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Abstract

In this paper we introduce a new clustering technique called Regularity Clustering. This new
technique is based on the practical variants of the two constructive versions of the Regularity
Lemma, a very useful tool in graph theory. The lemma claims that every graph can be parti-
tioned into pseudo-random graphs. While the Regularity Lemma has become very important in
proving theoretical results, it has no direct practical applications so far. An important reason
for this lack of practical applications is that the graph under consideration has to be astronomi-
cally large. This requirement makes its application restrictive in practice where graphs typically
are much smaller. In this paper we propose modifications of the constructive versions of the
Regularity Lemma that work for smaller graphs as well. We call this the Practical Regularity
partitioning algorithm. The partition obtained by this is used to build the reduced graph which
can be viewed as a compressed representation of the original graph. Then we apply a pairwise
clustering method such as spectral clustering on this reduced graph to get a clustering of the
original graph that we call Regularity Clustering. We present results of using Regularity Cluster-
ing on a number of benchmark datasets and compare them with standard clustering techniques,
such as k-means and spectral clustering. These empirical results are very encouraging. Thus in
this paper we report an attempt to harness the power of the Regularity Lemma for real-world
applications.

1 Introduction

The Regularity lemma of Szemerédi [20] has proved to be a very useful tool in graph theory. It
was initially developed as an auxiliary lemma to prove a long standing conjecture of Erdős and
Turán[4] on arithmetic progressions, which stated that sequences of integers with positive upper
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density must contain arbitrarily long arithmetic progressions. Now the Regularity Lemma by itself
has become an important tool and found numerous other applications (see [14]). Based on the
Regularity Lemma and the Blow-up Lemma [13] the Regularity method has been developed that
has been quite successful in a number of applications in graph theory (e.g. [11]). However, one major
disadvantage of these applications and the Regularity Lemma is that they are mainly theoretical,
they work only for astronomically large graphs as the Regularity Lemma can be applied only for
such large graphs. Indeed, to find the ε-regular partition in the Regularity Lemma, the number of
vertices must be a tower of 2’s with height proportional to ε−5. Furthermore, Gowers demonstrated
[8] that a tower bound is necessary.

The basic content of the Regularity Lemma could be described by saying that every graph can,
in some sense, be partitioned into random graphs. Since random graphs of a given edge density are
much easier to treat than all graphs of the same edge-density, the Regularity Lemma helps us to carry
over results that are trivial for random graphs to the class of all graphs with a given number of edges.
We are especially interested in harnessing the power of the Regularity Lemma for clustering data.
Graph partitioning methods for clustering and segmentation have become quite popular in the past
decade because of representative ease of data with graphs and the strong theoretical underpinnings
that accompany the same.

In this paper we propose a general methodology to make the Regularity Lemma more useful
in practice. To make it truly applicable, instead of constructing a provably regular partition we
construct an approximately regular partition. This partition behaves just like a regular partition
(especially for graphs appearing in practice) and yet it does not require the large number of vertices
as mandated by the original Regularity Lemma. Then this approximately regular partition is used
for performing clustering. We call the resulting new clustering technique Regularity clustering. We
present comparisons with standard clustering methods such as k-means and spectral clustering and
the results are very encouraging.

To present our attempt and the results obtained, the paper is organized as follows: In section 2
we discuss briefly some prior attempts to apply the Regularity Lemma in practical settings and place
our work in contrast to those. In Section 3 we discuss clustering in general and also present a popular
spectral clustering algorithm that is used later on the reduced graph. We also point out what are
the possible ways to improve its running time. In Section 4 we give some definitions and general
notation. In Section 5 we present two constructive versions of the Regularity Lemma (the original
lemma was non-constructive). Furthermore, in this section we point out the various problems arising
when we attempt to apply the lemma in real-world applications. In Section 6 we discuss how the
constructive Regularity Lemmas could be modified to make them truly applicable for real-world
problems where the graphs typically are much smaller, say have a few thousand vertices only. In
Section 7 we show how this Practical Regularity partitioning algorithm can be applied to develop a
new clustering technique. In Section 8, we present an extensive empirical validation of our method.
Section 9 is spent in discussing the various possible future directions of work.

