WPI-CS-TR-12-07 November 2012

Robust Distributed Stream Processing

by

Chuan Lei
Elke A. Rundensteiner
and Joshua D. Guttman

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Robust Distributed Stream Processing

Chuan Lei, Elke A. Rundensteiner, and Joshua D. Guttman
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609
Tel.: (508) 831-5857, Fax: (508) 831-5776
{chuanlei, rundenst, guttman} @cs.wpi.edu

Abstract

Distributed stream processing systems must function efficiently for data streams that fluctuate in their arrival
rates and data distributions. Yet repeated and prohibitively expensive load re-allocation across machines may
make these systems ineffective, potentially resulting in data loss or even system failure. To overcome this problem,
we instead propose a load distribution (RLD) strategy that is robust to data fluctuations. RLD provides e-optimal
query performance under load fluctuations without suffering from the performance penalty caused by load migra-
tion. RLD is based on three key strategies. First, we model robust distributed stream processing as a parametric
query optimization problem. The notions of robust logical and robust physical plans then are overlays of this
parameter space. Second, our Early-terminated Robust Partitioning (ERP) finds a set of robust logical plans,
covering the parameter space, while minimizing the number of prohibitively expensive optimizer calls with a prob-
abilistic bound on the space coverage. Third, our OptPrune algorithm maps the space-covering logical solution to
a single robust physical plan tolerant to deviations in data statistics that maximizes the parameter space coverage
at runtime. Our experimental study using stock market and sensor networks streams demonstrates that our RLD
methodology consistently outperforms state-of-the-art solutions in terms of efficiency and effectiveness in highly
fluctuating data stream environments.

1 Introduction

Motivation. Distributed stream processing systems (DSPSs) are designed to execute continuous queries over
streams of tuples [} [2, 3, 4]]. Continuous queries place heavy workloads on precious system resources from CPU
processing cycles, memory, and network bandwidth. Since workloads can vary in unpredictable ways, exploit-
ing the limited resources requires robust and effective load distribution techniques. Figure [I] depicts a typical
distributed stream processing system.

Load distribution, the placement of the operators in a query plan to machines (nodes) in the distributed system,
is an important design decision, impacting the query processing performance [3]. A carefully selected operator
placement may later produce poor performance due to time-varying, unpredictable stream fluctuations. Data
fluctuations may in fact necessitate repeated expensive load redistributions in such distributed systems. Such load
redistribution may cause delay and potentially make the system fail to react to short-term load fluctuations in time.
Example 1 illustrates this problem using a real-world application.

Example 1. Consider a query monitoring stocks that exhibit "’bullish” patterns (upward price movement in the
stock market) [5] in recent business news and research.

Figure 1. Distributed Stream Processing System

SELECT S.company.name, S.symbol, S.price

FROM Stock as S, News as N, Research as R

WHERE matches (S.data, BullishPatterns) [*op1*/
AND contains (S.sector, News[l hour]) [*opa*/
AND contains (S.company_name, News[l hour]) [*op3*/

WINDOW 60 seconds
The lookup table BullishPatterns contains “bullish” patterns of stock behavior, e.g., ”symmetrical triangle”. Oper-
ator op; performs a similarity-based join on the latest stock data tuples from the last 60 seconds with the Patterns
table. Operators opy and ops perform matches on the stock sector and the company name with news and research
streams. Let ¢; and §; denote the processing costs and current selectivity of op; respectively.

Dynamic EXPENSIVE = Ip: ops->op.->op,
 Load SWAPPING pp+:{opi}, {op,, ops}
Distribution Pp2::{op1, ops}, {op2}

L)
Robust Node, — Ipy: ops->0p,->0p,
Load @ @ @ = Ipa2: Opy->0p2->0ps
Distribution " pp: {op1, op2}, {ops}

Query Plan (bear pattern): op;->op,->0p;

Figure 2. Dynamic vs. Robust Load Distribution

Suppose it is a bullish market (i.e., stocks are doing well) and the following condition holds: §; > do > Js.
Given these statistics, the best query processing order (query plan) is ops, op2, op (c1 > co > c3). Assume we
have two machines, n; and ng, with resources r; and ro (i.e. CPU, memory and network bandwidth) available
for processing. Then the best load distribution plan is op; on node n;, and ops and ops on node ng, as depicted
in the upper illustration of Figure Now suppose breaking news report poor stock performance. This will
likely result in fewer matches with the Patterns table and instead more matches with news and blogs. In this
case, 91 will be relatively lower than J, and d3 for such data tuples. So plan ops, op2, op1 is no longer the most
efficient ordering. In fact, op2 and ops may overload no, namely co + c3 > ro. Consequently, the DSPS has to
relocate ops to n1. However, in the future if the market exhibits bullish pattern again, the optimizer might need to
revert back to the original query processing order. Then the query executor would again need to move ops back
to no. In this particular scenario, we notice that the load distribution plan, op; and ops on nj, and ops on no

(lower Figure [2) would have been robust to support both query processing orders ops, opz, op; and opy, op2, 0p3
in different scenarios. Proactive design of this load distribution plan achieves two objectives, i.e., robust query
processing performance and tolerance to data fluctuations without dynamic load redistribution.

Insufficiency of State-of-The-Art. Traditional distributed and parallel systems [6, [7] categorize load distribu-
tion solutions as either dynamic or static. Dynamic load distribution [[1} 2]] instead repeatedly improves the current
load distribution plan by moving operators across machines to adapt to load changes. However, it comes with
several drawbacks, including (1) amortized overhead of repeated load redistributions, (2) adaptation delays, when
redistribution opportunities could be missed, and (3) expensive maintenance of statistics.

Traditional static optimizers [8] determine a single "best” (i.e., cheapest overall execution costs) placement of
query operators at compile time based on the average estimated statistics of data streams. While this approach
imposes low optimization overhead, it cannot adapt the load distribution to changing statistics of data streams
such as variations in input rates and selectivities. The most recent work, resilient operator distribution (ROD) [9]],
aims to produce a feasible physical plan to be resilient to time-varying and unpredictable workloads. However,
shortcomings of ROD include: (1) it only focuses on the physical operator distribution without taking logical
query plan ordering problem into consideration, (2) its operator distribution plan does not guarantee the given
query processing performance, and (3) it is not proactive to changing workloads. A detailed comparison can be
found in Section[7l

Our Proposed RLD Approach. Given these inevitable disadvantages of existing load distribution methods,
we now propose an end-to-end solution called Robust Load Distribution (RLD) that exploits the key principles
from load distribution methods while overcoming their respective shortcomings by integrating parametric query
optimization. As foundation of RLD, we introduce the multi-dimensional parameter space model, a representation
of the uncertainties in statistical estimates of streaming data. We then introduce the dual model of matching robust
logical and robust physical plans which together gracefully handle the fluctuations experienced by the multi-
dimensional parameter space. RLD serves as a practical compromise between the two extremes of either static or
dynamic optimization.

Considering the intractable complexity of the search space composed of all combinations of logical plans with
associated physical plan, we adopt a two-step query optimization approach. First, our proposed algorithm, Early-
terminated Robust Partition (£ R P), identifies a set of robust logical plans that together cover the parameter space
with a probabilistic guarantee on the percentage coverage of the parameter space. In particular, each robust logical
plan covering a non-trivial area of the space will be found with high probability. A combination of robust logical
plans that together cover the space and guarantee the robust performance under any known fluctuations is called a
robust logical solution.

Next we propose a load distribution algorithm, Opt Prune that efficiently produces an optimal robust physical
plan (i.e., operator allocation plan) that supports the logical plans in a robust logical solution based on their
probability of occurrence at runtime and their respective area of robustness in the parameter space. This results in
a single robust physical plan tolerant to expected data statistic deviations at runtime.

Contributions. We introduce an end-to-end solution that overlays robust logical plans with a single physical
plans in a parameter space. The contributions of this work can be summarized as follows:

1. We introduce the property of robust logical query plans (i.e., e-robustness). We efficiently compute a multi-
dimensional parameter space representing uncertainties in statistic estimates, including stream input rates and
query operator selectivities.

2. ERP, our robust logical solution algorithm efficiently finds multiple robust logical plans that together assure
coverage across the entire parameter space, unattainable by a single plan. ERP forms a probabilistic bound on
the total uncovered area. Individual robust plans with any non-trivial area will be found with high probability.

3. Given a robust logical solution, we design a family of algorithms that cover the spectrum from the opti-
mization complexity to result optimality. GreedyPhy finds a robust physical plan in polynomial time, whereas
OptPrune is a branch-and-bound algorithm using Greedy Phy as bound, which succeeds to significantly bound

the search without compromising optimality.

4. Our performance evaluation using streaming data from stock market and sensor networks confirms that our
RLD approach is superior to state-of-the-art solutions [2, 9] in all aspects, including average tuple processing time,
total system throughput, and robustness to data fluctuations.

The rest of this paper is organized as follows. We define the RLD problem in Section [2] and overview our
solution in Section [3] Sections [] and [5] describe our algorithms for generating a robust logical solution and the
associated robust physical solution. The experimental results are presented in Section [Sections[7]and [§]discuss
related work and the conclusion, respectively.

2 Model & Problem Statement

2.1 Basics of Distributed Query Plans

Common to other distributed stream work [2, 9], we assume the distributed stream processing system (DSPS)
is deployed on a shared-nothing homogeneous compute cluster connected by a high bandwidth network. Hence,
network bandwidth is not our key bottleneck. The DSPS accepts a continuous query, an expression describing
the user’s information needs. Then it performs a two-step optimization [8]], namely, plan generation and operator
placement, to determine the most effective strategy to execute the given query. Plan generation identifies the
algebra operator plan with the least estimated cost for a given input query and estimated data stream statistics.
Operator placement takes the algebra plan as input and outputs a mapping of each operator in the algebra plan to
a physical machine (node) in the cluster. We refer to the algebra plan and its operator placement as logical and
physical plans, respectively.

