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Abstract. Due to high data volumes and unpredictable arrival rates, con-
tinuous query systems processing expensive queries in real-time may fail
to keep up with the input data streams - resulting in buffer overflow and
uncontrolled loss of data. In this work, we explore join direction adaptation
(JDA) to tackle resource-limited processing of multi-join stream queries.
While the existing JDA solutions allocate the scarce CPU resources to the
most productive half-way join within a single operator, we instead lever-
age the operator interdependencies to optimize the overall query through-
put. We identify result staleness as an impending issue in resource-limited
processing, which gets further aggravated if throughput optimizing tech-
niques are employed. For throughput optimization we propose the path-
productivity model and further extend it for fulfilling the Freshness tol-
erance. Our proposed JAQPOT approach is the first integrated solution
to achieve near optimal query throughput while also guaranteeing fulfill-
ment of the desired result freshness. JAQPOT runs in quadratic time of
the number of streams irrespective of the query plan shape. Our exper-
imental study, using both synthetic and real data sets, demonstrates the
superiority of JAQPOT in achieving higher throughput than the state-of-
the-art strategies while, unlike the other methods, also fulfilling freshness
predicates.

1 Introduction

Motivation. Data Stream Management Systems (DSMS) [1, 4, 23] are in high de-
mand for real-time decision support as they specialize in transforming huge
amounts of streaming data into usable knowledge. Due to rapid expansions in
the diversity of data sources and the volume of data these sources deliver, DSMS
are faced with the challenge of processing user queries demanding real-time re-
sponsiveness even under conditions of unpredictability, high data volumes and
bursty workloads.

Windowed joins across streams, while among the most common queries in
DSMS applications, are more costly compared to other operations such as se-
lection, aggregation and projection [12, 13, 16]. When processing complex join
queries, either the processor may fail to keep up with the arrival rates of the
streams (the computing-limited case) or the available high-speed memory may
become insufficient to hold all relevant tuples (the memory-limited case). For
queries composed of joins with large states across multiple high-speed data
streams, the system is even more prone to such resource deficiencies. Gedik et
al. [12] observe that with increasing stream arrival rates and large join states, the
computing resources typically become strained before the memory does. Tem-
porary data flushing [16] and compressed data representations further counter-
act the chances of a memory-limited scenario. If under duress complete results
can no longer be produced at run-time, then the DSMS must employ the avail-
able resources to ensure the production of maximal run-time throughput (output
rate). Therefore, in this work, we aim at optimizing the throughput of multi-join
queries in computing-limited environments.



Q1: SELECT B.symbol, B.price

FROM stocksNYC A, stocksTokyo B

WHERE A.symbol = "GOOG" and B.volume > A.volume

WINDOW 10 mins

When resources are limited, yet another pressing issue, namely, result stal-
eness arises. In Query Q1 a stock trader is interested in the companies whose
stocks got traded at Tokyo in higher volumes than Google stocks traded in NYC. He
wants the comparable transactions to happen within 10 minutes of each other. For
real-time decision making, the stock trader may require the DSMS to produce
results continuously (say, once every minute). However, if the system faces
high workloads and backlogs in processing, result tuples may get delayed. For
example, the trader may receive results about transactions that took place 15
minutes before the current time. Such results, despite satisfying the 10-minute
window predicate, would be considered stale and useless by the trader. Clearly,
high throughput results with no freshness guarantees are unacceptable in real-time
applications as they may be producing results already deemed useless.

In addition to the WINDOW predicate, the trader may want to specify a
FRESHNESS predicate to indicate his tolerance to staleness. This predicate would
assure that the returned join results consist of transaction tuples that took place
within a threshold, say at most 12 minutes of the current time, in addition to
being within 10 minutes of each other. Such delay would still be acceptable to
the trader. Each stream may have an associated FRESHNESS predicate, i.e., it
may be 12 mins for stocksNYC whereas 15 mins for stocksTokyo. To the best of
our knowledge, our work is the first to identify the result staleness problem in
the context of resource-limited execution of multi-join plans. Our work thus
is the first to tackle the dual problems of achieving optimal throughput while
guaranteeing adequate freshness of the join results.

The State-of-the-art. Two directions for tackling join queries under com-
puting limitations are load shedding [3, 13, 25, 26] and join direction adaptation
(JDA) [12, 15]. Tatbul et al. first applied load shedding to DSMS for query net-
works (mostly filter queries) [25] and for aggregation queries [26]. A detailed
review of other load shedding solutions, including GrubJoin [13] that addresses
MJoins, is given in Section 6. The main focus of load shedding is to reduce the
input rates by directly dropping tuples from the source streams [3]. This makes
the plan incapable of recuperating with the production of accurate results in
moments of low workloads as data is permanently lost.

Rather than dropping tuples completely from the input streams as done in
load shedding, JDA preserves in-memory tuples as per the join semantics for
opportunities of joining with future incoming tuples. Existing JDA techniques
[12, 15] exploit the asymmetry in the productivities of half-way join directions
within a join operator. However, JDA techniques have so far been explored only
in the context of a single join operator. We demonstrate in this work that new
challenges arise in the multi-join case. A detailed review of the related work is
provided in Section 6.
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Fig. 1. A pipeline of join operators.

Research Challenges. Consider the pipeline of operators in Figure 1 where
the output of Zi feeds directly into Z j. The existing JDA technique [15] applied
here will attempt to optimize operators Zi and Z j individually, and thus might
fail to optimize the overall query throughput as the two operators may get
optimized in an uncoordinated manner. In general, the ability of multi-join queries
to achieve high result throughput (output rate) and to maintain result freshness
under heavy workloads relies on resolving the following aspects of the problem:

1. While operator scheduling [5] tends to allocate resources at the coarse granu-
larity of complete query operators, we instead propose to design algorithms
to tackle the problem of join adaptation at the finer granularity of the half-way
join directions within each operator to maximally leverage the asymmetry
between the half-way join components.

2. The existing join direction adaptation (JDA) techniques [12, 15] optimize a
single join operator individually. However, join operators within a multi-join
plan are interdependent, namely, an operator depends on the output of its
upstream1 operator(s) for input. Consideration of operator interdependency is
crucial for a successful plan-level join direction adaptation design.

3. We identify result staleness2 as an impending issue for resource-limited pro-
cessing of multi-join queries. The biased allocation of resources by JDA
techniques may potentially aggravate this problem. We elaborate on this
challenge in Section 3.

Proposed Approach. Unlike load shedding that discards data once the sys-
tem is on the verge of crashing from overload, we propose to preemptively
allocate the available computing resources with the goal to achieve maximal
throughput. In short, we design, develop and evaluate a synchronized join adap-
tation strategy at the plan level that tackles the result staleness problem while
maximizing the overall throughput (output rate) of the query.

We summarize our contributions as follows:
• We demonstrate both analytically (Section 3) and experimentally (Section 5)
that for the computing-limited execution of multi-join plans the traditional join
direction adaptation [12,15] and its extensions fail to achieve optimal throughput.
•We establish the path productivity metric as the plan-level throughput contri-
bution of each input stream by leveraging operator interdependencies (Section
4.1).
•We formulate the query throughput maximization as a knapsack problem and
propose the Greedy Path Productivity-based Multi-Join Adaptation (GrePP) to solve

1 Operators closer to the stream input are upstream and the ones closer to the query
output are downstream.

2 This challenge is not identified by prior work [3, 13, 25].



Table 1. List of notation.