2 Prior Applications of the Regularity Lemma

As we discussed above so far the Regularity Lemma has been “well beyond the realms of any practical
applications” [10], the existing applications have been theoretical, mathematical. The only practical
application attempt of the Regularity Lemma to the best of our knowledge is by Sperotto and Pelillo
[19], where they use the Regularity Lemma as a pre-processing step. They give some interesting
ideas on how the Regularity Lemma might be used, however they do not give too many details.
Taking leads from some of their ideas we give a much more thorough analysis of the modifications
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needed in order to make the lemma applicable in practice. Furthermore, they only give results for
using the constructive version by Alon et al [1], here we implement the version proposed by Frieze
and Kannan [6] as well. We also give a far more extensive empirical validation; we use 12 datasets
instead of 3.

3 Clustering

Out of the various modern clustering techniques, spectral clustering has become one of the most
popular. This has happened due to not only its superior performance over the traditional clustering
techniques, but also due to the strong theoretical underpinnings in spectral graph theory and its ease
of implementation. It has many advantages over the more traditional clustering methods such as
k-means and expectation maximization (EM). The most important is its ability to handle datasets
that have arbitrary shaped clusters. Methods such as k-means and EM are based on estimating
explicit models of the data. Such methods fail spectacularly when the data is organized in very
irregular and complex clusters. Spectral clustering on the other hand does not work by estimating
explicit models of the data but does so by analysing the spectrum of the Graph Laplacian. This is
useful as the top few eigenvectors can unfold the data manifold to form meaningful clusters.

In this work we employ spectral clustering on the reduced graph (which is an essence of the
original graph), even though any other pairwise clustering method could be used. The algorithm that
we employ is due to Ng, Jordan and Weiss [16]. Despite various advantages of spectral clustering, one
major problem is that for large datasets it is very computationally intensive. And understandably
this has received a lot of attention recently. As originally stated, the spectral clustering pipeline
has two main bottlenecks: First, computing the affinity matrix of the pairwise distances between
datapoints, and second, once we have the affinity matrix the finding of the eigendecomposition. Many
ways have been suggested to solve these problems more efficiently. One approach is not to use an
all-connected graph but a k-nearest neighbour graph in which each data point is typically connected
to log n neighboring datapoints(where n is the number of data-points). This considerably speeds up
the process of finding the affinity matrix, however it has a drawback that by taking nearest neighbors
we might miss something interesting in the global structure of the data. A method to remedy this is
the Nyström method which takes a random sample of the entire dataset (thus preserving the global
structure in a sense) and then doing spectral clustering on this much smaller sample. The results
are then extended to all other points in the data set [5].

Our work is quite different from such methods. The speed-up is primarily in the second stage
where eigendecomposition is to be done. The original graph is represented by a reduced graph
which is much smaller and hence eigendecomposition of this reduced graph can significantly ease the
computational load. Further work on a practical variant of the sparse Regularity Lemma could be
useful in a speed-up in the first stage, too.

4 Notation and Definitions

Below we introduce some notation and definitions for describing the Regularity Lemma and our
methodology.

Let G = (V,E) denote a graph, where V is the set of vertices and E is the set of edges. When
A,B are disjoint subsets of V , the number of edges with one endpoint in A and the other in B is
denoted by e(A,B). When A and B are nonempty, we define the density of edges between A and B
as d(A,B) = e(A,B)

|A||B| . The most important concept is the following.
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Definition 1. The bipartite graph G = (A,B,E) is ε-regular if for every X ⊂ A, Y ⊂ B satisfying:
|X| > ε|A|, |Y | > ε|B|, we have |d(X,Y )− d(A,B)| < ε, otherwise it is ε-irregular.

Roughly speaking this means that in an ε-regular bipartite graph the edge density between any two
relatively large subsets is about the same as the original edge density. In effect this implies that all
the edges are distributed almost uniformly.

Definition 2. A partition P of the vertex set V = V0 ∪ V1 ∪ . . .∪ Vk of a graph G = (V,E) is called
an equitable partition if all the classes Vi, 1 ≤ i ≤ k, have the same cardinality. V0 is called the
exceptional class.

Definition 3. For an equitable partition P of the vertex set V = V0 ∪ V1 ∪ . . . ∪ Vk of G = (V,E),
we associate a measure called the index of P (or the potential) which is defined by

ind(P ) =
1
k2

k∑
s=1

k∑
t=s+1

d(Cs, Ct)2.