2.2 Multi-dimensional Parameter Space

Current optimizers [2} 9] tend to use a single-point statistic estimate for plan generation. However, it is well
known that estimates in streaming environments tend to fluctuate over time. We thus now model these uncertainties
in estimates via a multi-dimensional space around these estimates, called parameter space S. This space captures
all possible combinations of estimate variations. Each point pnt in space .S is a vector < dy, ..., d, >, where each
d; is an estimate of the corresponding statistic modeled by that dimension of the space such as selectivity or input
rate.

Algorithm 1 Compute the parameter space for £/
Input: E-Statistic Estimates, U-Uncertainty Level
Output: Elo, Ehi
A = 0.1 //Unit step
fori =1 — E.size() do
Enli) = E[i] x (1+ A x U);
Eplil = Eli] x (1 — A x U);
end for
return E;,, Ey;

Different methodologies for constructing a parameter space exist, including strict upper and lower bounds [[10]]
or levels of uncertainty to the optimizer estimates [11]. We use the latter approach in which the uncertainty level
U is computed based on how statistic estimates I are derived. For example, if a value of E is available from
the representative training data set, then U = 1 denotes low uncertainty. For simplicity we henceforth use an
integer domain to denote the uncertainty levels, though other scales of uncertainty could be easily plugged in. The

most crucial statistic estimates I for query optimization are the selectivities of operators and the input rates of
streams [[10]. We assume the statistic estimates F and the uncertainty level U correctly represent the data stream
fluctuations. If suddenly some totally unexpected fluctuation arises in the future, our current solution may not be
able to handle it, and we may have to exploit operator migration to resolve such scenarios after all. The parameter
space .S is computed as shown in Algorithm[I]and Example 2.

Example 2. Assume a simplified query)2 of Q)1:

Q2: SELECT

FROM News as N, Stocks as S, Currency as C

WHERE N.subject = S.industry [*op1*/

AND N.country = C.country [*opa*/

WINDOW 60 seconds

Assume neither the selectivity for operator op; nor the input rate of stream News are accurate over time due
to data fluctuations (e.g., breaking news in a certain industry). To capture this uncertainty, a parameter space is
constructed around the single-point estimate E = {§; = 0.4, Ay = 100 tuples/sec}. First, an uncertainty level U
(e.g., U =2) is assigned to each estimate in E. Then the parameter space is constructed with §; ranging between
0.32 and 0.48, and Ay ranging between 80 tuples/sec and 120 tuples/sec. An example of the parameter space is
depicted in Figure

Single-point Estimate
E={04,10},U=2
4

1.2
=
o
o Ip2
S1.0
H
£ Ips

0.8 |

0.32 0.4 0.48

Selectivity of op;

Figure 3. Selectivity Space Example

Similar to parametric queries [12]], in practice, each dimension of the parameter space is discretized. For ease
of exposition, we henceforth work with a 2D parameter space, though the extension to higher dimensions is
straightforward.

2.3 Notion of Plan Robustness

Let us now consider the most common queries, namely, select-project-join (SPJ) queries. Thus the cost model
of a logical plan in a 2D parameter space is of the form:

cost(p,pnt) =c1-0;j+ca-0j+c3-0;-0j+ca
where c1, c2, 3, ¢4 are coefficients, and o;, o; represent the selectivities of operators op; and op;, respectively.
Modeling a specific plan requires suitably choosing the four coefficients. This is achieved through standard

surface-fitting techniques [[12]. Extending the above equation to a general n-dimensional space is straightforward.
Given the notations in Table[I] we introduce the notion of robust query processing.

Table 1. Notations and Definitions

Term Definition

g The +th node

op; The ith operator

0; The selectivity of op;

T Resource limit on node n;

S Parameter space

pnt Parameter instance in the parameter space

pnti; Right top corner of a parameter space

pntro Left bottom corner of a parameter space

Ip Logical query plan

LP; Robust logical solution for S, a subset of L P

pp Robust physical plan

cost(lp, pnt) | Cost of a query plan p at pnt

cost(OF;) Cost of a subset of OP on the ith node (i.e., the
workload on the ith node

lpl?,ﬁT Optimal query plan at pnt

Definition 1. Given a parameter space .S;, a logical plan Ip is € — robust, also called robust logical plan, in S;
if its costs satisfy the condition (see Table 1 for notions):

cost(lp, pntp;) < (1+€) x cost(lpHhE pntp;)

The intuition of what a robust logical plan is can be explained as follows: consider two optimal query plans
Ip1 and lps for two points pntr, =< di1,...,d1,, > and pnty; =< da1,...,d2,, > in the parameter space 5;
respectively, and pntr, < pntg;, meaning Vi d; ; < da ;. If [py is a robust plan in S;, then we can provably bound
the costs of plan [p; between the costs of plan Ip; at pnty, and the costs of plan Ipy at pnt ;.

Definition 2. The robust region of a logical plan [p in S is the subarea .S; where [p satisfies Definition 1 at all
points pnt; € S;. For example, the robust region of /p; in Figure 4| (left) covers the left-top corner of the space .S.

Definition 3. Given a set of robust logical plans, also called robust logical solution L P; and resources r; for
node n; (Vi : 1 < i < N) for a DSPS, a physical plan pp is robust, also called robust physical plan, if it satisfies
the following conditions: 1) cost(OF;) < r;,2) | JOP, = OP,and 3) (OP, = ((Vi : 1 < i < N), where OP;
denotes the set of operators allocated to machine n; by pp, and OP is the full set of operators in the query.

Intuitively, a physical plan pp, shown in Figure [] (right), is robust, if for each subset of query operators OP;
assigned to node n;, its total cost cost(OP;) is no greater than the resource capacity r; of n; to execute the sub-
plans of all query plans lp; € LP. Each OP; associated with n; also defined as a con figuration c;, has no
overlap with any other O P;, and the union of all O P; forms the whole operator set OP.

2.4 Problem Statement

Robust distributed query processing aims to 1) identify a robust logical solution L P;, such that for each point
in the parameter space S, there is at least one logical plan [p; in the solution LF; that is e-robust by Def. 1 in
that sub-space .5;, and to 2) produce a physical plan pp that supports the robust logical solution, i.e., pp is robust
by Def. 2. The key idea is that the resulting system will be able to withstand the known data stream fluctuations,
meaning, as long as the actual statistics (i.e., input stream rates and selectivities) remain within the parameter
space. Our robust load distribution (RLD) problem can be formalized as follows.

Given a query q, resources r; for node n; (Vi : 1 < ¢ < N), statistic estimates E =< e1,--- ,e, >, and
the associated uncertainty levels U =< uq,--- ,uy >, the robust load distribution problem is to find a robust

physical plan pp that supports a robust logical solution L P; in the parameter space S constructed based on E and
U.

Robust Load Distribution Solution

c
. S £
._g Ip1 M @ =
E &
[} I b
? P2 (opy 2 (om)| B
S 2
=) <
3 Ip3 COSt(Ip1)max =70 o
ny: cost(Ip2)max=30 > < =100

: cost(/ps)max = 90

Ip1: op1->0p->0p3->0p, COSH{IP1)max = 60

. _ o - 1)max =

IP2: OP2>0Pi>0pi=>0p3 | o Ipmen=95 - < r,=100

Ips: op->0p3->0p->0p, coSt(Ips)max = 40

Figure 4. Robust Load Distribution Solution

Finding the robust solution (Figure §) for this problem requires a comparison among all possible subsets of all
logical plans L P and all possible physical plans pp in PP in the worst case [9]. The corresponding search space is
a combined space of all possible robust logical solutions (sets of logical plans that together “cover” the fluctuations
in streams), and the robust physical plan space that provides a static allocation of operators to machines so that
this allocation can support a given robust logical solution. Therefore, the above problem is prohibitively expensive
as the search space of finding robust logical and physical plans are exponential in the number of query operators
and the number of machines in the system, respectively [9]. Furthermore, finding a robust logical solution LF;
and a corresponding physical plan pp supporting L P; requires the optimizer to search both logical and physical
search spaces. This renders the solution intractable for large problems, e.g., large numbers of query operators or
machines.

3 Overview of RLD Approach

Given the intractability of RLD, we instead employ a two-step approach towards query optimization popular for
both distributed and parallel database systems [[8] due to its reduction of the overall complexity of the distributed
query optimization problem.

In our context, the two-step optimization works as follows: 1. The first step generates a robust logical solution,
in which each logical plan is designed for a particular sub-region of the parameter space. 2. The second step
produces a single robust physical plan, determining the machine on which each operator is placed and supporting
the given logical solution without load redistribution.

The above two steps efficiently work together to achieve an effective load distribution plan as our experiments
confirm. The first step realized by our proposed ERP approach, described in Section 4.3] has a much smaller
optimization complexity than parametric query optimization [[13} 14} [15]. The second step reduces the complexity
of producing a physical plan by prioritizing robust logical plans to support. Our overall RDL strategy conducts
load distribution with full awareness of all possible scenarios at runtime, thus avoiding costly load redistributions.

We now briefly introduce the key challenges tackled by our RLD: 1. How do we efficiently produce a robust
logical solution L P; that covers the complete parameter space (Step 1)? 2. Can we produce a single robust physical

plan pp that satisfies all or at least the maximal number of robust logical plans in LFP; (Step 2)? Intuitively, our
strategy exploits a probabilistic model to guarantee that any missing robust logical plans cannot occupy a large area
in the space. Thus any uncovered area has a probability below some bounded threshold. The RLD architecture is
depicted in Figure 3]

Robust Load Distribution

I Robust Plan Optimizer

I ! Robust Logical !

Query | { Plan Optimizer ;1 Statistic
.......................

Monitor

| i Robust Physical i
| { Plan Optimizer |
I
I

Data | *
Stream! Operators
&
Statistic
Monitor

[

]

[

[Actual Statistics

\ J

Figure 5. Robust Load Distribution Architecture

Robust plan optimizer. Our robust plan optimizer uses the standard query optimizer of a DSPS as a black-box
to perform traditional plan optimization calls. Given a query, it estimates resource requirements of the query based
on the uncertainty of the estimates. The plan optimizer then produces a robust logical solution, and determines a
single robust physical plan to support this logical solution. The remainder of this paper details this optimizer.

