a state when it
is first created. If the state is binary, it may receive its first
input event set from the previous state as a parameter dur-
ing the creating time. The RightStatusUpdate(), and LeftSta-
tusUpdate() functions update the state’s information when-
ever a new event set arrives either from the right, or left input
streams, respectively. The ForwardCondition() specifies, de-
pending on the current state information, whether or not the
state is ready to produce an output event to the next state.
This function is executed automatically after each call to the
status-update functions. Finally, the ForwardAction() func-
tion is executed only if ForwardCondition() returns True to
produce an output event from this state and pass it to the next
state. All the input and output events follow specific schemas
as depicted in Figure 3. In the cases where the provided op-
erators fall short in expressing certain complex patterns, the
system will enable users to supply these interface functions
as black-box pluggable modules. PM-ExecutionEngine and
the entire system should operate seamlessly regardless of how
these interfaces are provided.

4.4 Scalability and Optimizations
The design and architecture of STEPQ allows possible opti-

mizations between its components that cannot be performed
otherwise. In this section, we highlight few of these optimiza-
tions through examples.

Example 1: Given Query Q4 illustrated in Figure 2(a),
the execution of the second and third range queries over areas
A2 and A3 should be initiated only if there are matching cars
from the previous states. There are two possible approaches
to apply such optimization. The first approach requires lit-
tle communication between the PM-ExecutionEngine and ST-
ExecutionEngine where each automata state reports back its
status as being idle or not to its corresponding base query.
A state is idle if it is not monitoring any objects, and hence
not interested in getting any input events. In this case, the
corresponding base query will be suspended until it gets an-
other notification that its corresponding state is no longer
idle. For example, the second state in Q4 remains idle until
it receives an input from the first state. Once the objects in
the second state are deleted, the state becomes idle again un-
til it receives the next input from the first state. The second
approach requires more communication between the system
components where each state may send back information re-
garding the events it is currently interested in. This infor-
mation is incorporated in the base queries as dynamic filters
that are continuously changing. Although it is more efficient,
the dynamic filtering requires more careful design and precise
communication between the system components.

Example 2: The number of automata states executed by
the PM-ExecutionEngine can be very large, moreover, the
number of generated events from the base queries can be
also large. Therefore, one obvious optimization is to index
the automata states based on their tag labels (The tags that
link the base queries to their corresponding automata states).
Hence, when a new event set arrives with tag T, all automata
states having the same tag can be efficiently retrieved without
triggering the other states. Another more interesting opti-
mization is derived from the following scenario. Assume two
different automata states S1 and S2 which are monitoring po-
lice cars, and ambulance cars, respectively, in the same area
A1. Then, one trivial, but inefficient, solution is to have two
separate range queries over A1; one for each automata state.
A better solution is to merge the two queries into one range
query that reports both police and ambulance cars, and then
each state filters out the un-desired events. However, this
solution also has drawbacks since both S1 and S2 states will
be always triggered whenever a new event set comes from
the base query even if the event set has only police or am-
bulance cars. To overcome this inefficiency, we extend the
state properties to have tuning properties, in addition to the
structural and behavioral properties presented in Section 4.3.



One of the tuning properties is a filter predicate that indicates
the individual events of interest within each event set feeding
the state. The PQ-CompilerOptimizer may add these filter
predicate(s) as an optimization decision, even if they are not
defined in the input query, to enable merging multiple base
queries into one without sacrificing scalability or efficiency.
Given this tuning property, automata states will be triggered
only if there are events of its interest within the event set. For
efficiency and scalability, PM-ExecutionEngine needs to index
the states based on their filter predicates, in addition to their
tags. Empty event sets also require careful consideration and
optimization. Any automata state that require persistency,
e.g., tracking a pattern over a period of time, needs to receive
each event set from its base query even if it is empty. Such
forwarding of empty event sets should be optimized to avoid
triggering automata states unnecessarily.

5. CONCLUSION AND FUTURE PLAN
In this paper, we proposed the STEPQ system for efficient

and scalable processing of spatio-temporal pattern queries.
Unlike the traditional range, kNN, and aggregation spatio-
temporal queries, STEPQ can form higher-order correlations
among events and capture real-world semantics of interest.
New architectural design has been proposed to enable full-
fledged integration and optimization between spatio-temporal
and pattern-matching queries. The design is also based on
extensible interfaces to enable expressing queries beyond the
provided operators. STEPQ will not only enhance the query-
ing capabilities of countless spatio-temporal applications but
also initiate new research directions in the areas of spatio-
temporal data and complex event processing.

Currently, STEPQ is in its early stage of development. Our
group is investigating the functionalities of PLACE open-
source spatio-temporal server [26] from which we will in-
herit key aspects for the ST-CompilerOptimizer and ST-
ExecutionEngine components and then extend them as
needed. The second step is the realization of the PM-
ExecutionEngine which is fundamentally different from the
existing CEP systems because of its extensibility, but will still
leverage many of the operators proposed in [31, 16]. The final
step is the realization of the PQ-CompilerOptimizer which is
the heart of STEPQ as described in the paper.
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