Symbol Definition

tI Tuple of stream I
tI .ts Timestamp of tuple tI

λi Arrival rate of stream I
|SI | Window size of state I
σi Selectivity of join on state SI

λ′
i

Probe allowance of stream I, (≤ λi).

it.
• We identify result staleness as the key challenge that is further aggravated
when throughput optimizing methods are employed under resource-limited
execution of multi-joins. We establish the Freshness predicate for streams as the
foundation for tackling this problem (Section 3).
• To solve the result staleness problem we formulate the fulfillment of freshness
predicates as a weighted set-cover problem (Section 4.2).
• We then design the JAQPOT algorithm (Section 4.3) as an integration of the
above two strategies. To the best of our knowledge, this is the first solution
that guarantees fulfillment of result freshness predicates while achieving near
optimal query throughput. We further note that JAQPOT achieves this effective
adaptation in quadratic time in the number of input streams.
•Our experimental study (Section 5) using both synthetic and real data, demon-
strates the superiority of JAQPOT over the traditional JDA solutions including
multiple variants in a large set of tested cases.

2 Background On JDA Techniques

In this paper we focus on multi-join plans composed of sliding window binary
join operators. We assume standard semantics as in CQL [2]. We use the unit-
time basis cost model proposed by Kang et al. [15] that computes the cost of a
join operator in terms of the three sub-tasks, namely, probe, insert and purge
operations. The key idea is that the cost of probe dominates the total join cost while
insert and purge operations are relatively inexpensive. For simplicity, the model
assumes count-based windows. The model itself is described in Appendix A
together with its extension to time-based windows. Table 1 lists the notation.

Throughput. The run-time throughput of a join operator, also called the
output rate, is defined as the number of joined tuples produced per time unit. For
a join operator AZB (Figure 2.a), it consists of two contributing half-way join
components, namely, rX for (a X SB) and rY for (b X SA), as in Formula 1. For
tuple tA, SA is the own state whereas SB is the partner state.

rZ = rX + rY = λa × σB × |SB| + λb × σA × |SA| (1)

Computing Limitation in a Join Operator. During run-time the computing
resources become insufficient to keep up with the arrival rates of the input
streams due to high workloads. In such situations, like [15] we assume that the
total available computing resources may be determined from the system. We
use the terms available resources and service rate interchangeably. In the context
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Fig. 2. Join plans with example parameter settings.

of resource limited processing, the throughput of a join operator (Equation 1)
can be re-written as in Equation 2.

rZ = rX + rY = λ
′
a × σB × |SB| + λ

′
b × σA × |SA|,

λ′a + λ
′
b ≤ µ.

(2)

By Equation 2, we may allocate a total ofµ computing resources to the processing
of a join that gets divided between the two half-way joins. Stream A is assigned
a probe allowance, denoted byλ′a, which is a portion µa of the join service rateµ. λ′a
cannot exceed the input rate λa, i.e., λ′a =min(µa, λa). Similarly, λ′

b
=min((µ-µa),

λb). In the unit-time basis model, the probe cost dominates the total join cost.
Therefore, the limitation on resources is restricted to probe. Insert and purge are
relatively inexpensive and thus are assumed to be accomplished as would have
been done under regular conditions. We illustrate this using AZB (Figure 2.a)
with input rates λa = 500 and λb = 700 tuples/sec. Assume µ = 300 tuples per
second as the total resources, i.e., the service rate. Therefore, a subset3 of 300
tuples out of the 1200 (= 500 + 700) tuples from either of the input streams is
used for the probe operation. Moreover, all 1200 arriving tuples undergo insert
and purge operations every time unit, as they are inexpensive operations. Thus,
the goal is to distribute the µ resources (here 300 tuples/sec) among the probe
allowances (here λ′a and λ′

b
) such that the throughput rZ of AZB is maximized.

Review of Half-way Join Productivity. In Figure 2.a, the two half-way joins
have different productivities (Definition 1). Using Formula 3, their productivities
are: ρh(a X SB) = σB × |SB| = 0.005 × 500 = 2.5 and ρh(b X SA) = σA × |SA| = 0.001
× 5000 = 5 joined tuples per input tuple per second, respectively.

Definition 1. The productivity of the half-way join Xi ≡ (i X SJ), denoted by ρh(i X
SJ), is the throughput contribution (rXi

) of Xi per input tuple processed by Xi.

ρh(i X SJ) =
rXi

λ′
i

= (σJ× |SJ|) (3)

BestHJP Policy: Allocate available resources µ starting with the most productive
half-way join until µ gets exhausted.

The half-way join productivity policy (henceforth called BestHJP) is used in
the literature [15] for a single join operator. BestHJP [15] biases the join direction
towards the most productive half-way join to maximize the join throughput rZ.

3 The fine-grained time correlation-awareness [13, 24] can be used for subset selection in
collaboration with join direction adaptation.



As ρh(a X SB) < ρh(b X SA), BestHJP assigns all of µ to λ′
b

as the probe allowance
and λ′a gets none. For µ = 300 tuples/sec, the throughput rZ thus produced will
be 300 × 5 = 1500 tuples/sec.

3 Problem Definition

Now, we define the two problems we target, namely, achieving optimal through-
put and tackling result staleness in computing-limited execution of multi-join.

Computing-limited Execution of Multi-Join Plans. Given the 2-join plan
in Figure 2.b4 composed of Z1 and Z2, the problem of throughput optimization
becomes quite different from the single operator scenario, namely, the goal is
to achieve overall high query throughput. In other words, the throughput rZroot

of
the root operator (here Z2) must be maximized.

rZ1
= λ′a × σB × |SB| + λ

′
b × σA × |SA|,

rZ2
= λ′ab × σC × |SC| + λ

′
c × σAB × |SAB|,

λ′a + λ
′
b + λ

′
ab + λ

′
c ≤ µ.

(4)

Equation 4 depicts the problem of join direction adaptation in a multi-join
plan. For this 2-join plan, µ needs to be divided among four half-way joins,
namely, λ′a, λ′

b
, λ′

ab
and λ′c. In other words, µ needs to be split into two levels,

namely, first dividing µ among the n join operators (say µZ1
, µZ2

,. . .,µZ j
,. . .,µZn

)
and then, for each join Z j, further dividing µZ j

between each of its respective
half-way joins µX j

and µY j
.

For a single join operator, BestHJP [15] guarantees optimal operator through-
put. However, for the 2-Join plan in Figure 2.b, BestHJP would individually
optimize Z1 and Z2 for the throughput and thus may not achieve an overall
high query throughput rZroot

. Beyond the immediate interpretation of applying
BestHJP on a multi-join plan, we explore other variants of BestHJP. We further
set out to design four ρh-based heuristics whose description is put later in Ap-
pendix B to now focus on our proposed approach. The failure of these policies
then motivates us to explore operator interdependencies for solving the identified
problems as described next in Section 4. In our experiments (Section 5) we do
compare these heuristics against our proposed approach.

Freshness of Multi-Join Results. As described for Query Q1 (Section 1),
when the resources become limited, the produced query results may no longer
be perfectly fresh. The result freshness gets further compromised when JDA tech-
niques bias resource allocation to highly productive half-way joins for achiev-
ing optimal throughput. Consequently, little or no resources are left for the less
productive components of the plan. Therefore, under a throughput optimizing
scheme, insufficient scheduling of certain operators may lead to their starvation.
Moreover, when a starved upstream operator does not produce sufficient inter-
mediate results, the dependent join state in the downstream operator tends to

4 For simplicity σi denotes overall selectivity of Zi; in reality each half-way join has an
associated selectivity as in Figure 2.a.



become stale. The join results produced using such stale states are also stale,
thus further deteriorating the result freshness. In Figure 2.b, if (c X SAB) is most
productive, the assignment of complete µ to λ′c would starve Z1, leading to the
staleness of the state SAB and eventually also to that of the final query results.

Definition 2. The Freshness predicate, namely,
∮ I

for a stream I, requires that all the

joined output produced at any time T must not contain the tuples tI with arrival time

older than (T-
∮ I

).
Under resource-limited execution, when 100% freshness is not achievable, the

user can supply a Freshness predicate
∮ I

with respect to each stream I (Definition
2). The type of the Freshness predicate will be the same as that of the window
predicate, i.e., time or count-based and the value would be equal or greater
than the window value. Say for WINDOW = 10 minutes, the user may desire

a maximum
∮ I

of, say, 12 mins indicating that a 2 minute delay is tolerable.