Robust load executor. After a robust physical plan is selected, the operators are instantiated by the executor
on the machines accordingly. At runtime, our executor collects up-to-date statistics of running operators from
statistic monitors installed on the DSPS machines. The executor assigns the most appropriate logical plan from
the robust logical solution to the new arriving tuples based on the latest runtime information. To keep the costs of
making plan decisions minimal, a logical plan is assigned to tuples in batches. Techniques from the literature on
multiple-route query processing [[16, [17] are plugged in for runtime plan execution.

In particular, RLD is built on top of the QueryMesh executor [16] that offers the ability of switching between
robust logical plans at runtime by an online classifier operator. Once a robust load distribution solution has been
produced by the optimizer, the online classifier is implemented that associates each computed robust logical plan
with the specific statistics. The classifier then inspects the latest runtime statistics to determine the best logical
plan from the robust logical solution for each batch of tuples. In the QueryMesh infrastructure, each batch of
tuples then carries its own execution path (i.e., its own logical plan ordering). This is agile, as it is in fact always
the system to adapt between logical plans without any migrations.

Statistic monitor. The robust load executor requires runtime knowledge about the actual values of key param-
eters. Thus each machine in a DSPS runs a statistic monitor that periodically samples the selectivity of operators
and the associated stream input rates. The monitor then transmits the statistics to the executor where all statistics
are kept up to date.

4 Robust Logical Plan Generation
4.1 Weighted Partition Algorithm Overview

The parameter space, defined in Section [2] requires us to find the robust logical solution LP; such that each
plan lp; € LP; satisfies Def.1. The exhaustive approach would incur impractically large computational overhead
for high-dimensional spaces. Random sampling also suffers from potentially huge computational costs and tends
to fail to identify appropriate robust logical plans in the space, as confirmed by our experiments in Section [6.3
Instead our approach leverages the fact that we are not required to identify the optimality region for each plan,
but rather only its robustness region (as per Def. 2). As our experimental study validate, this reduces the space
significantly.

S X
=) =)
g g
H Pa 7
o~ ~
z| Pa Pa P 7 s
= 2
7] ©
g S
3 Pz Pz & 1 1 3 3
P1
Pz Ps 1 1 3 5
0 Selectivity 1 100% 0 Selectivity 1 100%
a) Ideal approach b) Exhaustive approach

Figure 6. Comparison of Ideal and Exhaustive Approach

Consider a two dimensional parameter space containing 6 distinct robust logical plans, with their respective
robust regions depicted in Figure [6(a). In this example, the parameter space would only need to be partitioned
twice (making 10 optimizer calls) to confirm the robustness of all 6 plans. The resulting partitioned space will
contain 10 sub-spaces (Figure [6[a)). On the contrary, the exhaustive approach depicted in Figure [6[b) would
divide the parameter space into an 8 x 8 grid (making 64 optimizer calls) to discover the same 6 plans. Thus, the
exhaustive approach is 6 times more expensive than needed. Worst yet, such overhead increases significantly with
the number of dimensions of the parameter space.

Overview of the Logical RDL Steps. The first technical challenge addressed by our logical plan generation
algorithm is how to efficiently find an effective partition point in the parameter space (Step 1). By the robust logical
plan definition, to verify the robustness of a logical plan, we must make expensive optimizer calls in all sub-spaces
of its partition. If that tested plan does not satisfy the robustness criteria, a finer-grained partition must be found.
Therefore, identifying a good partitioning point is the key to avoid repeated wasteful attempts of expensive robust
logical plan finding. Our insight is to leverage information about the already known query plans in the space and
encode this knowledge as weights in the space. In this model, points where a new robust plan is more likely to
exist are assigned higher weights.

The second issue we tackle is how to update the weights assigned to all points during the parameter space
partitioning process (Step 2). Given the size of the space, we propose an efficient approach that incrementally
updates the weights.

The third issue we address is when to stop partitioning the parameter space (Step 3)? Fine-grained partitioning
incurs significant computational overhead for query optimization. Moreover, the quality improvement of the

resulting robust logical plans may no longer outweigh its growing expense of optimizer calls. Thus, we develop
a termination condition that provides a probabilistic guarantee on the space coverage by the robust logical plans.
We show that the possibly missed robust plans, if any, are guaranteed to not occupy a large area in the parameter
space.

While on the surface our problem relates to parametric query optimization, our approach of generating robust
logical plans has several crucial differences from generating plan diagrams in parametric query optimization (i.e.,
finding all optimal plans in a given parameter space) [[12}[18]]. Detailed comparison can be found in Section[7] The
efficiency and effectiveness of our proposed strategy is experimentally confirmed in Section

4.2 Weight Assignment in Parameter Space

We now describe our strategy of exploiting plan cost information from already identified plans to assign weights
to the remaining points in the parameter space. The weight of a point should reflect the probability that the robust
logical plan at that point is different from the robust plans in the bottom-left and top-right corners of the associated
space. This way we would be able to exploit these weights to efficiently identify distinct robust plans in the
parameter space. However, this is clearly infeasible without knowing what the costs of previously identified plans
would be at all points in the space. Yet computing all these plan costs is prohibitively expensive in a large space.
Thus, our goal instead is to heuristically approximate the weights without exhaustively computing all plan costs
in the space. For this, we develop a weight function based on the following principles.

Principle 1. Two points in the parameter space that are closer to each other are more likely to have the same
robust plan compared to a more distant pair of points. To motivate this, consider the cost model in Section
We observe that the cost of a plan is monotonically increasing along each dimension of the space [12]. Thus, in a
small region of the space, the costs of a plan Ip; on two nearby points are likely to have the same robust plan by
Def.1.

Principle 2. A plan is less likely to be robust at a point if the slope of the plan’s cost function, defined in
Section at that point is high. This principle is based on the observation that the slope of a plan’s cost function
is monotonically increasing in the parameter space. Intuitively, the closer the points move towards the margin of
the plan’s robust region, the higher the slope of the plan cost function is at these points.

Based on these two principles, we now design a weight assignment function that increases as the ratio between
the slope of a plan’s cost function and the distance of that point to the bottom left point pntr, of that space
increases. The weight function decides how quickly the weight decreases as the distance increases, and how
quickly the weight increases as the slope increases. In practice, assigning weights individually to each point in
the parameter space would be expensive since there are O(n?) points in a d-dimensional space assuming an n
step discretization of the space along each dimension. Thus, we consider each dimension independently. A point
pnt = (x1,--- ,x,) € S is projected onto each dimension d;, such that x; € d; and the point’s weight on each
dimension is assigned according to the projected distance between pnt and pntr, (see Table[I). The weight of
pnt in the i-th dimension, denoted by weight;(pnt), is defined as:

min(slope(pnt,pp T), slope(pnt,pp T)

dist(pnt,pntiLo)

weight;(pnt) =

where dist is a function that measures the distance between two points. Any distance measure such as Manhattan
or Euclidean Squared Distance [19] could be plugged in.

Weight Re-Assignment Strategy. Unfortunately, the initial weight assignment will no longer be accurate after
partitioning. That is partitioning produces several sub-spaces, each of which may have their own optimal plan at
bottom-left lpgﬁfo or top-right corner lpgn},?gi of that sub-space. Recall that the optimizer finds a distinct robust
plan for each sub-space. Thus, each point’s weight has to be updated accordingly in order to reflect the cost
behavior of the new plans in the sub-spaces.

10

As described earlier, the cost of the weight assignment function largely depends on the number of points in
the parameter space. Updating the entire parameter space repeatedly incurs significant overhead for the weight
assignment. We now introduce a refinement of the above weight assignment approach where we update the weights
of points in a sub-space as we partition the parameter space S if and only if the following condition is satisfied.

(Ippnty, = WSET) A (Ippny, = DSEE.) = True

where weight; (pnt) denotes the updated weight assignment for the current partition point pnt; while S;.pnt g;(S;.pntr,)
denotes the top-right (bottom-left) corner of the sub-space S; € S. Intuitively, the above condition ensures that
the update would not be triggered if the predicted logical plan at top-right (bottom-left) corner is identical to the
optimal plan identified at the same point after partitioning the space.

Example 3. We illustrate the above weight re-assignment strategy using Figure |7} The weight is assigned to
each point in the original parameter space in Figure [/(a). Then we partition the space into 4 sub-spaces, and
compute the weights of pntg; and pntr, for each of the 4 sub-spaces S; (Figure [7(b)). However, we only update
the sub-spaces S; (Figure[7{c)) as the optimal plan is different from the predicted robust logical plan at Sy.pnt g;.
Thus, the above condition reduces the number of sub-spaces to update.

o d o
=8 > 0 S o P o
~) 3} }) ~ C ~ C 1 c e
2 2 ! 2 2
3 2 > .
HO O O + € -
g H e 3
° ° Partition Point T
J b) O 4
3 4 (
O O O O O O O O O O < et *———o>
0 Selectivity 1 100% 0 Selectivity 1 100% 0 Selectivity 1 100%
a) Original Weight b) Select Partition Point c¢) Updating Weight

Figure 7. Weight Assignment for Parameter Space

Example 3 shows savings by not updating weight assignments in areas where an identified robust logical plan
has a “large” area of optimality. The reason is that the weight assignment in a sub-space only depend on its robust
plan. Thus, we avoid re-computations of any weight assignments that is constant in the area.

4.3 Parameter Space Partitioning

4.3.1 Weight-driven Robust Partitioning Algorithm

We now illustrate how the above weight assignment is integrated into the parameter space partitioning process.
The main idea of parameter space partitioning is to incrementally find robust plans as the space is partitioned. A
straightforward way to achieve this is using the weight-driven partition (WRP) procedure (Algorithm [2). First we
compute the weights for all points in the discretized space .S. Then, we pick the point with the highest weight as
the partition point to divide the space into 2¢ sub-spaces, with d denoting the number of dimensions of S. Each
sub-space .5; will be further partitioned if its optimal plan at pnty; is not robust. Finally, the partitioning process
stops once all plans at pnty; of all .S; are robust.

This partitioning process could result in unnecessarily small sub-spaces if the robustness threshold € is not well
chosen. On the contrary, a too large ¢ may end up with a rather small number of sub-spaces - leading to suboptimal

11

plans. Our experiments (Section show that relatively small increments in € are sufficient to bring down the
number of plans significantly, without adversely affecting the query processing quality.