This will measure the progress towards an ε-regular partition.

Definition 4. An equitable partition P of the vertex set V = V0 ∪ V1 ∪ . . . ∪ Vk of G = (V,E) is
called ε-regular if |V0| < ε|V | and all but εk2 of the pairs (Vi, Vj) are ε-regular where 1 ≤ i < j ≤ k.

With these definitions we are now in a position to state the Regularity Lemma.

5 The Regularity Lemma

Theorem 1 (Regularity Lemma [20]). For every positive ε > 0 and positive integer t there is an
integer T = T (ε, t) such that every graph with n > T vertices has an ε-regular partition into k + 1
classes, where t ≤ k ≤ T .

In applications of the Regularity Lemma the concept of the reduced graph plays an important
role.

Definition 5. Given an ε-regular partition of a graph G = (V,E) as provided by Theorem 1, we
define the reduced graph GR as follows. The vertices of GR are associated to the classes in the
partition and the edges are associated to the ε-regular pairs between classes with density above d.

The most important property of the reduced graph is that many properties of G are inherited by
GR. Thus GR can be treated as a representation of the original graph G albeit with a much smaller
size, an “essence” of G. Then if we run any algorithm on GR instead of G we get a significant
speed-up.

5.1 Algorithmic Versions of the Regularity Lemma

The original proof of the Regularity Lemma [20] does not give a method to construct a regular
partition but only shows that one must exist. To apply the Regularity Lemma in practical settings,
we need a constructive version. Alon et al. [1] were the first to give an algorithmic version. Since
then a few other algorithmic versions have also been proposed [6], [12]. Below we present the details
of the Alon et al. algorithm.
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5.1.1 Alon et al. Version

Theorem 2 (Algorithmic Regularity Lemma [1]). For every ε > 0 and every positive integer
t there is an integer T = T (ε, t) such that every graph with n > T vertices has an ε-regular partition
into k + 1 classes, where t ≤ k ≤ T . For every fixed ε > 0 and t ≥ 1 such a partition can be found
in O(M(n)) sequential time, where M(n) is the time for multiplying two n by n matrices with 0, 1
entries over the integers. The algorithm can be parallelized and implemented in NC1.

This result is somewhat surprising from a computational complexity point of view since as it
was proved in [1] that the corresponding decision problem (checking whether a given partition is
ε-regular) is co-NP-complete. Thus the search problem is easier than the decision problem. To
describe this algorithm, we need a couple of lemmas.

Lemma 1 (Alon et al. [1]). Let H be a bipartite graph with equally sized classes |A| = |B| = n.
Let 2n−1/4 < ε < 1

16 . There is an O(M(n)) algorithm that verifies that H is ε-regular or finds two
subset A′ ⊂ A, B′ ⊂ B, |A′| ≥ ε4

16n, |B′| ≥ ε4

16n, such that |d(A,B)− d(A′, B′)| ≥ ε4. The algorithm
can be parallelized and implemented in NC1.

This lemma basically says that we can either verify that the pair is ε-regular or we provide
certificates that it is not. The certificates are the subsets A′, B′ and they help to proceed to the
next step in the algorithm. The next lemma describes the procedure to do the refinement from these
certificates.

Lemma 2 (Szemerédi [20]). Let G = (V,E) be a graph with n vertices. Let P be an equitable
partition of the vertex set V = V0 ∪ V1 ∪ . . . ∪ Vk. Let γ > 0 and let k be a positive integer such
that 4k > 600γ−5. If more than γk2 pairs (Vs, Vt), 1 ≤ s < t ≤ k, are γ-irregular then there is an
equitable partition Q of V into 1 + k4k classes, with the cardinality of the exceptional class being at
most |V0|+ n

4k and such that ind(Q) > ind(P ) + γ5

20 .

This lemma implies that whenever we have a partition that is not γ-regular, we can refine it into
a new partition which has a better index (or potential) than the previous partition. The refinement
procedure to do this is described below.