By default the Freshness predicate
∮ I

may be equal to the WINDOW predicate
when the users require the results to be 100 % fresh. Query results not fulfilling
the Freshness predicate are considered stale and thus useless. The problems of
optimizing throughput and maintaining freshness are orthogonal. In this work we
focus on achieving maximal throughput while fulfilling the user-defined Freshness
specification.

4 The Proposed JAQPOT Approach

Below, we first present our solution for the query throughput optimization problem
(Section 4.1), while our approach for satisfying the result freshness is described
in Section 4.2. Lastly, the integrated JAQPOT algorithm combining the two
solutions is given in Section 4.3.

4.1 Optimizing Throughput in Multi-Join Queries

Our analysis of throughput optimization in multi-join plans indicates the need
for a producer-consumer match between successive joins. Scarce resources are
best utilized if any intermediate tuples produced by a producer join also get
fully consumed by the downstream consumer join for probing the partner join
state. Clearly, this match must be achieved between every pair of join operators
in the plan for the effective utilization of the available µ resources. Thus, we
propose a synchronized resource allocation strategy at the query plan level that
establishes producer-consumer matches within the plan.

Input Paths. We introduce the notion of input paths in Definition 3.
Definition 3. Given a multi-join plan Q with k input streams5 (I = 1, . . . , k); each
pipeline of half-way joins from the leaf to the root operator forms an input path denoted
by PathI. A path having n join operators between input stream I and the output of query
is called an n-hop path.

5 If stream I is used multiple times as input to the plan (self-joins), then separate copies
of I will used as separate inputs.



In our example plan (Figure 2.b), we identify three input paths, namely,
PathA, PathB and PathC. PathA, a 2-hop path, is composed of two sequential
half-way joins, namely, (a X SB) followed by (abX SC), also written as (aX SB X

SC).
Along an n-hop PathI, every input tuple joins at the leaf half-way join and

propagates the intermediate results to the second half-way join and so on upto
the root. The half-way join productivity (ρh) of the leaf half-way join represents
the number of intermediate results produced per input tuple processed by it.
Similarly, the cardinality of intermediate joined tuples produced by the jth half-way
join along PathI may be computed by multiplying the productivities (ρh) of
half-way joins along PathI starting with the leaf up to the jth half-way join. In
Equation 5, we give the formula for this cardinality of intermediate joined tuples,
denoted as φI

j
. The superscript p denotes the partner join state at each level. φI

j

forms an important component of the core formulae that we are about to define
next.

φI
j =
∏

j

g−>1
(σ

p
g × |S

p
g|). (5)

X1
X

X2 … Xj

…… … …

1 2 nj
… Xn

I I I I
I

Fig. 3. Division of XI resources within PathI .

XI = XI
1
+ XI

2 + . . . + XI
j
+ . . . + XI

n

= XI
1
×[1 + φI

1
+ . . .+ φI

j−1
+ . . . + φI

n−1
]

(6)

Division of Resources within an Input Path. Assume that XI of the total µ
resources are allocated to an n-hop path PathI (Figure 3). XI is further divided
among the half-way joins of PathI as probe allowances XI

1
, XI

2
, . . . , XI

j
, . . . , XI

n, such

that they all add up to XI. The key for achieving the most effective division of
XI is to establish a producer-consumer match between every pair of these successive
half-way joins. This ensures that no resources are wasted on the production of
intermediate join tuples that ultimately do not contribute to the path’s benefit.
Thus, for a 2-join plan (Figure 2.b), the output rZ1

(Formula 4) of Z1 must be
equal to the probe allowance λ′

ab
ofZ2. In Formula 6, we show that each such probe

allowance assignment to the input of the jth half-way join along PathI, denoted as
XI

j
, may be computed by multiplying the leaf component XI

1
withφI

j−1
. Here,φI

j−1

denotes the cardinality of the (j-1)th intermediate joined tuples. Further, in Formula
7, we substitute the value of XI

1
from Equation 6 to derive the value of XI

j
as a

fraction of the total XI resources. As XI
j
is the input of the jth half-way join, thus

the cardinality value φI
j−1

of the (j-1)th half-way join is used.
XI

j
= XI

1
×φI

j−1

= (
XI × φI

j−1

1 + φI
1
+ . . . + φI

n−1

).
(7)



Table 2. Path productivity table.

PathI PathA PathB PathC

Resources used (XI) 15 16 10
Output rate rI

Zroot
4 5 1

Path Productivity ρp(PathI) 0.266 0.312 0.1

Path Productivity. Similar to the half-way join productivity metric that es-
timates the contribution of a half-way join to the operator output, we now
establish a novel metric that measures the contribution of an input path to the
overall query throughput (Definition 4).

Definition 4. The path productivity of PathI, denoted by ρp(PathI), is its contribu-
tion to the query throughput per tuple t processed6 within PathI .

ρp(PathI) = (σ
p
n × |S

p
n|) × (

φI
n−1

1 + φI
1
+ . . . + φI

n−1

)

= (
φI

n

1 + φI
1
+ . . . + φI

n−1

).

(8)

If total XI resources are assigned to PathI, the component XI
n assigned to

the root half-way join may be computed using Equation 6. The throughput
contribution by processing the XI resources along PathI, denoted as (rI

Zroot
)= (σ

p
n×

|S
p
n|) × XI

n. Therefore, by Definition 4, the productivity of PathI can be computed

as ρp(PathI) =
rI
Zroot

XI . Equation 8 gives the expression for the productivity of

PathI. The formula is further simplified to an expression entirely composed of
the cardinalities of intermediate joined tuples.

Applying Equation 8 over the paths in our example plan (Figure 2.b), the
productivity of PathA, denoted as ρp(PathA) can be computed as (σC × |SC|) ×

(
(σB×|SB |)

1+(σB×|SB |)
). Similarly, if XB resources are allocated to PathB, XB will be divided

among λ′
b

and λ′
ab

. Applying Formula 7 to this plan, an effective division of

XB over PathB will be λ′
b
= (XB/6) and λ′

ab
= (5 × XB/6). The total throughput

contribution (rB
Zroot

) achieved by this assignment on PathB can be estimated as (5
× XB/6) × (σC × |SC|). Thus, for XB = 600 tuples/sec, 100 tuples/sec are assigned to
λ′

b
, then producing rZ1

= 500 tuples/sec as intermediate output. The remaining

500 tuples/sec (= XB - λ′
b
) are assigned to λ′

ab
, such that λ′

ab
= rZ1

and producer-
consumer match is achieved between Z1 and Z2.

Discussion. The path productivity metric defaults to the notion of half-
way join productivity ρh (Section 2) when applied to a single operator. ρh is
a local operator level metric whereas our proposed ρp metric establishes the
contribution of a complete input path to the query throughput rZroot

. The former
takes only the tuples directly input into the half-way join into consideration,
whereas the ρp metric instead considers all the tuples processed anywhere along
the path, be it at the leaf, the intermediate and the root operators.

6 Tuple t here refers to a leaf input tuple or an intermediate tuple along PathI .
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Fig. 4. Example query plan.

Path Productivity-based Join Adaptation. Given plan Q with k input paths,
namely, PathA, PathB, . . . , and Pathk, their path productivities can be computed
using Formula 8. The 2-join plan in Figure 4 may be translated into a path pro-
ductivity table (Table 2). This translation is based on the input rates, the selectivities
and the state sizes along each path within the plan. For each input path PathI,
the path productivity table lists (a.) the resources used (XI), (b.) the query output rate
(rI
Zroot

) achieved using XI resources, and (c.) the path productivity (ρp(PathI).