Limitations of WRP. As described above, WRP aims to minimize the computational overhead of partitioning.
Yet there is a significant explosion in costs associated with an increasing dimensionality of the parameter space.
Moreover, a large percentage of the computation could be wasted as W RP treats all sub-spaces in the parameter
space equally rather than targeting specific subareas. The intuition is that a too strict threshold € may lead the
partitioning algorithm to undertake a too fine-grained job, not merited by the coarseness of the underlying space.
In an extreme case, all optimal logical plans in the space must be identified if € = 0.

Algorithm 2 Weight-driven robust partitioning algorithm
Input: A parameter space S
Output: A robust logical solution LF;

1: Plan [p < optimize(S.pnt ;)

2: if [p is robust in S then

3: LP,.add(lp,S)

4: return LP;
5: else
6: Assign weights to points in S
7: Choose appropriate point to partition .S based on weights
8: fori=1— n(numberofsub — spaces) do
9: Update weight assignments in s; € S
10: standardPartitioning(s;, LP;);
11: end for
12: end if

13: return LP;

4.3.2 Early-terminated Weight Robust Partitioning

Given the shortcomings of WRP, we now enhance this approach by designing an early termination strategy. This
new method, called £ R P, reduces the overhead while providing a probabilistic guarantee that the robust plans
missed cannot occupy a large area in the parameter space. Our solution uses two key factors:

(a) Region of robustness for a given plan [p refers to the location where the plan [p is robust in the parameter
space.

(b) Size of robustness for a given plan p corresponds to the total area in the parameter space where the plan [p
is robust.

We exploit the above two factors to trade off between the partitioning costs and the quality of the resulting
plans. Observe that when we partition the parameter space using uniform partitioning, the probability of finding
a new robust plan is proportional to its area of robustness. Given that a finite number of robust plans exists,
the probability of finding a new robust plan decreases as we find more robust plans from that set of plans when
partitioning. The more robust plans we have already found, the more partitioning steps it will take on average to
find an additional robust plan. We propose to exploit this insight by terminating the partitioning process when we
have not obtained a new robust plan for a pre-determined number of partitioning steps.

For this, we maintain an aging counter, which keeps track of the interval between the last two times that a new
robust plan was detected in the partitioning process. Each time we call the optimizer at pntz; of a new sub-space,
if the plan at pnty; is a new robust plan that is distinct from all robust plans observed thus for, we reset the aging
counter. Otherwise, we increment the aging counter.

12

Assume that after partitioning ¢ times, we found a new robust plan. Then the aging counter is reset to 0 and
we start counting up again. Let ¢ be the number of additional partitioning steps after ¢ to find the next new robust
plan. The probability of finding a robust plan is constant between ¢ and ¢ + ¢, since the number of missing robust
plans does not change during this interval. If we denote the probability of identifying a new robust plan after ¢
partitions by Pr(t),

VO<t<c-I,Pr(t+c)="miss

Ntotal

where 1,55 1s the number of unidentified robust logical plans and 74,4 is the total number of robust plans.

Theorem 1. With a probability of at least 1 - €, if we do not find a new optimal plan in the partitioning process
within ¢ trials, where ¢ < ¢y = (1 + e~ Y/2) /8, then the total number of optimal plans not yet found is bounded by
0 (<9).

Proof. Let p be the probability of finding a new robust plan. Then the expected value E[c] = 1/p, and variance
Var[c] = (1 — p)/p?. By Chebyshev’s inequality [20], for any k € R¥,
1 1-— 1
Prlle—=|>k e 5
p P2 2
We wish to bound p using the above inequality. Solving the inside for p gives,
5 2¢ 1 ol —p

c——+ =52k
p p? p?

EpP (k2 —29)p+1—k*>0

Two solutions of the above inequality are:

_ 2c—k? — k\/k? + 4c(c — 1)
B 2¢2

b1

~ 2c— K+ kK2 + 4c(c— 1)
B 2¢2

b2

Expressing the bound using p, p; and po,

1 1
Prip<pVp2pl) < 5= Prip2p] < 45
Prlp > 6] < Pr[p > ps] < 1/k?. Setting ¢ = 1/k? proves the theorem. O

Intuitively, Theorem |1 states that if the aging counter reaches a value > cg, then with high probability the
missing optimal plans cover a small area in the parameter space. We observe that the position to partition the space
can have a significant impact on how quickly the aging threshold is reached. The space partitioning technique,
which exploits Theorem |1| to early terminate the partitioning process, called ERP, is shown in Algorithm
Since the guarantee in Theorem I]is probabilistic, our proposed £ R P may miss some robust plans. The following
theorem quantifies the likelihood of missing a robust plan based on its area of optimality.

Theorem 2. Suppose we stop partitioning according to the aging threshold in Theorem|l| If the coverage of an
optimal plan lp is area(lp) > v - 9, for a constant 0 < ~y < 1/, then the probability that the plan lp is not found

is at most e—7(+e™?),

13

Algorithm 3 Early-terminated Robust Partitioning Algorithm
Input: A parameter space S
Output: A robust logical solution LF;
1. LP;, < ¢
counterpiss < 0
age_threshold « (1 +e=Y2)/6
while counter,;ss < age_threshold do

pnt < get PartitionPnt(S)

p5ET is the optimal plan at pnt

if pO/T € LP; then
counteryss++ and continue

else

1 add(pgﬁT) to LP;

11: counteryiss =0

12: endif

13: end while

14: return LP;

R AT A~ N

=4

Proof. Assume that the total number of robust plans is | P| and the total area of the selectivity space is A. Consider
the probability of missing a robust plan p.log with area(p.log) > v - JA, denoted Prip.log ¢ P.log]. v is a
constant such that 0< v < 1/e. Since r > ¢pand 1 — % <1,

area(p.log)

area(p.log) oo <
A

Prlp.log ¢ P.logs] < (1) Plog| < (1 — 1 <

(1= ~8) < =10 5570 _ =alla=1/2)
0

Theorem [2]states that if an optimal plan has a ”large” area of optimality, then we will find it with high probability
when using the stopping condition of Theorem[I] From Theorem[2)we know that the probability of missing a robust
plan decreases exponentially with its area. Thus, while Theorem [I] refers to the total uncovered area due to all
missing robust logical plans, Theorem 2| confirms that individual robust plans with any non-trivial area will be
found with high probability.

5 Robust Physical Plan Generation
5.1 Basic Approach for Robust Physical Plan

A straightforward strategy for robust physical plan generation would entail the following steps. As input, we
accept L P;, a set of logical plans that together cover the parameter space by Def.1 produced by the logical opti-
mizer. Then we compute all physical plans PP for each robust plan Ip; € LP;, denoted by PP(lp;). Thereafter,
we find the intersection among all sets P P(Ip;) for all logical plans Ip; € LP;. If the intersection is not empty,
then any physical plan in this intersection is a valid solution, which satisfies all robust logical plans in L F;.

However, if the intersection is empty, then no physical solution supports all logical plans in LP;. We would
need to locate a suboptimal solution. Many strategies are possible. One simple option would be to remove a
logical plan Ip; from solution LF;. Then we repeat the above procedure until the intersection is not empty and
thus a valid robust physical plan can be produced.

14

Unfortunately, the number of physical plans for a single logical plan is n""/n! [9], where n is the number of
machines and m the number of operators in the logical plan [p. Moreover, the number of different logical solutions
LP; is 2% — 1, where k is the cardinality of the set of all possible logical plans LP. As a result, finding the optimal
solution for this problem is intractable for a large number of machines or a large number of robust logical plans.

Thus, we now propose algorithms that trade off between the optimization complexity versus the result opti-
mality. GreedyPhy exploits heuristics to efficiently find a robust physical plan in polynomial time, whereas
Opt Prune, using GreedyPhy as baseline, is guaranteed to find the optimal physical plan to support the maxi-
mum number of logical plans, though with minimal increase in optimization time.

5.2 Greedy Physical Plan Generation

Given the complexity of physical plan generation, we now introduce a heuristic-driven strategy that uses two
key principles:

(a) The area of optimality heuristic. Intuitively, we aim to produce a robust physical plan pp that covers as
much as possible of the parameter space by supporting all logical plans in LF;. If all logical plans cannot be
supported by pp, then we drop from L P; the least important logical plan, i.e., the plan associated with the smallest
robust region in the parameter space S from LF;.

(b) The probability of occurrence heuristic. By definition, the selectivity of an operator fluctuates around
its given statistic estimates. Various probability distributions could be used to model the occurrence of a point
in the space S. For simplicity, we model this probability using a normal distribution as commonly done in the
literature [19]]. Therefore, the closer a point is to the given statistic estimate, the higher the possibility that the
actual selectivity happens at runtime. As a result, we drop the logical plan whose optimality region is the furthest
away from the given estimate point.

Weight Assignment Policy. Our strategy is to assign a weight to each robust logical plan that incorporates
the above two factors. Let area(lp;) denote the robust region of plan Ip;, and Pr(pnt;) denote the probability of
occurrence of a point pnt; at run time. A robust logical plan’s weight weight(lp;) is defined as:

weight(lpi) = antjearea(lpi) P?“(pntj)
where Pr(pnt;) can be obtained from the normal distribution.

Example 4. Consider a 2-dimensional parameter space with each dimension discretized into 16 units (see
Figure [8). Suppose the space contains 5 different robust logical plans. Each plan’s robust region is depicted as
one or more rectangles. For example, the robust region of Ip; includes area:, areag, areay, and areajg. The
probabilities of the actual run time statistics to fall within these rectangles are 2.4%, 11.7%, 11.7%, and 2.4%,
respectively. Summing the values gives us the weight of Ip; as 28.2%. The probability of occurrence with respect
to a unit area is calculated as follows using area; as an example:

Pr(areay) = Pry(areay) - Pry(areay)

where = and y denote the x-axis and y-axis of a unit area in the 2-dimensional parameter space, respectively.
The above assumes that the and y dimensions are independent following the assumption of independence of
selectivity values commonly made by query optimizers [21]. Thus the correlation between dimensions is zero.