Refinement Algorithm: Given a γ-irregular equitable partition P of the vertex set V = V0 ∪
V1 ∪ . . . ∪ Vk with γ = ε4

16 , construct a new partition Q.
For each pair (Vs, Vt), 1 ≤ s < t ≤ k, we apply Lemma 1 with A = Vs, B = Vt and ε. If (Vs, Vt) is
found to be ε-regular we do nothing. Otherwise, the certificates partition Vs and Vt into two parts
(namely the certificate and the complement). For a fixed s we do this for all t 6= s. In Vs, these sets
define the obvious equivalence relation with at most 2k−1 classes, namely two elements are equivalent
if they lie in the same partition part for every t 6= s. The equivalence classes will be called atoms.
Set m = b |Vi|

4k c, 1 ≤ i ≤ k. Then we construct our new partition Q by choosing a maximal collection
of pairwise disjoint subsets of V such that every subset has cardinality m and every atom A contains
exactly b |A|m c subsets; all other vertices are put in the exceptional class. The collection Q is an
equitable partition of V into at most 1 + k4k classes and the cardinality of its exceptional class is at
most |V0|+ n

4k .
Now we are ready to present the main algorithm.
Regular Partitioning Algorithm: Given a graph G and ε, construct a ε-regular partition.

1. Initial partition: Arbitrarily divide the vertices of G into an equitable partition P1 with
classes V0, V1, . . . , Vb, where |V1| = bnb c and hence |V0| < b. Denote k1 = b.
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2. Check regularity: For every pair (Vs, Vt) of Pi, verify if it is ε-regular or find X ⊂ Vs, Y ⊂
Vt, |X| ≥ ε4

16 |Vs|, |Y | ≥
ε4

16 |Vt|, such that |d(X,Y )− d(Vs, Vt)| ≥ ε4.

3. Count regular pairs: If there are at most εk2
i pairs that are not verified as ε-regular, then

halt. Pi is an ε-regular partition.

4. Refinement: Otherwise apply the Refinement Algorithm and Lemma 2, where P = Pi, k =
ki, γ = ε4

16 , and obtain a partition Q with 1 + ki4ki classes.

5. Iteration: Let ki+1 = ki4ki , Pi+1 = Q, i = i+ 1, and go to step 2.

Since the index cannot exceed 1/2, the algorithm must halt after at most d10γ−5e iterations (see
[1]). Unfortunately, in each iteration the number of classes increases to k4k from k. This implies
that the graph G must be indeed astronomically large (a tower function) to ensure the completion of
this procedure. As mentioned before, Gowers [8] proved that indeed this tower function is necessary
in order to guarantee an ε-regular partition for all graphs. The size requirement of the algorithm
above makes it impractical for real world situations where the number of vertices typically is a few
thousand.

5.1.2 Frieze-Kannan Version

The Frieze-Kannan constructive version is quite similar to the above, the only difference is how to
check regularity of the pairs in Step 2. Instead of Lemma 1, another lemma is used based on the
computation of singular values of matrices. For the sake of completeness we present the details.

Lemma 3 (Frieze-Kannan [6]). Let W be an R×C matrix with |R| = p and |C| = q and W∞ ≤ 1
and γ be a positive real.

a If there exist S ⊆ R, T ⊆ C such that |S| ≥ γp, |T | ≥ γq and |W (S, T )| ≥ γ|S||T | then
σ1(W ) ≥ γ3√pq (where σ1 is the first singular value).

b If σ1(W ) ≥ γ√pq then there exist S ⊆ R, T ⊆ C such that |S| ≥ γ′p, |T | ≥ γ′q and W (S, T ) ≥
γ′|S||T |, where γ′ = γ3

108 . Furthermorem S, T can be constructed in polynomial time.

Combining Lemmas 2 and 3, we get an algorithm for finding an ε-regular partition, quite similar
to the Alon et al. version [1], which we present below:

Regular Partitioning Algorithm (Frieze-Kannan): Given a graph G and ε, construct a
ε-regular partition.

1. Initial partition: Arbitrarily divide the vertices of G into an equitable partition P1 with
classes V0, V1, . . . , Vb, where |V1| = bnb c and hence |V0| < b. Denote k1 = b.

2. Check regularity: For every pair (Vs, Vt) of Pi, compute σ1(Wr,s). If the pair (Vr, Vs) are
not ε-regular then by Lemma 3 we obtain a proof that they are not not γ = ε9/108-regular.

3. Count regular pairs: If there are at most εk2
i pairs that produce proofs of non γ-regularity,

then halt. Pi is an ε-regular partition.