In Figure 4.b) for PathA, the resources XA = 15 tuples/sec may be divided
across the two half-way joins such that λ′a gets 11 and λ′

ab
gets 4. The throughput

contribution of PathA, denoted by rA
Zroot

, is 4 tuples/sec as (ab X SC) produces 1

joined tuple tABC per tAB input tuple. Thus, for every 15 tuples consumed by
PathA in a second, it will produce 4 tABC joined tuples. The values in Table 2
may be fractional. Once a multi-join plan has been translated into a productivity
table, our join adaptation problem can be formulated as a variant of the knapsack
problem [21], as described below.

Problem 1. Join adaptation as a knapsack problem: Given a path productivity
table representation of a plan Q having k paths Path1, Path2,. . . , Pathk, when PathI

is assigned resources in multiple MI of its resources XI, then its throughput can be
computed as rI

Xroot
= MI × ρp(PathI). By defining aI to be 1 if PathI is chosen in a

solution and 0 otherwise, we can formulate this JDA-Knapsack problem as:

Maximize Σk
I=1

aI × rI
Zroot

(9)

subject to: Σk
I=1

aI ×MI × XI ≤ µ. (10)

JAQPOT Policy: Allocateµ iteratively to the most productive path remaining until
µ is completely consumed.

Assume µ = 30 tuples/sec. Using the JAQPOT Policy for the productivity
table listed in Table 2, the most productive path PathB will be assigned 16
tuples (out of 30). The remaining 14 resources fall short of XA=15, the minimum
resources required by the second most productive path PathA. Thus, PathC will
be chosen and assigned 10 resources, wasting the remaining 4 tuples. The total
output rate achieved using this greedy assignment is 6 tuples/cycle (assume
each cycle runs for 1 second). A more effective assignment would be to instead
give the complete 30 (=15 × 2) tuples/cycle to PathA and achieve 8 (=4 × 2)



tuples/cycle as throughput. This illustrates that a greedy application of the JAQPOT
Policy fails to achieve optimal throughput.

Above, we find ourselves working under rigid constraints. First, each execu-
tion cycle runs independently of its predecessor and successor execution cycles.
Second, we assume a discrete execution model where the XI, rI

Zroot
and µ values are

assumed to be whole numbers. Under this model the throughput optimization prob-
lem does not exhibit the greedy choice property (Refer to [21] for details). Thus, a
dynamic programming knapsack solver must be employed to achieve an assign-
ment yielding optimal throughput. Furthermore, the DP knapsack solver runs
in©(k× µ), for k input streams and µ available computing resources. For higher
values of µ, this solver would be extremely compute-intensive. Therefore, we
now explore alternate greedy strategies for solving this problem.

The Greedy Knapsack Solver. Let us now relax the above restrictions. First,
instead of independent execution cycles, each being assigned distinct µ available
resources, we now consider the coordinated execution across successive cycles. For
example, two successive execution cycles producing 3 and 2 join tuples respec-
tively will result in the overall path productivity ρp(PathI) to be 2.5 tuples/cycle.
As we will see shortly, this achieves even higher output rates than produced
under the discrete execution model. Once such a group of successive execution
cycles is identified, we can view their combination as a mega execution cycle.
Secondly, XI, rI

Zroot
and µ values can now be fractional. Thus, for PathB (Figure

4), XB = 16 tuples/sec and rB
Zroot
= 5 tuples/sec may be re-phrased as PathB using

XB = 8 tuples/sec to produce rB
Zroot
= 2.5 tuples/sec. While fractional tuples cannot

be consumed (or produced) in an individual execution cycle, over the span of
multiple successive execution cycles a virtual consumption (or production) of
fractional tuples per cycle may arise.

These relaxations are mutually complementary and their benefit is twofold.
First, multiple cycles may be scheduled together. Second, as fractional resource
assignment is allowed, high productivity paths consuming resources XI greater
than µ, that would otherwise be eliminated in the discrete model, may now be
assigned resources. In a real-world resource-limited scenario, the resources are
more likely to be an estimated µ value available over a duration spanning mul-
tiple cycles rather than being a distinct µ value available to each independent
cycle. Under this continuous execution model, our JDA-Knapsack problem (Formu-
lation 1) now exhibits both the greedy choice property and the optimal substructure
property [21]. In other words, an optimal solution is guaranteed to contain the
most productive path. This implies that we can now use a greedy knapsack solver,
henceforth referred to as Greedy Path Productivity-based Multi-Join Adaptation
(GrePP), to tackle our problem.

For our running example 4, GrePP selects the most productive path, PathB

(Table 2), and allocates all of µ (=30 tuples/sec) such that λ′
b

gets 20.62 tuples/sec

and λ′
ab

gets 9.38 tuples/sec. The estimated query throughput rGrePP
Zroot

is 9.38 tu-
ples/sec that exceeds the throughput of the discrete model and is guaranteed to be
optimal [21]. GrePP runs in ©(k log(k)) time [21] for a plan joining k streams
and thus is independent of µ.



4.2 Satisfying Freshness in Multi-Join Queries

Although GrePP is guaranteed to produce optimal throughput, such an adapta-
tion may suffer from the problem of result staleness. Recall that Freshness predi-
cates (Definition 2) are supplied by the user with respect to each input stream.
Here we now show how our path-productivity based model is extended to
incorporate this notion of Freshness.

The key idea here is that the Freshness predicates defined over streams are
fulfilled by translating them into refresh rates for the join states in the query
plan. To enforce the Freshness predicate on stream I (Definition 2), every tuple
tI from stream I and all its intermediate joined tuples must be purged from

the plan within
∮ I

time (or tuple for count-based freshness) from its arrival

time tI.ts. This would ensure that no results having tI will be produced beyond
∮ I

from its arrival. In Figure 5.a, stream C contributes the singleton tC, the

intermediate tCD and tCDE tuples, get stored in own states SC, SCD and SCDE,
respectively. State SC gets refreshed at λc tuples/sec, which tends to be high at
high arrival rates. However, the rates at which tuples tCD and tCDE get inserted
into intermediate states SCD and SCDE depend on the portion of µ allocated to λ′

cd
and λ′

cde
, respectively. Intermediate states, such as SCD and SCDE, that depend on

upstream operators for input are called staleness susceptible states (highlighted

in Figure 5.a). SC

λc
, SCD

λ′
cd

and SCDE

λ′
cde

denote the time duration for which a singleton

tC and its corresponding tCD and tCDE tuples will remain in their respective own

states SC, SCD, SCDE, respectively. The Freshness predicate
∮ C

for stream C gets

fulfilled only if
∮ C
≥ ( SC

λc
+

SCD

λ′
cd
+

SCDE

λ′
cde

).

Lemma 1. To fulfill the Freshness predicate
∮ I

for stream I,
∮ I
≥ Σn

j=1

So
j

λ′
j
, where λ′

j
and

So
j

denote the probe allowance and the own join state, respectively, at jth operator

along PathI, storing intermediate tuples having tI tuples.

In Lemma 1 each
So

j

λ′
j

value corresponds to the average time each singleton tI

tuple and its corresponding intermediate joined tuples reside in their respective

own state So
j
. Therefore, the Freshness predicate

∮ I
on any stream I can only

be fulfilled by allocating sufficient resources λ′
j

to each operator j along PathI

so that its own join states get refreshed at sufficient rates. Using our model of
input paths within a multi-join plan, we gain further insights into the result
staleness problem. First, we observe that each input path contains one or more
of these staleness susceptible states. Moreover, besides (c X SD) the state SCD is
populated by (d X SC) too. Similarly, in addition to (cd X SE), the state SCDE is
also populated by (e X SCD). Thus, staleness susceptible states may be refreshed
synchronously by allocating resources to the paths covering those states. The
problem of satisfying the Freshness predicates can be tackled by translating
them to corresponding refresh rates (Definition 5) for each staleness susceptible



state. The user-defined Freshness predicate is fulfilled only if the input rate λ′
j
(λ j

for leaf) at each half-way join exceeds the desired RS j
.