Example 5. Pr;(areag) = Pry(0.3 <z < 0.5) = Pry((0.3 —u)/o < Z < (0.5 — u)/o), where i is the
mean (the estimated selectivity) and o is the standard deviation (the uncertainty level of the estimated selectivity)
of the selectivity in x-axis. For example, in Figure[8] if u = 0.5 and 0 = 0.2, so Pry(areag) = 0.342. Similarly,
Pry(areag) = 0.342. Multiplying Pr;(areai) by Pry(areay), we get Pr(area;) = 0.117. Finally, weight(Ip1)
= Pr(areay) + Pr(areag) + Pr(areai;) + Pr(areais) = 0.282.

The GreedyPhy Algorithm. After assigning weights to the logical plans, the plans are stored in a heap sorted
by their weights in descending order. Greedy Phy algorithm exploits the above weight assignment (Algorithm 4)).

15

s
=

P3

Areag
P3
Areasy | Areay
P2

0.7 09

Figure 8. Weight Assignment for Logical Plans

Given a solution LP; produced by the logical plan optimizer, then each plan lp; € LP; has a weight w(lp;),
GreedyPhy finds the physical plan pp that supports a subset of L FP; such that the sum of all weights of the
supported logical plans is maximal among all possible subsets of L P;. Intuitively, the resulting robust physical
plan pp should be robust to the most frequently occurring data fluctuations. Given a robust logical solution LF;
and resource constraints r;, GreedyPhy generates a logical plan [p,,q., in which the cost of each operator is
equal to its maximum cost for all logical plans lp; € LFP; (Lines 1-2). Thereafter, in each iteration the algorithm
tries to produce a physical plan by using the Largest Load First (LLF) algorithm (i.e., Longest Processing Time
algorithm [9]) (Line 4). LLF orders the operators by their cost and assigns operators in descending order to the
least loaded machine. If a physical plan is produced by LLF, it is thus returned as final solution.

If the algorithm fails to find a physical plan, it removes the least-weighted logical plan Ip; from the robust
logical solution L P; (Lines 8-10). After repeating lines 3-10 a maximum of |LP;| times (L FP; is empty after | L P;|
times), the algorithm returns a physical plan that maximizes the total weight of the subset of logical plans selected
from L P; supported by pp.

Complexity Analysis. The worse case for Greedy Phy is that none of the logical plans in L P; can be supported
by the given resources. In other words, it would iterate k (the cardinality of |LFP;|) times before stopping. There-
fore, the worse case complexity of GreedyPhy is O(n) as the complexity of LLF is proven to be O(n) [9], and
the complexity of get MinW eight PlanWithM axOp and update M ax procedures are both linear in the number
of operators in Ip, namely O(n). Therefore, GreedyPhy is guaranteed to have a linear complexity taking O(n)
time.

5.3 OptPrune Physical Plan Generation

The above algorithm, being greedy, cannot always find the optimal solution. We now design a strategy that
guarantees the optimal solution is found if one exists. Given the prohibitively high complexity of exhaustive
search, the key idea is to devise a pruning methodology that eliminates suboptimal solutions. Opt Prune succeeds
in improving the efficiency of the search costs without compromising result optimality (see Algorithm [5).

In order to find the optimal solution, OptPrune potentially needs to examine all possible physical plans.
We represent all physical plan candidates in a weighted directed graph G = (V, E, SCORE) (Figure [9) where
v; € V are vertices, e;; € F are directed edges v; — v;, and a score € SCORE is associated with each vertex

16

Algorithm 4 GreedyPhy Algorithm

Input: A robust logical solution L FP;, resources R
Output: A robust physical plan pp

1: terminate < false

2! Pmaz < updateMaz(LP;)
3: while terminate # true do
4: pp < LLF(lpmaz, R)

5: if pp # null then
6
7
8
9

terminate < true
else
index < get MinWeight PlanWithMaxzOp()
LP;.remove(index)
10: IPmaz <+ update Max(LFP;)
11: endif
12: end while
13: return pp

:; Lv0

¥, Vs Vy Vs Ve

0.6‘ 5={0Pl}‘1‘ e Lv 1

‘83=<0P3>‘1‘ ‘Cl=<0[’|,0[’2> ‘1‘ ‘C4=<0P2>‘1‘ ‘Cz=(0P1,0P3>

Vs
CI=<0p1,0p2>
ci=<op3>

Lv2

Figure 9. Robust Physical Plan Search Graph

v;, denoted by score(v;). A vertex v; represents a set of configurations ¢; defined in Section The root, the
vertex on level 0, is empty. Each lea f, a vertex on level N (with N the number of machines), is a robust physical
plan (Def.3). All vertices located between level 0 and level N — 1 correspond to partial physical plans (i.e.,
UOP; © OP but | JOP; # OP). A vertex vj is the child of the vertex v; denoted by the edge e;; from v; to v;.
The configurations in a child vertex v; corresponds to the union of all configurations in v;’s parents. A score is
the minimal weights of the configurations can support in a vertex. For example, c¢o = 0.6 and ¢4 = 1 in Figure[9]
the score of vg = min {ca,c4} =0.6.

The key idea is that Opt Prune can leverage the results generated by GreedyPhy as its pruning criteria for
improved efficiency. For simplicity, we here assume that the machines are homogeneous. Thus a configuration
such as co =< opq, opg > is valid, if op; and ops can fit on one machine.

Opt Prune traverses the above search tree in a depth-first search (DFS). Opt Prune starts at the root, an empty
plan, and continues iteratively down the graph forming a robust physical plan by adding configurations. As stated
in Section the goal of OptPrune is to maximize the total score of the logical plans that a physical plan
pp can support, denoted by score(pp). The algorithm first figures out all possible configurations on a single
machine (Line 1). The score of a physical plan is the total weight of the logical plans being supported. It sorts the
configurations in decreasing order of the number of operators in each configuration. ¢y is the configuration with
the most number of operators (Lines 2-6).

17

OptPrune starts its depth-first search (DFS) by adding one configuration to the current robust physical plan
(pp) at a time (Lines 7-11). If the union of configurations in pp contain all query operators, then the algorithm ter-
minates and returns pp (Lines 12-13). We have an effective bound that is guaranteed to only eliminate suboptimal
solutions. If the current partial pp exceeds the given resource capacity or the score of the current pp is worse than
that of the Greedy Phy solution, then the algorithm backtracks by removing the newly added configuration from
the current pp and updating the score of pp accordingly (Lines 14-21).

Algorithm 5 OptPrune Algorithm
Input: A set of robust logical plans LF;, resource limits R
Output: A robust physical plan pp
1: C <+ all feasible configurations on a single machine
greedyPlan < GreedyPhy(LP;, R)
bound < score(greedyPlan)
pp < NULL
sort(C')
co < maz(C)
Search(C, co){
S" < removeCon flict(C, cg)
forall c; € S’ do
pp.add(c;)
score < updateScore(pp)
if completeSolution(pp) then
return pp
else if check Limit(pp) V score < bound then
pp.remove(c;)
score < updateScore(pp)
continue
else if |Search(C’, ¢;) then
pp.remove(c;)
score < updateScore(pp)
continue
else
continue
24: end if
25: end for
26: }
27: return pp

R A T o

[T N T N N N S e ey S Sy ey
PR 2 QYRR R

Lemma 1. In the search graph, when we add a distinct configuration to the current pp, the score of this newly
constructed pp* is guaranteed to be no greater than that of the original pp.

Proof. Assume a pp; contains k configurations and the score of the pp; is s;. Now let us compare pp; and its
children (i.e., k¥ + 1 configurations including pp;’s k configurations) on the next lower level of the search tree.
Adding a configuration c; to a partial physical plan pp either keeps or reduces the number of robust logical plans
that the new physical plan supports. Thus the score of each child physical plan cannot be higher than that of pp. [J

Theorem 3. The new pp* cannot be an optimal solution if the current pp is not an optimal one. The physical plan
search graph is guaranteed to be safely pruned. Opt Prune is guaranteed to find the optimal solution.

18

Proof. Whenever the score of the current pp exceeds the bound, we can safely prune its branches because these
vertices contain solutions that cannot become the final robust physical plan. [

Complexity Discussion. The worse case for Opt Prune is to have to check every configuration in the entire
search space. Therefore, the worse case complexity of Opt Prune is the same as that of exhaustive search, namely,
O(n™ /n!). However, in practice our proposed pruning methods are found to be extremely effective at terminating
the search much earlier, as confirmed by our experimental results (Section [6.4). The reasons are twofold. First,
GreedyPhy produces a relatively good physical plan - this offers us an excellent bounding condition, which
enables us to stop searching through most branches early on. Hence it reduces the search space significantly
without affecting the search accuracy. Secondly, Opt Prune terminates immediately if it finds the first physical
plan (leaf) that supports all robust logical plans. Therefore, Opt Prune guarantees to produce a physical plan
supporting either all logical plans or the most important logical plans within the available resource.

6 Experimental Study
We have implemented the proposed techniques on D-CAPE [22], a distributed continuous query processing

architecture employing stream query engines over a cluster of shared-nothing processors. The experiments were
run on the D-CAPE system using Linux machines with AMD 2.6GHz Dual Core CPUs and 4GB memory.

Table 2. System Parameters & Distribution Distribution

Parameter Value Description
Data Arrival Poisson Data arrival distribution
500 msec Mean inter-arrival rate
|qu] 1,000 Maximum # of tuples dequeued by an operator at a time
Ruster size 100 tuples Minimum ruster size
Data Distributions

Uniform (a =0, 8 = 100): min: 0.0, max: 100.0, med: 49.0, mean: 49.7,
ave.dev: 25.2, st.dev: 29.14, var: 849.18, skew: 0.05, kurt: -1.18.
Poisson (A = 1): min: 0.0, max: 7.0, med: 1.0,mean: 0.97,

ave.dev: 0.74, st.dev: 1.01, var: 1.02,skew: 1.17, kurt: 1.89

6.1 Data Sets and Queries

Stocks-News-Blogs-Currency data set: We have employed a data polling application, which is implemented
in QueryMesh [[16]], to collect NYSE stock prices, foreign currency exchange rates from Yahoo Finance, news and
blogs via RSS feeds.

