
1

WPI-CS-TR-10-14

 April 2012

JavaScript and Flash Overhead in the Web Browser

Sandbox

by

Murad Kaplan

Mihajlo Zeljkovic

Mark Claypool

Craig Wills

 Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

 Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

2

Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant No. MRI-
0959441. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

3

Contents	
1. Introduction ... 4

1.1 Flash Load Policy File ‐ LPF .. 4

1.2 JavaScript DOM Object ‐ DOM .. 4

1.3 Flash URL Request ‐ URL ... 4

1.4 JavaScript XMLHTTP request ‐ XHR ... 4

2. Experiment Design .. 5

3. Methodology ... 5

2.1 Download tests: .. 6

2.2 Upload test: ... 6

2.3 Jitter test: .. 6

4. Results: .. 7

4.1 Download Results: .. 7

4.2 Upload Results: ... 11

.3 Jitter Results: ... 11

5. Conclusion and Future work: .. 13

4

1. Introduction

We use the Web browser sandbox methodology from [1] to estimate the round-trip, download time and upload
time using JavaScript and Flash execution from within a browser. In this report, we measure the browser
sandbox overhead of using these methods to establish a baseline for later work on the project to estimate
application performance.

There are four measurement techniques we use, two explicit and two implicit. JavaScript XMLHTTPRequest
and Flash URL Request are explicit techniques for retrieving files from the origin server. JavaScript DOM and
Flash Load Policy File are implicit techniques used for retrieving files from any third-party server. Brief
descriptions of these techniques are given in the following with more details on each available in [1].

1.1	 JavaScript	XMLHTTP	request	‐	XHR	
The explicit technique for JavaScript is to retrieve the given URL for an object and record the duration of the
download process using the XMLHTTPRequest. This technique can be used to GET or PUT an object, but can
only be used in conjunction with the origin server.

1.2	 JavaScript	DOM	Object	‐	DOM	
The implicit JavaScript technique we use is to load an object from a server into a <form> tag within the
Document Object Model of the current page. We record the start time when we change the source of the form
and record the end time when loading is done, signified by the execution of the JavaScript “onload” event. This
technique is implicit because it indirectly measures the download time of the object. It is of particular interest
to our project because it can be used in conjunction with known objects from any server on the Internet, not just
from the origin server.

1.3	 Flash	URL	Request	‐	URL	
Flash code first needs to be compiled into a Flash SWF file and then inserted into an HTML page through an
<object> or <embed> tag. The explicit technique for downloading an object with Flash is to record a start time
and then execute a function to download a file. When the function is done, an event handler function is executed
and the end time is recorded. This technique can only be used with objects obtained from the origin server.

1.4	 Flash	Load	Policy	File	‐	LPF	
Flash is restricted by the same-origin policy by default and cannot retrieve files from other domains. This
limitation can be changed by placing a policy file named acrossdomain.xml in the server root directory and
listing all domains that provided access. When trying to retrieve a file, Flash first gets policy file and then
requests an object. If the domain where the Flash is hosted is on the policy file list then the file will be retrieved.
If not, an exception will be thrown. We use this mechanism to measure the download time for an object from
an arbitrary server by trying to retrieve a file from the server as a policy file and time how long it takes for an
exception to occur.

5

In network communication, a client and server exchange packets during a session. A packet goes through
several phases from the application layer down to the physical layer and vice versa. The scripting languages
stand above the application layer, and the time between the packet arriving to the physical layer and the time
reported by web browser is the overhead we want to analyze. We found out that this time depends on many
factors including web browser type and version, operating system, method (JavaScript or Flash), and hardware
(CPU, RAM).

In this report, we compare JavaScript and Flash performance for measuring download, upload and round-trip
times of different servers and try to understand the overhead of our methods. We want to determine the
difference of the actual time and the one that is obtained by a Web browser. To calculate the overhead, we use
JavaScript and Flash for high-level data measurement and compare to low-level data obtained by monitoring
network packets transfer using a native executable performing similar upload and download operations. This
code was written in C and we use its output as the “ground truth” in our experiments.

2. Experiment Design
We set up environments to control bandwidth and delay and compare the predicted performance times to actual
times over a range of controlled network settings. As showed in Figure 1, two machines were used that run the
following Web browsers: Chrome v12, Internet Explorer v8 and Firefox v4. The machines sent network traffic
through a Linux PC, configured with netem to control bandwidth and delay to provide a network environment
of a typical residential ADSL link: 1 Mb/s download and 256 Kb/s upload with 50msec delay. Table 1 shows
hardware and software specifications for each machine.

Table 1. Machines Specifications

 Computer 1 (Desktop) Computer 2 (Laptop)

Hardware

Dell Desktop
CPU: Intel® core i7 CPU 870 @ 2.93GHz
RAM: 8.00 GB
Network Card: Intel 82578DM Gigabit Net Connection

Dell D620
CPU: Intel® core 2 Duo CPU T5600 @ 1.83GHz
RAM: 2.00 GB
Network Card: Brodcome netXtream 57xx
Gigabit Controller

Software OS: Windows 7 64 bit, Ubuntu

OS: Windows XP 32 bit, Ubuntu

	

3.	 Methodology

For each machine, using the two operating systems and Web browsers installed on them, we ran three different
tests -- download, upload, and round-trip time tests. For each configuration, we ran the four methods for
JavaScript and Flash except for the upload test. Only the XHR and URL techniques can be used to upload
objects to a server.