Definition 5. For a state S j, the refresh rate RS j
denotes the minimum number of new

tuples required to be inserted per time unit into state S j to prevent it from becoming
stale. A staleness susceptible state S j is said to be covered if its refresh rate RS j

is
fulfilled.

Given the foundation, we are now able to translate the problem of coverage
of the staleness susceptible states into a weighted multiple set cover problem (WMSCP)
[29], as described in Formulation 2. Given the set of all staleness susceptible states
and the input paths that include those states, the goal is to identify the set of
paths, called the minimal coverage paths that cover all the staleness susceptible states
utilizing the minimum computing resources ∆µ out of the total µ resources. The
remaining (µ - ∆µ) resources can then be allocated to GrePP for throughput
optimization. In Figure 5.a, PathA and PathC are such minimal coverage paths
covering all staleness susceptible states in joins Z3 and Z4.
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(a) Staleness (b) Linear (c) Bushy (d) Weatherboards

Fig. 5. Multi-join plans used.

Problem 2. Coverage of staleness susceptible states as a weighted multiple set
cover problem (WMSCP): The Universe U consists of m staleness susceptible states
= S1, S2,. . . , Sm with required refresh rates = RS1

, RS2
,. . . , RSm

, respectively. There are
k input paths covering all the staleness susceptible states P = Path1, Path2,. . . , Pathk

where ∪k
I=1

PathI
=U such that each path PathI has a positive real cost (resources used)

XI. If a n-hop PathI contains state S j, then the resources used for S j in PathI are denoted
as XI

j
, such that for the n states of PathI Σn

j=1
XI

j
= XI.

A k-tuple M =M1, M2,. . . , Mk constitutes a multiple cover for U in which the number
of times state S j is covered is defined to be the sum of MI’s for those PathI’s which

contain S j and the total weight of the multiple cover is defined to be Σk
I=1

XI × MI.
WMSCP seeks the minimum weight multiple cover for U such that every state S j is
covered for at least RS j

refresh rate. By defining bI
j
to be 1 if S j ε PathI and 0 otherwise,

we can now write our WMSCP problem as:

∆µ =Minimize Σk
I=1

XI ×MI (11)

subject to: Σk
I=1

bI
j
× XI

j
×MI ≥ RS j

∀ j = 1,2,. . . ,m. (12)

Complexity and Optimality Analysis. As WMSCP is shown to be strongly
NP-Hard, an optimal solution for it may be exttremely time consuming to find.
Thus, we utilize a greedy algorithm called GH-WMSCP proposed in [29]. We use



this set cover algorithm to satisfy the refresh rates and in turn to fulfil Freshness
predicates. First, the time complexity of the algorithm TC(GH-WMSCP) =©(m
× k + m2) for m staleness susceptible states and k input paths. Second, the cover
found by GH-WMSCP will atmost differ from the optimal cover for WMSCP,
denoted as OPT(WMSCP), by a factor of ln(m). For details refer to [29].

Lemma 2. For k input streams in a join query Q, there are exactly (k-2) staleness
susceptible states irrespective of the query shape, be it linear, semi-bushy or bushy.

By analyzing the binary join trees we observe the relationship between the
number of input streams (k) and the number of staleness susceptible states (m)
as given in Lemma 2. Using Lemma 2, the linear plan (Figure 5.b) and the bushy
plan (Figure 5.c) both having four input streams, have exactly two staleness
susceptible states. Therefore, substituting m with (k-2) in the expression for the
time complexity of GH-WMSCP, TC(GH-WMSCP) =©(k2).

4.3 The Integrated JAQPOT Algorithm

We now present our algorithm called Join Adaptation at Query plan-level using
Path-productivity for Optimizing Throughput, in short, JAQPOT (Algorithm 1).
JAQPOT first assigns a fraction ∆µ7 out of µ available resources towards ful-
filling the Freshness requirements using the GH-WMSCP. Further, the greedy
knapsack solver GrePP achieves an optimal query throughput using the re-
maining resources (µ - ∆µ). JAQPOT returns the join adaptation assignment in
PathAssign[ ][ ], where PathAssign[I][ j] denotes the resources assigned to the jth

half-way join of PathI. The overall time complexity of our solution TC(JAQPOT)
= TC(GH-WMSCP)+ TC(GrePP) =©(k2 + k × log(k)) '©(k2), for k input paths.
Thus, JAQPOT runs in quadratic time of k irrespective of the plan shape.

Algorithm 1 Join Adaptation at Query plan-level using Path-productivity for
Optimizing Throughput (JAQPOT)

Input: Path productivity table τp[ ] [1,. . . ,k] for plan Q, refresh rates for all j states RS1,..., j
,

available resources µ tuples/sec
Output: Assignment of µ to plan Q PathAssign[ ][ ]
1: PathAssign[ ][ ]← GH-WMSCP(τp[ ][1,. . . ,k], RS1,...,J

)

2: ∆µ←
∑k

i−>1 PathAssign[i][ ]
3: PathAssign[ ][ ]← GrePP(µ − ∆µ, τp[ ][1,. . . ,k])
4: return PathAssign[ ][ ]

7 We chose to satisfy the Freshness predicates while optimizing throughput as this adap-
tation is sufficient for real world applications. We found in our experimental study
(Section 5) that in practice realistic Freshness predicates are indeed fulfillable using
only a small share of the resources.



Table 3. Experimental parameters for synthetic data set.

Parameter Value
Arrival rates (λi) 300 ∼ 1200 tuples/sec
Window sizes of states (|Si |) 200 ∼ 5000 tuples
Join selectivities (σi) 0.01 ∼ 0.1
Available Resources (µ) 0 ∼ 100 % of saturation

Freshness predicates (
∮ I

) 1.5× ∼ 5× of window predicate

4.4 Run-time Query Adaptation

Due to fluctuations in the arrival patterns, an initially optimal resource allocation
by JAQPOT may become sub-optimal after some time. In that case, the plan
would need to be adapted at run-time. We now describe the framework we use
for adapting the resource allocation across the join plan at run-time.

Our adaptation strategy, adopted from [20], works in three steps: monitoring,
analysis and actuation. Monitoring entails collecting a running estimate of the
statistics such as the available resources and the output rate of each join in
order to derive the selectivities using windowed averages. When the query
performance varies by more than a certain error threshold ε, the analysis step
is triggered. Effectively, where we re-run the JAQPOT optimizer in a separate
thread. Only if the predicted performance of the adaptation recommended by
JAQPOT exceeds that of the existing plan by performance threshold p, then we
actuate the adaptation. The actuation step is extremely efficient as it entails to
simply changing the resource allocations along input path within the plan.

The processing is split into two execution threads. The monitoring and the ac-
tuation steps are interleaved with query execution within one thread. However,
the analysis (i.e., optimizer calls and generation of recommendations) is run in
a separate thread as it requires employment of the weighted set-cover and the
knapsack solvers. This prevents blocking of the query executor while the sys-
tem is being periodically analyzed for adaptation in parallel. The effectiveness
of our run-time adaptation strategy is demonstrated in our experimental study
(Section 5).

5 Experimental Evaluation

We now examine the effectiveness of our proposed JAQPOT approach. We
compare JAQPOT against the four alternate heuristic policies based on the
state-of-the-art half-way join productivity (ρh) metric, as described in Appendix
B. For our experimental study we implemented JAQPOT and the four ρh-based
heuristic policies within the XXX8 stream processing engine [23].