Sensor data set: This data set contains readings from sensors in the Intel Research, Berkeley Lab [[10]. The
sensor readings are streamed to D-CAPE in the order they are generated, as if they were submitted by sensors in
real-time.

Synthetic data sets: To study the effectiveness of our strategies under data fluctuations, we design several data
sets using various data distributions that model real-life phenomena. Default properties, distribution and system
parameters are depicted in Table[2]

Queries: We deploy N-way join queries, as those are among the core and most expensive queries in database
systems. The default settings used in our experiments are listed in Table [2] The queries are equi-joins of 10
streams. The sliding windows are based on the application timestamps associated with the data (as opposed to the
clock times when tuples arrived at the system during a particular test run). This ensures that the query answers
are the same regardless of the rate at which the data set is streamed into the system or the scheduling of tuple
processing (i.e., repeatable workloads).

19

6.2 Experimental Methodology

Our experiments are categorized into three major classes.

The first class studies the effectiveness of our £/ R P algorithm for robust logical plan generation. Specifically,
we compare the compile-time optimization performance and the quality of the resulting robust logical plans for
three alternative techniques. As baseline for the best quality robust logical solution, we employ exhaustive search
(ES) over the discretized parameter space. We also implement a search algorithm which randomly selects points
in the parameter space as plan candidates (R.S). R.S stops making optimizer calls if it fails to find a distinct robust
logical plan after a given number of optimizer calls. This corresponds to our partitioning technique assigning
equal weights to all points in the parameter space. Finally, our weight assignment strategy with early termination
is denoted as ERP.

The second class evaluates the effectiveness of our algorithms, Greedy Phy and Opt Prune, for robust phys-
ical plan generation. Specifically, we compare different approaches for physical plan generation with respect to
their optimization time to find the solution and the space coverage of the solution. We also measure the total weight
of the area covered by the resulting physical plan. As baseline, we again choose the results from the exhaustive
search over all load distribution plans, which is guaranteed to find the optimal solution.

The third class is a comparative study assessing the runtime execution of the overall RLD system. Specif-
ically, we evaluate the average tuple processing time and runtime overhead of our RLD solution and compare it
to state-of-the-art approaches, namely, the resilient load distribution [9]] (RO D) and dynamic load redistribution
(DY N) [2].

6.3 Effectiveness of Logical Plan Generation

Varying Robustness Thresholds and Uncertainty Levels. This experiment assesses the impact of the ro-
bustness threshold € and uncertainty level U on the effectiveness of our logical plan finder. The value € of the
robustness threshold is varied from 10% to 30% for Q)1 (5-way join query). Figure [I0]shows the number of opti-
mization calls made by ERP, RS and ES. As expected, a lower value for e (tighter robustness bound) results in a
higher number of optimization calls, because returned plans cannot be much worse than the corresponding optimal
logical plans due to the tight robustness bound e. Furthermore, Figure[10|depicts the optimization efficiency under
different uncertainty levels. The higher uncertainty levels result in a larger parameter space. Hence, the number of
optimizer calls increases along with the increasing uncertainty level.

120

120 70

% ES & % ES & {_.‘;’ ES X
RS RS 60 | RS
O 1 o (&}
© 100 O 100 [ERP © ERP
2 2 S 50t
T 80 [] =
N N N
E el E E 4Oy
S 5] S 3¢
5 40| 5 2 20
3 8 £
E 27 B € E 10 s
z E E
0 50N 0 125N
1 2 3 4 5 1 2 3 4 5
Uncertainty Level Uncertainty Level Uncertainty Level
a)e=0.1 b)e=0.2 c)e=0.3

Figure 10. Vary Robustness Thresholds and Uncertainty Levels for 3 Partitioning Algorithms

Figure [T 1] shows the parameter space .S coverage of the robust logical plans identified by ES, RS and ERP,
respectively. Given the same number of optimization calls, E'R P finds more distinct logical plans and thus covers
more space than £.S. We also observe that ERP is able to completely cover the space given a larger margin on e.
This implies that there are many logical plans with trivial cost differences, which agrees with the findings in [12].

20

In contrast, R.S misses many robust logical plans even with the same € as used in £ RP. Moreover, &R P provides
better parameter space coverage, in fact close to £S5 in all cases, compared to R.S.

Parameter Space Coverage

0.8

0.7 |
0.6 [
05
04
03

0.2

ES
r RS
[ERP m—

32

o8

Rz

385

R

2%

V227

B

5

10 50 100 200 00
Number of Optimization Calls

a)e=0.1,U=2

Parameter Space Coverage

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

ERP mmmmm

ES xxxxa
RS &=y

il

%

o529

%

S
53

o5

S8

.

N
N
N EN BN
10 5 100 200 300
Number of Optimization Calls

b)e=02,U=2

"
%

s
%

B
5%

%

Parameter Space Coverage

0.9
0.8
0.7
0.6
0.5
0.4
0.3

ES xxxxeal
RS
ERP mmmm

o3

oo

2

X

S

2

o

58+

2

088

%

bz

2!

10 50 100 200 300
Number of Optimization Calls

c)e=03,U=2

V722222

Figure 11. Parameter Space Coverage for 3 Partitioning Algorithms

Varying the Number of Dimensions. Our previous results are based on a fixed number of statistic estimates
(i.e., dimensions). We now examine the relative efficiency of the algorithms for dimensions varying from one to
ten.)2 (10-way join query) is used because it has a higher number of logical plans compared to Q1. Thus, it is
more likely to suffer from the exponential growth of complexity with a linear increase in the number of dimensions.

Number of Optimization Calls

ES EXXzx
[RS
FERP

Number of Dimensions

2)e=03,U=1

Number of Optimization Calls

450
400
350
300
250
200
150
100

50

ES B
RS
ERP mmmmm

R
e

V2702002022002

%
fotols

%

%

XXX
o038

0R:
o

2022

o
i

N

N
w
N7
(4,1

Number of Dimensions

b)e=02,U=2

Number of Optimization Calls

400
350
300
250
200
150
100

50

ES B
RS
ERP mmmmm

w5
%

e
R

R

o

o

203%
2%

R

2R
S

2033

o

X

&

R
XXX

XK

K

2

393%
5%

R

X2

2
e

%%
R

Number of Dimensions

c)e=01,U=3

Figure 12. Number of Optimizer Calls for 3 Partitioning Algorithms

We consider 3 parameter configurations to evaluate the efficiency of our algorithm for finding logical plans
across diverse scenarios. Our optimizer, as shown in Figure[I2] is significantly more efficient than the alternative
approaches. It is clear that the more dimensions the parameter space has, the more subspaces are produced by
each partitioning step. That is, the number of subspaces grows exponentially with the dimensionality of the
parameter space. This issue drastically affects E/S because this approach has to check all unit subspaces in the
discretized space. As depicted in Figure [I2] the number of partitioning iterations increases exponentially with
the number of dimensions. In contrast, our proposed £ R P solution increases almost linearly by wisely choosing
the partitioning areas. Furthermore, we benefit from our early termination mechanism that successfully avoids
wasting computations on already robust areas.

6.4 Effectiveness of Physical Plan Generation

Next, we address the relative effectiveness of GreedyPhy versus Opt Prune for physical plan generation.
We measure the quality (i.e., space coverage and associated weight) of the respective algorithms. We vary the
number of machines and also use different queries (equi-join of 10 to 20 streams).

Figure |13| shows the average optimization time used by each algorithm for different numbers of operators.
GreedyPhy is 12 times faster than its alternatives on average. Exhaustive search (ES) fares the worst because

21

it treats the regions equally in the parameter space. This is a bad choice because 'S wastes computations on
the margin areas (i.e., less likely to actually occur at runtime) of the parameter space that are less likely to be
supported by the resulting physical plan. Opt Prune does fairly well compared to ES, because it tends to support
the most important logical plans first. Moreover, it uses the result from Greedy Phy as bound for effective branch
and bound search. In fact, it exhibits an optimization time similar to our Greedy Phy approach in most cases.

80 120 160
GreedyPhy ==l GreedyPhy &=z GreedyPhy zx=xa
70 OptPrune 100 OptPrune 140 OptPrune
= ES mmmmm —~ ES mmmm — ES mmmmm
g 60 g g 120
@ Py Y
£ £ £
= = [
2 2 S
= = =
£ £ £
o o o
o o O
2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
Number of Machines Number of Machines Number of Machines
a)Q1,e=02,U=1 b)Q1,e=02,U=2) Q1,e=02,U=3
14 1 1
00 GreedyPhy E=xxxxi 600 GreedyPhy Exxxxzi 800 GreedyPhy E=Xxxxi
1200 OptPrune 1400 OptPrune 1600 OptPrune
- g 2 1200 ES mmmm 7 1400 ES mm—
£ 1000 £ £
£ = ~ 1200
© o 1000 @
E 800 £ £ 1000
= = 800 - 800
2 600 2 <
= 3 600 2 00
E 400 E £
S G 400 S 400
200 200 200
0 0 0
6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
Number of Machines Number of Machines Number of Machines
d)Q2,e=02,U=1 €)Q2,¢=02,U=2) Q2,e=02,U=3

Figure 13. Optimizer Performance for Finding Physical Plan

Figure [I4]compares the physical plans produced by our GreedyPhy and Opt Prune with the optimal solution
(ES) for different queries (number of operators) given different system resources (number of machines). We
define the average parameter coverage ratio rt4 as a metric to assess the relative effectiveness of the algorithm.
The metric is defined as a ratio between the area (Area(p.phya)) covered by algorithm A’s physical plan and
the area (Area(p.phygs)) covered by the optimal physical plan. The physical plan generated by Opt Prune is
identical to E'S even in the worst scenario, yet the search costs are much cheaper than those of £S. As for
TtGreedyPhy» the maximum 7t is 0.94 and the minimum rt is 0.62 (ratio varies with different queries). Clearly,
GreedyPhy sacrifices the quality of the robust physical plan for a reduction in compilation overhead.