4. Refinement: Otherwise apply the Refinement Algorithm and Lemma 2, where P = Pi, k =
ki, γ = ε9

108 , and obtain a partition P ′ with 1 + ki4ki classes.

5. Iteration: Let ki+1 = ki4ki , Pi+1 = P ′, i = i+ 1, and go to step 2.

This algorithm is guaranteed to finish in at most ε−45 steps with an ε-regular partition.
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6 Modifications to the Constructive Version

We see that even the constructive versions are not directly applicable to real world scenarios. We
note that the above algorithms have such restrictions because their aim is to be applicable to all
graphs. Thus, to make the regularity lemma truly applicable we would have to give up our goal
that the lemma should work for every graph and should be content with the fact that it works for
most graphs. To ensure that this happens, we modify the Regular Partitioning Algorithm(s) so
that instead of constructing a regular partition, we find an approximately regular partition, which
should be much easier to construct. We have the following 3 major modifications to the Regular
Partitioning Algorithm.

Modification 1: We want to decrease the cardinality of atoms in each iteration. In the above
Refinement Algorithm the cardinality of the atoms may be 2k−1, where k is the number of classes
in the current partition. This is because the algorithm tries to find all the possible ε-irregular pairs
such that this information can then be embedded into the subsequent refinement procedure. Hence
potentially each class may be involved with up to (k − 1) ε-irregular pairs. One way to avoid this
problem is to bound this number. To do so, instead of using all the ε-irregular pairs, we only use
some of them. Specifically, in this paper, for each class we consider at most one ε-irregular pair that
involves the given class. By doing this we reduce the number of atoms to at most 2. We observe
that in spite of the crude approximation, this seems to work well in practice.

Modification 2: We want to bound the rate by which the class size decreases in each iteration.
As we have at most 2 atoms for each class, we could significantly increase m used in the Refinement
Algorithm as m = |Vi|

l , where a typical value of l could be 3 or 4, much smaller than 4k. We call
this user defined parameter l the refinement number.

Modification 3: Modification 2 might cause the size of the exceptional class to increase too
fast. Indeed, by using a smaller l, we risk putting 1

l portion of all vertices into V0 after each iteration.
To overcome this drawback, we “recycle” most of V0, i.e. we move back most of the vertices from
V0. Here is the modified Refinement Algorithm.

Modified Refinement Algorithm: Given a γ-irregular equitable partition P of the vertex set
V = V0 ∪ V1 ∪ . . . ∪ Vk with γ = ε4

16 and refinement number l, construct a new partition Q.
For each pair (Vs, Vt), 1 ≤ s < t ≤ k, we apply Lemma 1 with A = Vs, B = Vt and ε. For a fixed s
if (Vs, Vt) is found to be ε-regular for all t 6= s we do nothing, i.e. Vs is one atom. Otherwise, we
select one ε-irregular pair (Vs, Vt) randomly and the corresponding certificate partitions Vs into two
atoms. Set m = b |Vi|

l c, 1 ≤ i ≤ k. Then first we choose a maximal collection Q′ of pairwise disjoint
subsets of V such that every member of Q′ has cardinality m and every atom A contains exactly
b |A|m c members of Q′. Then we unite the leftover vertices in each Vs, if there are at least m vertices
then we select one more subset of size m from these vertices, we add these sets to Q′ and finally we
add all remaining vertices to the exceptional class, resulting in the partition Q. The collection Q is
an equitable partition of V into at most 1 + lk classes.
Now, we present our modified Regular Partitioning Algorithm. There are three main parameters to
be selected by the user: ε, the refinement number l and h, the minimum class size when we must
halt the refinement procedure. The parameter h is used to ensure that if the class size has gone too
small then the procedure should not continue.

Modified Regular Partitioning Algorithm (or the Practical Regularity Partitioning
Algorithm): Given a graph G and parameters ε, l, h, construct an approx. ε-regular partition.

1. Initial partition: Arbitrarily divide the vertices of G into an equitable partition P1 with
classes V0, V1, . . . , Vl, where |V1| = bnl c and hence |V0| < l. Denote k1 = l.

2. Check size and regularity: If |Vi| < h, 1 ≤ i ≤ k, then halt. Otherwise for every pair
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(Vs, Vt) of Pi, verify if it is ε-regular or find X ⊂ Vs, Y ⊂ Vt, |X| ≥ ε4

16 |Vs|, |Y | ≥
ε4

16 |Vt|, such
that |d(X,Y )− d(Vs, Vt)| ≥ ε4.