6

We compared our result using these methods to a baseline measurement based on a program written in C we
wrote to stream packets between the two machines and server. The code works on the transport layer, designed
to minimize any overhead that may be caused by the application layer.

Figure 1. Experiment Setup

3.1	 Download	Test:	
We chose a range of object sizes from 1 KB to 1MB. We downloaded objects of each size once using each
method and then downloaded the next size larger object and so on. After downloading the 1MB object we
restarted the browser and repeated the test again. This approach caused the cache to be cleaned each time to
make sure that the browsers are retrieving the objects from the server and not from the cache. We repeated this
approach 5 times in each machine, each operating system, and each browser and calculated the average, median,
and standard deviation for each object size.

3.2	 Upload	Test:	
Same as the download test, we chose a range of object sizes from 1 KB to 1MB. We uploaded each size to the
server once using each method and then uploaded the next size larger object and so on. We repeated this
approach 5 times for each machine, each operating system, and each browser and calculated the average,
median, and standard deviation for each object size.

3.3			Jitter	Test:	
In this test, we download a 1KB object to make sure that it would be carried in one IP packet, 50 times for each
browser. We calculated the cumulative distribution of each run.

7

Figures 2‐5. Median Download for Ubuntu OS

4.	 Results	

4.1	 Download	Results:	
Figures 2 – 5 show the median of the download throughput for the Ubuntu operating system on the two
machines using the four methods and C code. For consistency, all results are shown in terms of median values.
The mean values for all measurements are generally within a few percent of the corresponding median value
with the largest discrepancy between mean and median about 6% of the reported median. Figures 6 to 11 show
the median download throughput for the Windows 7 operating system on the two machines. The Y axis is the
median throughput of the five runs for each object size and the X axis represents the 11 object sizes. As can be
seen, in Windows 7 the JavaScript methods outperform (incur less overhead) than the Flash methods especially
in with the small files. We can see better performance for all methods in Chrome, but a larger difference

 Desktop Laptop
Ch

ro
m
e

Fi
re
fo
x

8

between methods in Firefox and Internet Explorer. In Ubuntu we generally see more consistent performance
except on files larger than 100KB, where some methods exhibit reduced performance.

9

Figure 6 – 11. Median Download for Windows 7 OS

.

 Desktop Laptop
Ch

ro
m
e

Fi
re
fo
x

In
te
rn
et
 E
xp
lo
re
r

10

Figures 12 – 17. Median Upload for Windows OS

 Desktop Laptop
Ch

ro
m
e

Fi
re
fo
x

In
te
rn
et
 E
xp
lo
re
r

11

Figures 18 ‐ 21 Jitter CDF for Ubuntu OS

4.2	 Upload	Results:	
As previously mentioned, we only have two methods that can be used to upload objects to our server. These
methods are XHR and URL. Figures 11 – 17 show the median of the upload throughput for Windows operating
system on the two machines using the two methods and C code. The Y axis is the Median upload throughput of
the five runs for each object size and the X axis represents the 11 object sizes. We did not include results from
the Ubuntu machines as we experienced difficulties using our C code for uploading packets to the Ubuntu client
machine. Again, we see better performance for Chrome compared to the other browsers. We also see that
JavaScript method shows a better performance than the Flash method.

4.3	 Jitter	Results:	
Figures 18 – 21 shows the cumulative distribution function (CDF) for download of a small file for the Ubuntu
operating system on the two machines using the four methods and C code. Figures 22 – 27 show the CDF for
download of a small file for the Windows 7 operating system on the two machines. The Y axis is the cumulative
distribution of the 50 round-trip time measurements to the server and the X axis represents the round trip time in
milliseconds.

 Desktop Laptop
Ch

ro
m
e

Fi
re
fo
x

12

Figure 22 – 27. Jitter CDF for Windows OS

In general, the JavaScript methods are the best for being closest to the ground truth (C code), although Internet
Explorer exhibits a constant overhead when compared to the baseline.

 Desktop Laptop
Ch

ro
m
e

Fi
re
fo
x

In
te
rn
et
 E
xp
lo
re
r

13

5.	 Conclusion	and	Future	Work	
In this work we systematically measure the overhead from Web browser sandbox methods introduced in
previous work to measure network performance. As can be seen from the results on two different machines
using two operating systems and three popular Web browsers, these sandbox methods largely provide accurate
measurements of the network performance.

Our results showed that JavaScript methods generally give better results than Flash methods. We saw that
JavaScript XHR is closest to the ground truth for measuring download, upload and round-trip time. We also saw
that JavaScript DOM produces constant results for round-trip time and can therefore be used for measuring
jitter. Flash methods can be close to the ground truth for download and upload, but they do not outperform
JavaScript XHR when comparing against ground truth.

We plan to these results as a basis for providing estimates of application-level to users of our How’s My
Network Web site. The methods that can be used with arbitrary servers are particularly attractive as they allow
us to perform measurements directly to servers of interest to users rather than being restricted to just the origin
server.

6. References
[1] Artur Janc, Craig E. Wills, and Mark Claypool. Network Performance Evaluation within the Web Browser
Sandbox, http://www.wpi.edu/Pubs/ETD/Available/etd-011909-150148/unrestricted/artur-janc-msc-thesis.pdf,
January 2009

[2] Firebug, http://getfirebug.com/

[3] Wireshark · Go deep, http://www.Wireshark.org/