6.5 Measuring Runtime Performance

While our overarching goal is to achieve robust processing without load redistribution, DSPSs must process
continuous queries in real-time. Thus, we now evaluate the runtime performance (i.e., the average tuple processing
time and the total number of tuples produced) of the RLD solution compared to the most prominent approaches,
namely, resilient operator distribution [9] (ROD) and dynamic load distribution (DYN). Each query is run for 30
minutes five times using these different solutions with the initial setup for input rates as shown in Table 2. Using
synthetic data, we vary stream rates by scaling the rate by a constant. The input data arrival follows Poisson
distribution and the input data value follows Uniform distribution described in Table 2. In general, the results in
Figure [T5] show that RLD outperforms ROD and DYN in both metrics. The primary reason is that neither ROD
nor DYN guarantees any optimality of logical query plans since its load migration only changes the operators’
physical layout on computing nodes. Consequently, the query processing still suffers from sub-optimal plan

22

©
wn
7 <
m m
7
o™
o s
£ c
a2
=5 ~
o5 000200 B
O]
— © © < o~ (=}
o o o o
abesano) aoeds Jsewered
©
wn
<
7]
7
™
>0
£ c
a2
8% ~
L0
[G]
4 @ @ ¥ o o
o o o o
abesano) aoeds Jsiswered
I/ A AT, ©
R R R RRRRRRRRRIRRE
7 <
“
7
22 hrm R RRRRRRRIREN
g3
(o
5= ~
20
o
- ® © ¥ o ©°
o o o o

abelano) aoeds Jsewered

Number of Machines

©)Q1,e=02,U

Number of Machines

b)Q1,e=02,U

Number of Machines

) Q1,e=02,U=1

3

2

o]
bzz7777727772772 ©
BRRRRRRBRBERB
m m _ rrrrrrrrrrrrrrrrrr
Y
7]
~
22 S BRI
L3
[N
5= ©
Lo 000 B
O]
- ® © <% o o
o o o o
abeiano) aoeds Jerewered
o
—
o
©
7]
7
o0 ~
[N
s ©
L0
Qo
- © © ¥ o o
o o o o
abeiano) aoeds Jsrswered
o
—
o
R R RRBBRIIBEE
7 ©
7]
" 22227 ~
200 TR
S
g3
=1 777 ©
5%} RERRRREBRE
[O)
- o

@ @ = N
<] [S) o [S]

abeiano) aoeds Jeyewered

Number of Machines

) Q2,

Number of Machines
€)Q2,¢=02,U=2

Number of Machines

d)Q2,e=02,U=1

02,U=3

€=

Figure 14. Space Coverage of Physical Plan Generation

execution (ordering) even after the load migration.

o
- ©
° L]
[=}
L) n re)
° n
=)
L) n 1<
. L]
o
. " ®
o« a
K =)
L Y . I
vaPo ° n
o 2
azao
ox4 ° m
e . e
© © © © © © O 90O 90 9 O
SO0 o000 O0S S S o
© O O O O O O © © ©
O S S T = B~ = N =
O D ODODOD DD
N OO FTA~-D®OF N

paonpoid sejdn] jo Jaquiny [e10 L

400%

300%

Input Rate Fluctuation Ratio

X
o
o
3V
R
o
o
7
0 X
I o
u 13
529
row, .
O O O ©O O ©O O © O o
nu O v O v O uv O W
< S O MO NN - -

(sw) awi] Buissadoid ajdn) abeiany

Time (mins)

b) Total Number of Tuples Produced

a) Average Tuple Processing Time

Figure 15. RLD Runtime Performance 1

Average tuple processing time: Figure[I5{a) shows the average tuple processing time results over 30 minutes

to 400% of the initial rates as shown in Table 2. The results

in Figure[T5{a) over such wide range of fluctuation not only show that RLD is robust to the input rate variations in

for the algorithms when the input rates vary from 50%

most cases, but also point out where it fails. When the input rate is low (50%), ROD and DYN are almost as good

as our RLD approach. This is because when each operator has only a small amount of load and sufficient machines

are available

respectively. When

s performance does not scale well with the input rate.

B

then no operator migration or switch of logical plans is needed by DYN or RLD

’

bl

the input rate is normal (100%), neither ROD nor DYN

This is likely due to ROD’s

Our RLD approach performs 3 and 2 times better than ROD and DYN approaches.

approach is also slower since moving operators may result in temporary poor performance due to the execution
suspension of those operators. When the input rate is high (200%), the limitation of ROD and DYN become more

performance suffering from executing sub-optimal logical query plans once input data fluctuations arise. DYN
pronounced. In ROD, a few nodes become bottlenecks. Without load migration

, the tuple processing becomes

23

delayed. The load migration in DYN is a passive approach towards tolerating data fluctuations. However, DYN’s
performance exceeds our RLD approach when the input rate fluctuation ratio is very large (400%). In this case,
the load of the system cannot be well balanced since RLD only adopt one physical plan. DYN, on the other hand,
performs best with such dramatic fluctuations. The reason is that the computational resources are not sufficient for
our RLD approach to handle such fluctuations with one single physical plan. Thus, our RLD approach targets to
support fluctuations being known a priori.

Our experiments further inspect whether RLD approach is robust to another two simulation parameters, namely,
the number of nodes and the input stream fluctuation periods. Specifically, the input stream fluctuation period is
simulated by alternating the input rate of each input stream periodically between a high rate and a low rate. The
duration of the high rate interval (i.e., the period of the input stream fluctuation) equals the duration of the low rate
interval.

) @
. 2 :
£ ROD xxxxza E 200 ROD xxxxx3
2 200 ¢ DYN 1 2 DYN
= RLD = RLD mm
o o 150
£ 150 |] 2
[[7]
o0 %]
8 S 100
o o I
& 100] &
< Qo
S Ej
() [0}
j=) [=2]
: - s
o 0 o 0
2 5 10 15 2 5 10 20
Number of Nodes Input Rate Fluctuation Period (sec)
a) Vary the Number of Nodes b) Vary the Input Rate Fluctuation Period

Figure 16. RLD Runtime Performance 2

As indicated in Figure[T6] both ROD and DYN do not exhibit the same robustness to the other two parameters
as RLD does. In particular, they do not perform well especially when the number of nodes is small (Figure[16{a)),
or the load fluctuation period is long (Figure [I6[b)). Specifically, when the number of machines is large, the
performance difference among all three approaches is small. This is because when each machine has only a small
amount of load, all 3 systems succeed to produce stable solutions that require few or no operator migrations.
However, our RLD approach still performs better than the other two because it pro-actively switches logical plans
at runtime. Thus it can naturally reduce the overall processing load when the statistic changes by executing the
most efficient plan ordering at all times.

In terms of the effect of the load fluctuation period, the average tuple processing time of RLD slightly increases
while ROD and DYN suffer from the long fluctuation period. The reason is that ROD neither supports load
migration nor has multiple logical plans corresponding to different load fluctuations. On the other hand, DYN
approach supports load migration, however, its performance is also slow due to the execution suspension caused
by operator movements. Our RLD approach avoids load migration and smooths out the fluctuations by exploiting
a combined solution of multiple robust logical plans and a corresponding robust physical plan.

Total number of tuples produced: Figure [I5(b) indicates the total number of tuples produced by the three
load distribution stream models (i.e., ROD, DYN, and our RLD) over 60 minutes. The results demonstrate the
sensitivity of three approaches to input stream fluctuations. We increase the input rates from 50% to 100% after the
first 20 minutes and further increased the rates to 200% after running for 40 minutes. As indicated in Figure[I5|b),
our RLD quickly adjusts to the new input rates and continues producing results with the appropriate robust logical
plan. On the contrary, ROD barely produces any result tuples after 40 minutes since its physical plan supports a
narrower range of data fluctuations without having multiple robust logical plans at its availability. While DYN still
can keep up with the new input rates, it again suffers from two factors, namely, the load migration overhead and
sub-optimal logical plan execution, respectively. Thus, our RLD approach still performs better than DYN because

24

RLD’s robust logical plans can pro-actively smooth out the load changes.

Runtime Overhead: Now we compare the runtime overhead of RLD and DY N solutions. ROD is not
included as it employs a single logical and physical plan and thus incurs no runtime overhead beyond query
processing. For both RLD and DYN, we consider any execution costs beyond the actual query processing to be
runtime overhead. In RLD, tuples are grouped together into batches and assigned the appropriate logical plan
based on the runtime statistics. Thus all tuples in a batch share the same plan. The only runtime overhead incurred
in RLD is the initial classification to determine the execution plan for any arriving data, which was measured to
be small, on average, about 2% of the query execution costs. On the contrary, DYN suffers from continuous load
redistribution overhead. In DYN, the system collects operator statistics and determines which operator to move
off the overloaded machine. Multiple factors contribute to DYN’s runtime overhead, including the frequency of
operator relocation, the state sizes of the moving operators, and the scale of operator relocation. The continuous re-
optimization costs of DYN offset the performance gains achieved from using a better physical plan for short-term
data fluctuations. In RLD, such overheads are avoided by exploiting a robust physical plan to support multiple
logical plans.

7 Related Work

Robust [[10} 23] and parametric query optimization [12, 13} 14,15 [24] are closely related areas. Robust query
optimization [10, 23] aims to find one robust query plan that performs reasonably well for known uncertainties
in statistics. However, if significant discrepancies exist between estimated and actual values, a single robust plan
may fail to prevent performance degradation. Our work instead is unique in that it deploys multiple robust logical
plans that together assure coverage across the entire parameter space, which a single plan would not be able to
accomplish.

Similarly, parametric query optimization finds a set of plans that are optimal for different parameter settings.
The early work [15}124] optimized a parametric query for all possible values of uncertain variables, but postponed
the final plan decisions to runtime once the actual statistics become known. Recent works [[13, [12] proposes the
concept of a plan diagram, a pictorial enumeration of the query plans over the selectivity space. The authors
propose to reduce the plan diagram for a query by merging plans whose costs are ’close enough” with each
other. PPQO [14] tackles the same problem in a progressive fashion. They construct the parametric space and
approximate optimality regions.