3. Count regular pairs: If there are at most εk2
i pairs that are not verified as ε-regular, then

halt. Pi is an ε-regular partition.

4. Refinement: Otherwise apply the Modified Refinement Algorithm, where P = Pi, k = ki, γ =
ε4

16 , and obtain a partition Q with 1 + lki classes.

5. Iteration: Let ki+1 = lki, Pi+1 = Q, i = i+ 1, and go to step 2.

The Frieze-Kannan version is modified in an identical way.

7 Application to Clustering

To make the regularity lemma applicable in clustering settings, we adopt the following two phase
strategy (as in [19]):

1. Application of the Practical Regularity Partitioning Algorithm: In the first stage we
apply the Practical Regularity partitioning algorithm as described in the previous section to
obtain an approximately regular partition of the graph representing the data. Once such a
partition has been obtained, the reduced graph as described in Definition 5 could be constructed
from the partition.

2. Clustering the Reduced Graph: The reduced graph as constructed above would preserve
most of the properties of the original graph (see [14]). This implies that any changes made
in the reduced graph would also reflect in the original graph. Thus, clustering the reduced
graph would also yield a clustering of the original graph. We apply spectral clustering (though
any other pairwise clustering technique could be used, e.g. in [19] the dominant-set algorithm
is used) on the reduced graph to get a partitioning and then project it back to the higher
dimension. Recall that vertices in the exceptional set V0 are leftovers from the refinement
process and must be assigned to the clusters obtained. Thus in the end these leftover vertices
are redistributed amongst the clusters using a k-nearest neighbor classifier to get the final
grouping.

8 Empirical Validation

In this section we present extensive experimental results to indicate the efficacy of this approach
by employing it for clustering on a number of benchmark datasets. We also compare the results
with spectral clustering in terms of accuracy. We also report results that indicate the amount of
compression obtained by constructing the reduced graph. As discussed later, the results also directly
point to a number of promising directions of future work. We first review the datasets considered
and the metrics used for comparisons.

8.1 Datasets and Metrics Used

The datasets considered for empirical validation were taken from the University of California, Irvine
machine learning repository [7]. A total of 12 datasets were used for validation. We considered
datasets with real valued features and associated labels or ground truth. In some datasets (as
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described below) that had a large number of real valued features, we removed categorical features
to make it easier to cluster. Unless otherwise mentioned, the number of clusters was chosen so as to
equal to the number of classes in the dataset (i.e. if the number of classes in the ground truth is 4,
then the clustering results are for k = 4). An attempt was made to pick a wide variety of datasets,
i.e. with integer features, binary features, synthetic datasets and of course real world datasets with
both very high and small dimensionality.

The following datasets were considered (for details about the datasets see [7]): (1) Red Wine
(R-Wine) and (2) White Wine (W-Wine), (3) The Arcene dataset (Arcene), (4) The Blood Trans-
fusion Dataset (Blood-T), (5) The Ionosphere dataset (Ionos), (6) The Wisconsin Breast cancer
dataset (Cancer), (7) The Pima Indian diabetes dataset (Pima), (8) The Vertebral Column dataset
(Vertebral-1), the second task (9) (Vertebral-2) is considered as another dataset, (10) The Steel
Plates Faults Dataset (Steel), (11) The Musk 2 (Musk) dataset and (12) Haberman’s Survival
(Haberman) data.

Next we discuss the metric used for comparison with other clustering algorithms. For evaluating
the quality of clustering, we follow the approach of [21] and use the cluster accuracy as a measure.
The measure is defined as:

Accuracy = 100 ∗
(∑n

i=1 δ(yi,map(ci))
n

)
,

where n is the number of data-points considered, yi represents the true label (ground truth) while
ci is the obtained cluster label of data-point xi. The function δ(y, c) equals 1 if the true and the
obtained labels match (y = c) and 0 if they don’t. The function map is basically a permutation
function that maps each cluster label to the true label. An optimal match can be found by using
the Hungarian Method for the assignment problem [15].