Objectives. Our analytical study (Section 4) establishes that JAQPOT is ca-
pable of producing near optimal throughput together with maintaining result fresh-
ness. The goal of this experimental study is to further substantiate whether the
capabilities of JAQPOT hold true for real applications and in resource-limited
environments. We evaluate JAQPOT and its competitor policies by measuring
their performance in (a.) producing query throughput, and (b.) fulfilling the fresh-
ness predicates. We examine the following impending questions with focus on

8 The name XXX is used for anonymity.
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Fig. 6. Impact of fluctuations in streams.
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Fig. 7. Impact of resource availability.

the two performance measures:
• How do the throughput produced by the each of the JDA techniques compare when
stream and query parameters, such as λi, σi, and SI, fluctuate?
• How does the throughput produced by the JDA techniques compare with the satura-
tion throughput9 when the availability of resources is changed?
• In the absence of the freshness set-coverage solver (GH-WMSCP), how badly do the
JDA techniques perform with respect to result freshness?
• In JAQPOT, what fraction of resources get assigned for fulfilling freshness as opposed
to achieving high throughput?
• How costly are the adaptation steps? Are the benefits of JAQPOT larger than the
incurred costs?

Experimental Setup. All our experiments are run on a machine with Java
1.6.0.0 runtime, Windows 7 with Intel(R) Core(TM)2 Duo CPU@2.13 GHz pro-
cessor and 4 GB of RAM. All techniques are tested rigorously using synthetic
streams and distinct query shapes with arbitrary parameter settings (Table 3).
Further, the applicability to a real-world application is also verified using the
weatherboards data set [7].

5.1 Throughput Production in Synthetic Data

The goal of these experiments is to compare the throughput produced by each
JDA technique under (a.) fluctuating streams, and (b.) changing resource avail-

9 The minimum total resources required to process the full query workload with no CPU
limitation are called the saturation resources. The corresponding throughput produced
is called the saturation throughput.
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Fig. 8. Experiments using the intel berkeley weatherboard data set for three different
available resources (µ).
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Fig. 9. Evaluation of freshness predicates.

abilities. We measure throughput as the cumulative join output tuples produced
over time. We use an equi-join of 4 streams, namely, A, B, C and D. We use two
different query shapes, namely, linear (Figure 5.b) and bushy (Figure 5.c) plans.
While the join order of the linear plan is (((AZB)ZC)ZD), that of the bushy plan
is ((AZB)Z(CZD)). The data streams are generated according to the Poisson
distribution that models the arrival pattern of several real-world stream appli-
cations. Overall, a variety of scenarios are evaluated by changing the λi, σi and
SI parameters for each query shape (Table 3).

Impact of Fluctuating Stream Parameters. We change the operator selectivities
to simulate fluctuations in the input streams. The other parameters, namely,
window sizes and arrival rates, were observed to have a similar effect on the
workload as that of the selectivities, thus we omit them here. Query workloads
can be adjusted by generating streams such that the join selectivities become

high (or low) as desired. Here, we fixed the µ to 30% of saturation whereas
∮ I

is set to 1.5×WINDOW predicates on each stream I.

In Figure 6, we measure the cumulative throughput (y-axis) as time pro-
gresses (x-axis) for a total of 10 mins of steady state query execution. In the
linear plan (Figure 6.a), the selectivities first change at 3 mins. from SEL1 (Z1 =

0.01 | Z2 = 0.01 |Z3 = 0.05) to SEL2 (Z1 = 0.03 |Z2 = 0.03 | Z3 = 0.05) and further
at 7 minutes from SEL2 to SEL3 (Z1 = 0.03 | Z2 = 0.03 | Z3 = 0.1). From SEL1
to SEL2, the selectivities of Z1 and Z2 triple while keeping Z3 constant. From
SEL2 to SEL3, the selectivity of the root Z3 doubles while the selectivities of Z1

and Z2 remain unchanged. This change in the root operator Z3 improves the
throughput production by JAQPOT even more significantly than the change in
non-root operators. The adaptation by the heuristic policies is marginal. Glob-



alHJPR outperforms the rest of the ρh-based policies, as its allocation criteria is
based on join selectivities itself. Figure 6.b illustrates the results for the bushy
plan with changes in the selectivities at 3 and 7 mins, just like in the case of the
linear plan. Here JAQPOT again produces high throughput while GlobalHJPR
performs only reasonably.

Impact of Changing Available Resources. These experimental results (Fig-
ure 7) summarize the performance of the techniques over the whole range of
resource availability from 0% to 100%. A variety of parameter settings are used,
as in Table 3. The charts depict the available resources as a percentage of the
saturation resources. On the y-axis, the throughput produced by each policy, av-
eraged over several runs, is shown as a percentage of the saturation throughput.

For the linear plan (Figure 7.a) JAQPOT utilizes the resources effectively.
Specifically JAQPOT is able to produce more than 80% of the saturation through-
put while using only 60% of the resources. JAQPOT consistently outperforms
all the ρh-based policies. Averaged over the different cases of the available re-
sources, JAQPOT produces about 2.5× as many tuples/min as those produced
by the leading ρh-based policy, with a maximum of 6.5× at 40% of saturation
resources. Among the heuristic policies, GlobalHJPR is found to be most effec-
tive at low resource availability, whereas the simplistic EqualHJ policy performs
well when resources are above 60% of saturation.

For the bushy plan (Figure 7.b), JAQPOT consistently outperforms the ρh-
based policies and on average produces about twice as many tuples/min. as
produced by the most productive ρh-based policy. GlobalHJPR and SBestHJP
are the two most effective ρh-based policies. Clearly, JAQPOT performs much
better for the linear plan as compared with the bushy plan. This happens because
all the staleness susceptible states in the linear plan can be synchronously refreshed
as they belong to a single path, PathA. On the other hand, for the bushy plan,
atleast two paths require resources for fulfilling the freshness predicates, thus
leaving less resources for throughput optimization.

5.2 Throughput Production in Real Data

We now test the applicability of the techniques for real data streams, namely,
the weatherboard data set from Intel Berkeley Lab [7]. The data set contains
readings collected from 54 sensors deployed in the Intel Berkeley Research lab
between Feb. 28th and Apr. 5th of 2004. Each row of data is an 8-tuple [date,
time, epoch, moteid, temperature, humidity, light, voltage]. We cleanse the data
by removing all tuples with missing or incorrect (negative) values. The cleansed
version contains 2.2 million tuples. The test query for the data set is an equi-
join of the 5 streams in order (((AZB)Z(CZD))ZE) (Figure 5.d), where streams
A. . .E represent different sensor groups (in proximity to each other). A constant
window size of 1000 tuples is used for each join state. We evaluate three value
settings of µ, namely, 300, 600 and 900, all measured in tuples/sec.

In the experimental results forµ= 300 (Figure 8.a), we observe the cummula-
tive throughput produced by each technique (on y-axis) as time progresses (on
x-axis). During the complete run, JAQPOT produces 2.8× as many tuples/minute



as those produced by the best heuristic policy on average, with a maximum of
3.4× at 4 mins. Among the heuristic policies, EqualHJ and GlobalHJPR produce
high throughput. In experiments with µ = 600 (Figure 8.b), JAQPOT on average
outperforms the best heuristic policy by 2.5×. GlobalHJPR and SBestHJP are
the best heuristic policies. Finally, for µ = 900, Figure 8.c), JAQPOT averages
3.4× better than GlobalHJPR and SBestHJP, which continue to top the heuristic
policies. Comparing the output rate achieved by JAQPOT across the charts,
doubling the µ from 300 to 600 also doubles the average throughput produced
per minute. Moreover, a change of 1.5× from 600 to 900 triples the average
throughput.

5.3 Evaluating Result Freshness

The purpose of these experiments is twofold, namely, (a.) to establish that result
staleness is indeed imminent in resource-limited processing, and (b.) to verify
that satisfying freshness predicates often does not require a substantial portion
of the resources. The staleness of results is measured by counting the number

of tuples produced that violate a given Freshness predicate. For example, if
∮ I
=

12 minutes, we evaluate every join tuple produced per time unit. A joined tuple
is stale with respect to stream I, if it contains a stream I tuple whose timestamp
is earlier than 12 mins before the current time.