Our problem faces different challenges compared with the above works [[12, [14]. First, in our case the original
plan diagram is not given. In fact, it would be extremely expensive to compute such diagram. Instead, we compute
robust logical plans based on prediction rather than observation on their cost behavior. Thus, the compile-time
overhead is significantly reduced by our solution by not making traditional optimization calls repeatedly. Second,
none of the above algorithms are directly applicable to our problem since assumptions made in these works do
not consider the physical plan generation with resource limitations in distributed environments. Finally, unlike
traditional parametric query optimization, there may be certain regions in the parameter space that cannot be
covered by the physical plan produced by our solution due to resource limitations. Our technique uses a probability
model to capture the occurrence of points in the space at runtime, and strives to cover the most important regions
in that space.

Our work is done in the context of distributed stream processing. The performance and scalability issues in
centralized stream processing systems [25), 126} |27, 28] drew attention to distributed stream processing systems [[1}
2]. Flux [1] offers dynamic ’intra-operator” load balancing by partitioning the input streams into sub-streams
and determining the assignment of the sub-streams to servers on the fly. Our work is orthogonal to Flux as we
focus on the "inter-operator” load distribution problem. Dynamic load distribution in Borealis [2] minimizes the
load variances and maximizes the correlations across all node pairs by dynamically distributing loads at runtime.
Our work instead produces a physical plan that supports pre-computed (compile time) robust logical plans, each

25

designed for a particular region of the parameter space. Thus, it does not rely on runtime load redistribution and
avoids costly migration overheads.

Some works have also proposed dynamic load distribution solutions for distributed stream processing [29, 30]].
SQPR [29] models query admission, allocation and reuse as a single constrained optimization formalization. Due
to the complexity of the problem, it then solves an approximate version. SQPR allocates resources to new queries
to be added to a distributed stream system by exploiting the reuse opportunities between new and existing queries
to share operator executions. SODA [30] is a stream-based distributed scheduler that optimizes two key metrics,
importance and resource utilization, as it makes its scheduling decisions. SODA balances the load across all
resources in the system by minimizing a weighted average of metrics that model resource utilization. In addition,
SODA controls job admission by weighing how many resources to give to admitted jobs.

Both techniques are related to our work in that both works focus on the physical plan allocation of operators
across machines. This layout aspect is covered by both their solutions and our RLD solution. However, their
methodologies consider dynamic operator movements across machines as a reactive strategy when an imbalance
arises, while our RLD approach does not consider this. Instead, our RLD aims to pro-actively produce a robust
load distribution solution without runtime operator migration. Unlike their effort, given known data fluctuations
as input, we pro-actively switch among appropriate multiple logical plans at runtime, all of which are executed on
the same physical operator allocation.

In essence, both approaches address issues different from our work. Namely, they both focus on (a) query
addition (allow queries to be added at run-time), (b) query admission (evaluate expected resource needs of new
queries and potentially restrict their execution), and (c) query migration (move operators across machines at run-
time). Neither of these three topics are the focus of our work. Moreover, neither method has the explicit goal to
produce robust logical plans under known statistic fluctuation ranges. Instead, both of them work with standard
single-point estimates.

ROD [9], which we compared against in our experimental study (Section [6.5)), produces a load distribution
plan to keep the system feasible under workload fluctuations without load migration. However, our work has
three key differences from ROD: 1. ROD only focuses on producing a feasible physical plan without exploiting
multiple logical plans for a given query. Our work combines principles from parametric query processing with
load distribution to obtain a many-to-one mapping from a set of robust logical plans to a single physical plan that
provides robust query processing performance. 2. The query processing performance is not guaranteed in ROD
as it has no knowledge of the logical plans being executed on top of its feasible load distribution plan. On the
contrary, our work uses proactive methodology to choose the best logical plan from our robust logical solution
to be executed on a single physical solution. Thus, the query processing performance is further improved. 3.
The operator distribution algorithm in ROD assumes that the load of each operator is a linear function of input
rates with the operator costs and selectivities being constant. In contrast, our work tackles the uncertainty in both
selectivities and input rates and their impact on query processing robustness. Consequently, the linear function
assumption made by ROD does not hold in our context.

8 Conclusions

The ability to withstand stream data fluctuations is an important consideration in a distributed stream processing
system. We design a scalable solution in which a DSPS may benefit from different logical plans at runtime based
on varying characteristics of the system. We model the fluctuations in input stream rates and selectivities as a
parameter space model. Our /R P then efficiently produces a robust logical solution that covers the space. Taking
the robust logical solution as input, Opt Prune produces an optimal robust physical plan that supports the logical
solution at runtime without operator relocation. Due to the effective bounding strategy, it succeeds to do so with
minimal optimization time.

Our experimental results on real world data show the promise of our RLD solution. The average processing time

26

of our robust DSPS is significantly reduced compared to all other state-of-art techniques. Thus, this technique
is well-suited to modern DSPSs. In the future we will explore advanced issues related to data correlations across
streams and in particular synchronized across-stream fluctuation patterns.

References

[1] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chandrasekaran, and Michael J. Franklin. Flux: An adaptive
partitioning operator for continuous query systems. In /CDE, pages 25-36, 2003.

[2] Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. Dynamic load distribution in the borealis stream processor.
In ICDE, pages 791-802, 2005.

[3] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, et al. Scalable distributed stream processing.
In CIDR, 2003.

[4] Magdalena Balazinska, Hari Balakrishnan, and Mike Stonebraker. Contract-based load management in fed-
erated distributed systems. In Proceedings of the 1st NSDI, pages 15-15, 2004.

[5] TradingMarkets. http://www.tradingmarkets.com/.

[6] Behrooz A. Shirazi, Krishna M. Kavi, and Ali R. Hurson, editors. Scheduling and Load Balancing in Parallel
and Distributed Systems. IEEE Computer Society Press, 1995.

[7]1 R. Diekman and R. Preis. Load balancing strategies for distributed memory machines. 1999.

[8] Donald Kossmann. The state of the art in distributed query processing. ACM Comput. Surv., 32:422-469,
2000.

[9] Ying Xing, Jeong-Hyon Hwang, Ugur Cetintemel, and Stan Zdonik. Providing resiliency to load variations
in distributed stream processing. In VLDB, pages 775-786, 2006.

[10] Shivnath Babu, Pedro Bizarro, and David DeWitt. Proactive re-optimization. In SIGMOD, pages 107-118,
2005.

[11] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of sub-optimal query execution plans.
In SIGMOD, pages 106-117, 1998.

[12] Harish D., Pooja N. Darera, and Jayant R. Haritsa. Identifying robust plans through plan diagram reduction.
Proc. VLDB Endow., pages 1124-1140, 2008.

[13] Naveen Reddy and Jayant R. Haritsa. Analyzing plan diagrams of database query optimizers. In VLDB,
pages 1228-1239, 2005.

[14] Pedro Bizarro, Nicolas Bruno, and David J. Dewitt. Progressive parametric query optimization. I[EEE TKDE,
21:582-594, 2009.

[15] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K. Sellis. Parametric query optimization.
In VLDB, page 132151, 1992.

[16] Rimma V. Nehme, Elke A. Rundensteiner, and Elisa Bertino. Self-tuning query mesh for adaptive multi-route
query processing. In EDBT, pages 803-814, 2009.

27

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]

Feng Tian and David J. DeWitt. Tuple routing strategies for distributed eddies. In VLDB, pages 333-344,
2003.

Surajit Chaudhuri, Hongrae Lee, and Vivek R. Narasayya. Variance aware optimization of parameterized
queries. In SIGMOD, pages 531-542, 2010.

Liping Peng, Yanlei Diao, and Anna Liu. Optimizing probabilistic query processing on continuous uncertain
data. PVLDB, 4:1169-1180, 2011.

A. Papoulis. Probability, Random Variables, and Stochastic Processes. Mc-Graw Hill, 1984.

Yannis E. Ioannidis and Stavros Christodoulakis. Optimal histograms for limiting worst-case error propaga-
tion in the size of join results. ACM Trans. Database Syst., pages 709-748, 1993.

Timothy M. Sutherland, Bin Liu, Mariana Jbantova, and Elke A. Rundensteiner. D-cape: distributed and
self-tuned continuous query processing. CIKM ’05, pages 217-218, 2005.

Volker Markl, Vijayshankar Raman, David Simmen, et al. Robust query processing through progressive
optimization. In SIGMOD, pages 659-670, 2004.

G. Graefe and K. Ward. Dynamic query evaluation plans. In SIGMOD, pages 358-366, 1989.

Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic plan migration for continuous queries
over data streams. In SIGMOD, pages 431-442, 2004.

Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, et al. Telegraphcq: continuous dataflow processing.
In SIGMOD, pages 668—668, 2003.

Daniel J. Abadi, Don Carney, et al. Aurora: a new model and architecture for data stream management. The
VLDB Journal, pages 120-139, 2003.

Rajeev Motwani, Jennifer Widom, Arvind Arasu, et al. Query processing, approximation, and resource
management in a data stream management system. In CIDR, 2003.

Evangelia Kalyvianaki, Wolfram Wiesemann, Quang Hieu Vu, Daniel Kuhn, and Peter Pietzuch. Sqpr:
Stream query planning with reuse. In /CDE, pages 840-851, 2011.

Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh, Deepak Rajan, Rohit Wagle, Kun-Lung Wu, and
Lisa Fleischer. Soda: an optimizing scheduler for large-scale stream-based distributed computer systems. In
Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, Middleware *08, pages
306-325, 2008.

28

	Introduction
	Model & Problem Statement
	Basics of Distributed Query Plans
	Multi-dimensional Parameter Space
	Notion of Plan Robustness
	Problem Statement

	Overview of RLD Approach
	Robust Logical Plan Generation
	Weighted Partition Algorithm Overview
	Weight Assignment in Parameter Space
	Parameter Space Partitioning
	Weight-driven Robust Partitioning Algorithm
	Early-terminated Weight Robust Partitioning

	Robust Physical Plan Generation
	Basic Approach for Robust Physical Plan
	Greedy Physical Plan Generation
	OptPrune Physical Plan Generation

	Experimental Study
	Data Sets and Queries
	Experimental Methodology
	Effectiveness of Logical Plan Generation
	Effectiveness of Physical Plan Generation
	Measuring Runtime Performance

	Related Work
	Conclusions