8.2 Case Study

Before reporting comparative results on benchmark datasets, we first consider one dataset as a case
study. While experiments reported in this case study were carried on all the benchmark datasets
considered, the purpose here is to illustrate the investigations conducted at each stage of application
of the regularity lemma. An auxiliary purpose is also to underline a set of guidelines on what changes
to the practical regularity partitioning algorithm proved to be useful.

For this task we consider the Red Wine dataset which has 1599 instances with 11 attributes each,
the number of classes involved is six. It must be noted though that the class distribution in this
dataset is pretty skewed (with the various classes having 10, 53, 681, 638, 199 and 18 datapoints
respectively), this makes clustering this dataset quite difficult when k = 6. We however consider
both k = 6 and k = 3 to compare results with spectral clustering.

Recall that our method has two meta-parameters that need to be user specified (or estimated by
cross-validation): ε and l. Note that h is usually decided so that it is at least as big as 1

ε . The first
set of experiments thus explore the accuracy landscape of regularity clustering spanned over these
two parameters. We consider 25 linearly spaced values of ε between 0.15 and 0.50. The refinement
number l, as noted in Section 6, can not be too large. Since it can only take integer values, we
consider six values from 2 to 7. For the sake of comparison, we also obtain clustering results on the
same dataset with spectral clustering with self tuning [22] (both using all connected and k-nearest
neighbour graph versions) and k-means clustering. Figure 1 gives the accuracy of the Regularity
Clustering on a grid of ε and l. Even though this plot is only for exploratory purposes, it shows that
the accuracy landscape is in general much better than the accuracy obtained by spectral clustering
for this dataset.
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Figure 1: Accuracy Landscape for Regularity Clustering on the Red Wine Dataset for different
values of ε and refinement size l (with k = 6 on the left and k = 3 on the right). The Plane
cutting through in blue represents accuracy by running self-tuned spectral clustering using the fully
connected similarity graph.

Table 1: Reduced Graph Sizes. Original Affinity Matrix size : 1599 × 1599

ε
l

2 3 4 5 6 7

0.15 16 × 16 27 × 27 27 × 27 27 × 27 36 × 36 49 × 49
0.33 49 × 49 49 × 49 66 × 66 66 × 66 66 × 66 66 × 66
0.50 66 × 66 66 × 66 66 × 66 66 × 66 66 × 66 66 × 66

An important aspect of the Regularity Clustering method is that by using a modified constructive
version of the Regularity Lemma we obtain a much reduced representation of the original data. The
size of the reduced graph depends both on ε and l. However, in our observation it is more sensitive
to changes to l and understandably so. From the grid for ε and l we take three rows to illustrate
the obtained sizes of the reduced graph (more precisely, the dimensions of the affinity matrix of the
reduced graph). We compare these numbers with the original dataset size. As we note in the results
over the benchmark datasets in section 8.3, this compression is quite big in larger datasets.

The proof of the Regularity Lemma is using a potential function, the index of the partition
defined earlier in Definition 3. In each refinement step the index increases significantly. Surprisingly
this remains true in our modified refinement algorithm when the number of partition classes is not
increasing as fast as in the original version, see Table 2. Another interesting observation is that if
we take ε sufficiently high, we do get a regular partition in just a few iterations. A few examples
where this was noticed in the Red Wine dataset are mentioned in Table 3.

Finally, before reporting results we must make a comment on constructing the reduced graph.
The reduced graph was defined in Definition 5. But note that there is some ambiguity in our case

Table 2: Illustration of Increase in Potential

(ε,l)
ind(P )

ind(P1) ind(P2) ind(P3) ind(P4)

0.15, 2 0.1966 0.2892 0.3321 0.3539
0.33, 2 0.1966 0.2883 0.3321 0.3683
0.50, 2 0.1965 0.2968 0.3411 0.3657
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Table 3: Regular Partitions with req. no. of regular pairs and actual no. present

(ε, l) # for ε-regularity # of Reg. Pairs # Iterations
0.6, 2 1180 1293 6
0.7, 6 352 391 2
0.7, 7 506 671 2

Table 4: Clustering Results on UCI Datasets. Regular1 and Regular2 represent the results by the
versions due to Alon et al. and Frieze-Kannan, respectively. Spect1 and Spect2 give the results
for spectral clustering with a k-nearest neighbour graph and a fully connected graph, respectively.
Follow the text for more details.