Result Staleness in Join Adaptation. Next, we substantiate our hypothesis
that the throughput optimizing schemes aggravate the result staleness problem. We
compare the four heuristic policies with only the GrePP knapsack solver. The
GH-WMSCP component for tackling result staleness is not used. We perform
these experiments on the same three plans used in the throughput experiments,
namely, the linear, the bushy and the weatherboards (Figures 5.b, c and d). For
each plan shape we create many scenarios by varying the parameter settings
(Table 3). Here, µ is fixed at 300. We evaluate three distinct settings of the
Freshness predicate, namely, 1.5×, 3×, and 5× the window predicate. The higher
the freshness predicate, the more tolerant the user query is to staleness. For
each freshness value, we count the number of stale tuples produced by each
technique. The three freshness predicate values (x-axis) are plotted against the
average fraction of stale tuples /min (y-axis).

For the linear plan (Figure 9.a), as the freshness predicate is relaxed from 1.5×
to 5×, there is a marked drop in number of stale tuples. Among the heuristics,
EBestHJP and SBestHJP produce high amounts of stale tuples. Even GrePP
produces a substantial amount of stale tuples in the absence of GH-WMSCP.
The trend is similar for the bushy plan (Figure 9.b). However, the bushy plan
produces an even larger number of stale results compared to the linear plan.
For 1.5×, about 70% of the tuples produced by SBestHJP are stale. The staleness
trends are similar in the weatherboards data (Figure 9.c). It suffers less from
result staleness because the µ value was sufficient such that the throughput
optimizing allocation inadvertently covered the staleness susceptible states as
well.



Resource Utilization for Satisfying Freshness. The goal of these experi-
ments is to evaluate what fraction of the available resources are allocated by
JAQPOT for fulfilling the freshness requirements. For these experiments, we
again evaluate three distinct Freshness settings, namely, 1.5×, 3×, and 5× of the
window predicates. We run the JAQPOT algorithm, including both GrePP and
GH-WMSCP, for several settings of the linear and the bushy plans by changing
the query parameters, including different µ values. Further, JAQPOT is also
run for the weatherboards data using each of the three Freshness predicates and
µ = 300. As the remaining resources would be used for throughput optimiza-
tion, the less resources JAQPOT uses for freshness fulfillment, the better the
performance.

In Figure 9.d, the Freshness predicate (x-axis) is plotted against the fraction of
resources used for satisfying freshness. We find that as the freshness predicate is
relaxed, the demand for resources for satisfying freshness is drastically reduced.
For Freshness tolerance of 5×, the linear and the weatherboards plans utilize
only 3% and 5% resources for freshness, respectively. Further, as the bushy plan
faces higher risk for staleness, the bushy plan uses significantly larger portions
of resources for Freshness (35% for 1.5×).

Among the plans we evaluated, we periodically found some infeasible plans,
i.e., whose freshness predicates were not achievable under existing conditions.
In particular, about 8% of the evaluated plans were infeasible, 85% of which were
for the rigid Freshness predicate 1.5× and 65% were for bushy plans. However,
for the weatherboards query, JAQPOT always found a feasible assignment and
utilized minimal resources. Thus, for most reasonable Freshness predicates, an
allocation utilizing not more than 10% of µ on average is possible. Moreover,
our proposed solution is guaranteed to find the best solution, if one exists. This
fact may be proven using the implicit nature of the set-cover and the knapsack
solvers, i.e., the set-cover [29] finds the minimal resources utilized for fulfilling
the freshness requirements whereas the knapsack solver [21] maximizes the
throughput with the remaining resources.

5.4 Run-time Overhead of JAQPOT

As described in Section 4.4, JAQPOT has three overheads: monitoring, analysis
and actuation. The monitoring and the actuation steps are inexpensive as they do
not require much computation. The dominant cost among the overheads is the
analysis step. The analysis overhead is measured as the time taken to detect the
violation of the error threshold, run the optimizer, and recommend the alternate
resource allocation.

Among the analysis tasks, running GH-WMSCP for set coverage was found
to be the costliest computation. While the performance of GH-WMSCP for
different parameters, such as sizes of input and sets, has been thoroughly studied
in [29], our observations are similar. For all tested cases the execution time of GH-
WMSCP was found in 2 millisec to 300 millisec range. The plan recommended
by GH-WMSCP deviates from OPT(WMSCP) by 11% on average and at most by



19%. Moreover, we run the optimizer on a separate thread such that acceptable
relative to the benefits gained.

Yet another aspect of the adaptation framework is when and how often to
adapt. The monitoring step performs sampling and makes the decision whether
to discard or keep the sample. When any statistics vary by more than the error
threshold ε, the analysis step is triggered. Similarly, the performance thresh-
old p governs when the actuation step is triggered. We acknowledge that the
performance p and error ε thresholds are critical settings that must be deter-
mined empirically within a given context. We conduct empirical runs to find
reasonable settings for these thresholds for a given environment. Subsequently
those are held stable for the reported experiments. For the different settings of
the synthetic data, p was between 3% and 7% and ε was between 5% and 8%.
For Weatherboards both were fixed at 5%. A self-tuning technique where these
thresholds get adjusted on-the-fly could be applied. However, such advanced
tuning strategies [10,14,18,20] are orthogonal to our core optimization solution,
and are left for future work.

Experimental Conclusions. The overall findings using both the synthetic
and real datasets are:
• JAQPOT continuously produces near optimal throughput even under fluctu-
ating streams.
• JAQPOT consistently outperforms the ρh-based policies and produces 2∼6
times the throughput produced by them for all tested cases.
• Among the ρh-based policies, GlobalHJPR outperforms the other policies in
most cases.
• JAQPOT performs better in linear plans compared to bushy plans, as bushy
plans utilize more resources for freshness fulfillment.
•Under resource-limited processing result staleness is aggravated by throughput
optimizing techniques.
• If the freshness predicates are satisfiable, JAQPOT is guaranteed to find a re-
source allocation that utilizes the minimum resources.
• Performance trends observed in experiments over synthetic data consistently
also hold true for the real data as well.

6 Related Work

Existing research on resource-limited execution of join queries may be classified
into two categories, namely, memory-limited [11, 16, 17, 24] and computing-
limited [3, 12, 13, 15, 25]. All of these approaches typically address a single opti-
mizing function. Solutions addressing the memory-limited scenarios typically
either focus on a single join operator [11, 17, 24] or optimize multi-join query
plans using flushing [16] or memory management [6, 24]. Alternatively, load
shedding [3, 25] is popular in computing-limited scenarios. Shedding directly
drops the tuples from the streams and the data is permanently lost. Shedding
solutions, with an exception of [3,25] as further discussed below, focus on opti-
mizing a single join operator or a single MJoin operator [13].



Tatbul et al. [25] are among the first to apply load shedding to stream-
ing databases. They propose two shedding algorithms, namely, drop-based and
filter-based shedding for query networks (mostly filter queries). In subsequent re-
search [26], they focus on shedding for aggregation queries. As indicated in [25],
they do not address the additional issues related to processing windowed joins
over streams. Ayad et al. [3] explore the inter-relationship between query opti-
mization and load shedding. They propose static optimization and in the absence
of a feasible plan they pick a plan augmented with shedding operators placed
on the input streams to make it feasible. However, there is no focus on lever-
aging the inter-operator dependency to adapt to run-time fluctuations nor do
they consider result staleness. Tu et al. [27] propose a control-based approach of
load shedding to tackle processing delays. However, they do not focus on the
additional challenges of multi-join plans neither do they address throughput
optimization.

GrubJoin [13] targets the MJoin operator by leveraging time correlation-
awareness. Despite a common focus on multi-join queries, GrubJoin is different
from our work. First, it focuses on a single MJoin operator, whereas our work
tackles an orthogonal problem of operator interdependencies within a plan.
Moreover, the use of MJoin under compute-intensive workloads has been ques-
tioned in the literature [22, 28] as it repeatedly recomputes results compared
against result reuse in a pipelined plan of binary operators. Under compute-
intensive workloads, a query optimizer is thus highly unlikely to select a single
MJoin over a binary join plan. The experiments in Viglas et al. [28] indeed
exclude worst case scenarios for MJoin. For such cases, materialization of inter-
mediate results [22,28] or breaking the MJoin into smaller MJoins or binary joins
is proposed. Whenever such a plan of interconnected join operators is used, our
solution tackling operator interdependency issues can be applied in conjunction
with the existing approaches [13, 28].

Closest to our work, join direction adaptation (JDA) [12, 15] explores the half-
way join productivity to selectively allocate computing resources to maximize the
output rate. They focus on a single join operator only. In this work, we establish
that such traditional JDA technique is ineffective for multi-join queries.

Operator scheduling [8, 9, 19] achieves efficient processing of continuous
queries by determining two execution decisions, namely, (a.) what order should
the operators be scheduled in?, and (b.) how many tuples should an operator
process at each execution step? Operator ordering has been studied well in the
literature such as round robin scheduling [19] and chain scheduling [5]. Little
work has been done on the second aspect. In some sense our work now relates
to this second aspect - though in the context of resource-limited environments.

Another area of related research is adaptive query processing [10, 14, 18]
that aims to identify at run-time when sub-optimal performance arises. This is
typically accomplished by comparing the estimated and the measured factors
in the query. When such an anomaly is detected, the query optimizer alters the
plan at run-time to enhance the overall performance. Our work utilizes such



an adaptive framework for adjusting the join direction of the query plan at
run-time using our proposed metric and algorithms.

7 Conclusion

This paper addresses the computing-limited execution of multi-join queries us-
ing join direction adaptation. By leveraging the operator interdependencies instead
of localized operator-centric optimization, we propose the path productivity met-
ric. We identify result staleness as a pressing issue under resource limitations,
and throughput optimizing techniques further aggravate it. Our most important
contribution is the integrated JAQPOT algorithm that tackles the result staleness
problem while producing optimal query throughput. We validate our analytical
findings using experimental studies with both synthetic and real data.
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Fig. 10. The ρh-based Heuristic Strategies for Allocation of µ to the Multi-join Query
Scenarios.

A Additional Background

Unit-time Basis Cost Model. A cardinality-based cost model is inapplicable for
continuous queries because the streams are infinite whereas it computes the



Table 4. The ρh-based heuristics for multi-join query scenarios.

Policy Application to 2-join query (Figure 10)
Equally among Half-way Joins (EqualHJ): λ′a = 75 |λ′

b
= 75 | λ′

ab
= 75 | λ′c = 75 (tuples per second),

Allocate µ equally among all m half-way joins such rZ1
= 412.5 ab join tuples per second,

that for each half-way join Xi (∀ i = 1,2,. . .,m), rZroot
= 450 abc join tuples per second.

µXi
=
µ

m . Producer-consumer mismatch: out of 412.5 ab tuples produced by Z1

only 75 will be used as probe allowance in Z2.
Global Half-way Join Productivity Ratio (GlobalHJPR): λ′a = 13 | λ′

b
= 130 | λ′

ab
= 130 | λ′c = 27 (tuples per second),

Allocate µ to all m half-way joins in the ratio of their rZ1
= 656.5 ab join tuples per second,

respective half-way join productivities (ρh) such that rZroot
= 677 abc join tuples per second.

for each half-way join Xi (∀ i = 1,2,. . .,m), µXi
=

µ×ρh (Xi)

Σm
j=1
ρh (X j)

. Producer-consumer mismatch: out of 656.5 ab tuples produced by Z1

only 130 will be used as probe allowance in Z2.

Equally among Zs, then Local BestHJP (EBestHJP): µZ1
= µZ2

= 300
2
= 150 tuples per second,

Allocate µ in two levels: λ′a = 0 | λ′
b
= 150 | λ′

ab
= 150 | λ′c = 0 (tuples per second),

Divide µ equally among all n join operators such that rZ1
= 750 ab join tuples per second,

for each join Z j (∀ j = 1,2,. . .,n), µZ j
=
µ

n . rZroot
= 750 abc join tuples per second.

Within each operatorZ j , apply BestHJP to assign all Producer-consumer mismatch: out of 750 ab tuples
µZ j

towards the most productive half-way join component of Z j . produced by Z1 only 150 will be used as probe allowance in Z2.

σ-ratio among Zs, then Local BestHJP (SBestHJP): µZ1
:µZ2

= 0.001:0.005 = 50:250 tuples per second,
Allocate µ in two levels: λ′a = 0 | λ′

b
= 50 | λ′

ab
= 250 | λ′c = 0 (tuples per second),

Divide µ among all n join operators in the ratio of rZ1
= 150 ab join tuples per second,

their respective join selectivities such that rZroot
= 750 abc join tuples per second.

for each join Z j (∀ j = 1,2,. . .,n), µZ j
=
µ×σZ j

Σn
i=1
σZi

. Producer-consumer mismatch: only 150 tuples are

Within each operatorZ j , apply BestHJP to assign all produced by Z1 whereas 250 probe allowance is,
µZ j

towards the most productive half-way join component of Z j . assigned to λ′
b

of Z2 thus wasting 100 probe allowance.

time needed by the query to run to completion. Thus, we adopt the unit-time
basis cost model proposed by Kang et al. [15].

Cost(A Z B) = Cost(a X SB) + Cost(b X SA) (13)

Cost(a X SB) = λa × (probe(SB) + insert(SA) + purge(SA)) (14)
Cost(b X SA) = λb × (probe(SA) + insert(SB) + purge(SB)) (15)

In a unit-time basis cost model, the cost of the single join operator (Figure
2.a) is divided into two independent half-way join components, also called join
directions(Equation 13). In Equation 14, λa tuples arriving from stream A probe
state SB per time unit. Those λa tuples are then inserted into state SA and purge
tuples previously present in state SA. The probe translates to a search on the
partner join state (here, SB), whereas insert and purge translate to updates on own
state (SA).

Analysis of Join Cost Factors. The search and update costs depend on the
data structure employed in the implementation of the state. While search is
costlier in a nested loop join, using an efficient circular list the update costs (insert
+ purge) are constant time. In a symmetric hash join using hash buckets, the
probe cost is less than that in nested loop join, but now depends on the number
of distinct buckets and the population of each bucket. In addition, an efficient
circular list of tuples maintaining the arrival order keeps the update (insert +
purge) costs low. Overall, while probe dominates the join cost, the update (insert
+ purge) costs are fairly minor [15].

Extension to Time-based Windows. The unit-time basis cost model is devel-
oped for count-based windows only. However, it may be extended to time-based
windows by applying logic similar to that used by Ayad et al. [3] as follows. As



we are concerned with steady state conditions and are using average rate, it is
easy to adapt the model for time-based windows using the following argument.
On average, the number of active tuples in a time-based window state SI of time
T units is (λi× T). So, by replacing the size |SI| of a count-based window with
(λi× T), all our equations will be applicable to time-based windows as well.

B Heuristic HJP-based Policies for Multi-Join Plan

We further design four ρh-based heuristic policies. In Table 4, we describe each
of them including their principle and their application to a 2-join plan (Figure
10). These policies do not guarantee optimal throughput as they suffer from
producer-consumer mismatch. Moreover, the result staleness may arise from them,
as the Freshness predicates are also not guaranteed to be covered.