Dataset # Feat. Comp. Regular1 Regular2 Spect1 Spect2 k-means

R-Wine 11 1599-49 47.0919 46.8342 23.9525 23.9524 23.8899
W-Wine 11 4898-125 44.7509 44.9121 23.1319 20.5798 23.8465
Arcene 10000 200-9 68 68 61 62 59
Blood-T 4 748-49 76.2032 75.1453 65.1070 66.2331 72.3262
Ionos 34 351-25 74.0741 74.6787 70.0855 70.6553 71.2251
Cancer 9 683-52 93.5578 93.5578 97.2182 97.2173 96.0469
Pima 8 768-52 65.1042 64.9691 51.5625 60.8073 63.0156
Vertebral-1 6 310-25 67.7419 67.8030 74.5161 71.9355 67.0968
Vertebral-2 6 310-25 70 69.9677 49.3948 48.3871 65.4839
Steel 27 1941-54 42.5554 43.0006 29.0057 34.7244 29.7785
Musk 166 6598-126 84.5862 81.4344 53.9103 53.6072 53.9861
Haberman 3 306-16 73.5294 70.6899 52.2876 51.9608 52.2876

when it comes to constructing the reduced graph. The reduced graph GR is constructed such that
the vertices correspond to the classes in the partition and the edges are associated to the ε-regular
pairs between classes with density above d. However, in many cases the number of regular pairs
is quite small (esp. when ε is small) making the matrix too sparse, making it difficult to find the
eigenvectors. Thus for technical reasons we added all pairs to the reduced graph. We contend
that this approach works well because the classes that we consider (and thus the densities between
them) are obtained after the modified refinement procedure and thus enough information is already
embedded in the reduced graph.

8.3 Clustering Results on Benchmark Datasets

In this section we report results on a number of datasets described earlier in Section 8.1. We do a
five fold cross-validation on each of the datasets, where a validation set is used to learn the meta-
parameters for the data. The accuracy reported is the average clustering quality on the rest of the
data after using the learned parameters from the validation set. We use a grid-search to learn the
meta-parameters. Initially a coarse grid is initialized with a set of 25 linearly spaced values for ε
between 0.15 and 0.50 (we don’t want ε to be outside this range). For l we simply pick values from
2 to 7 simply because that is the only practical range that we are looking at.

We compare our results with a fixed σ spectral clustering with both a fully connected graph
(Spect2) and a k-nearest neighbour graph (Spect1). For the sake of comparison we also include
results for k-means on the entire dataset. We also report results on the compression that was achieved
on each dataset in Table 4 (The compression is indicated in the format x-y where x represents one
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dimension of the adjacency matrix of the dataset and y of the reduced graph).
In the results we observe that the Regularity Clustering method, as indicated by the clustering

accuracies is quite powerful; it gave significantly better results in 10 of the 12 datasets. It was
also observed that the regularity clustering method did not appear to work very well in synthetic
datasets. This seems understandable given the quasi-random aspect of the Regularity method. We
also report that the results obtained by the Alon et al. and by the Frieze-Kannan versions are
virtually identical, which is not surprising.

9 Future Directions

We believe that this work opens up a lot of potential research problems. First and foremost would be
establishing theoretical results for quantifying the approximation obtained by our modifications to
the Regularity Lemma. Also, the original Regularity Lemma is applicable only while working with
dense graphs. However, there are sparse versions of the Regularity Lemma. These sparse versions
could be used in the first phase of our method such that even sparse graphs (k-nearest neighbor
graphs) could be used for clustering, thus enhancing its practical utility even further.

A natural generalization of pairwise clustering methods leads to hypergraph partitioning prob-
lems [2], [23]. There are a number of results that extend the Regularity Lemma to hypergraphs [3],
[9], [17]. It is thus natural that our methodology could be extended to hypergraphs and then used
for hypergraph clustering.

In final summary, our work gives a way to harness the Regularity Lemma for the task of clustering.
We report results on a number of benchmark datasets which strongly indicate that the method is
quite powerful. Based on this work we also suggest a number of possible avenues for future work
towards improving and generalizing this methodology.
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[13] J. Komlós, G.N. Sárközy, E. Szemerédi, Blow-up Lemma, In: Combinatorica, 17(1), pp. 109-
123, (1997).

[14] J. Komlós, A. Shokoufandeh, M. Simonovits, E. Szemerédi, The Regularity Lemma and Its
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