WPI-CS-TR-09-13 Nov 2009

A New Look At Generating Multi-Join Continuous Query
Plans: A Qualified Plan Generation Problem

by

Yali Zhu
Venkatesh Raghavan
Elke A. Rundensteiner

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, I\{Iassachusetts 01609-2280

A New Look At Generating Multi-Join Continuous Query
Plans: A Qualified Plan Generation Problem

Yali Zhu?®, Venkatesh Raghavan®, Elke A. Rundensteiner®

“Oracle Corporation, Redwood Shores, CA USA
bDepartment of Computer Science, Worcester Polytechnic Institute, Worcester, MA USA

Abstract

State-of-the-art relational and continuous algorithms alike have focused on producing
optimal or near-optimal query plans by minimizing a single cost function. However, en-
suring accurate yet real-time responses for stream processing applications necessitates that
the system identifies qualified rather than optimal query plans - with the former guaran-
teeing that their utilization of both the CPU and the memory resources stays within their
respective system capacities. In such scenarios, being optimal in one resource usage while
out-of-bound in the other is not viable. Our experimental study illustrates that to be effec-
tive a qualified plan optimizer must explore an extended plan search space called the jtree
space composed not only of the standard mjoin and binary join plans, but also of general
join trees with mixed operator types. While our proposed dynamic programming-based
JTree-Finder algorithm is guaranteed to generate a qualified query plan if such a plan ex-
ists in the search space, its exponential time complexity makes it not viable for continuous
stream environments. To facilitate run-time optimization, we thus propose an efficient yet
effective two-layer plan generation framework. The proposed framework first exploits the
positive correlation between the CPU and memory usages to obtain plans that are minimal
in at least one of the two resource usages. In our second layer we propose two alternative
polynomial-time algorithms to explore the negative correlation between the resource us-
ages to successfully generate query plans that adhere to both CPU and memory resource
constraints. Effectiveness and efficiency of the proposed algorithms are experimentally
evaluated by comparing them to each other as well as state-of-the-art techniques.

Key words: multi-constraint query optimization, continuous queries, streaming

Email addresses: yali.zhu@oracle.com (Yali Zhu), venky@cs.wpi.edu (Venkatesh
Raghavan), rundenst@cs.wpi.edu (Elke A. Rundensteiner)

Preprint submitted to Data & Knowledge Engineering November 14, 2009

1. Introduction

1.1. Continuous Query Plan Generation

State-of-the-art query optimization algorithms in static databases [1, 2, 3, 4, 5] primar-
ily focus on generating an optimal or near-optimal plan by minimizing a single cost func-
tion, typically the total processing costs comprised of I/O or CPU [6]. Continuous query
processing [7, 8] differs from its static counterpart in several aspects. First, the incoming
streaming data is unbounded and the query lifespan is potentially infinite. Therefore, run-
time output rate is a better metric than the total CPU time needed to handle all input data
[9]. When the per-unit-time CPU usage of a query plan is less than the available system
CPU capacity, the query execution is able to keep up with incoming tuples and produce
real-time results at an optimal output rate [10].

Second, real-time response requirements make continuous queries memory resident
[7]. Stateful operators, such as joins, store input tuples in states with which future in-
coming tuples of other streams will join. In time-critical applications, such as fire-sensor
monitoring, it is common to have multi-join queries with large numbers of participant
streams with high input rates. In such scenarios, the size of the in-memory operator states
could potentially grow to be very large, making memory a precious resource. Memory
overflow can result in unacceptable outcomes, such as temporary halt of query execution
[9, 11, 12], approximation of query results [13] and in some cases thrashing.

To summarize, generating a query plan that is optimal in one resource usage while
out-of-bound in the other is not an acceptable solution. Therefore, the aim is to generate
a query plan with both resource consumptions within their respective system resource
capacities, henceforth called a qualified plan [10]. All qualified plans are guaranteed to
produce results at the same output rate [10].

To address this qualified plan generation problem, one could attempt to design a com-
bined (singular) cost function that captures both resource usages. This would be beneficial
as we could then capitalize on state-of-the-art optimization techniques. However, such an
approach suffers from drawbacks that make it unsuitable. First, a singular cost function
that captures both CPU and memory usages and their correlation a priori is in practice
hard to obtain [14]. This is because the problem is no longer a minimization problem
but rather a system resource constraint satisfaction problem. Also, there is no monotonic
clearly characterizable relationship between the resources. On the contrary, we show that
these resources in parts of the search space may be positively correlated and in others neg-
atively correlated. Second, a query plan that is minimal by this new singular function need
not be optimal or near-optimal in either resource usage nor guaranteed to be qualified.
Additionally we note that the problem is NP-hard [15], yet efficient algorithms are a must
in the streaming context for runtime optimization. Thus, we now set out in this work to
provide a fresh approach to this qualified plan generation problem.

1.2. Relationship Between Resource Usages

O &)
e G
D (D D
) C SO IR
A B B C DE F

A G

(a) Linear BJTree (b) Bushy BJTree
ABCDEFG

&)
Comome) e o
"> > T 7T

A B C D E F G A B C D E F GA BC DE F G
(c) Single MJoin (d) Decomposed MJoin (e) A JTree Plan

Figure 1: JTree Solution Space: (a) & (b) Traditional BJTrees, (c) MJoin [9] (d) De-composed MJoin [9],
(e) A JTree Plan Not Considered In Literature

Similar to other multi-objective optimizations [16, 17, 14], we first characterize the
relationship among the determining cost factors. The observation that a query plan with
less data (less memory) typically requires less CPU processing time is well known. This
direct correlation is referred to in this work as a positive correlation. State-of-the-art
optimizers in static databases [1, 2, 3, 5, 18] as well as streaming databases [9, 15, 19]
exploit this positive correlation by minimizing intermediate results (memory) with the
assumption that this will also reduce CPU costs.

To illustrate this, consider the two commonly used methods for executing continuous
joins: binary join trees (bjtree) [20] and multi-way join operators (mjoin) [19, 9, 15, 10].
A bjtree is composed of binary join operators that store intermediate results, while an
mjoin is a single operator that takes as input all participant streams. The new tuples from
each stream in mjoin are joined with the remaining streams in a particular order. Existing
optimization techniques for both these join methods aim to minimize the total number of
intermediate results [15]. In bjtree, this reduces the memory required to store intermediate
results as well as the CPU costs for future joins. On the other hand, in mjoin, this reduces
the CPU costs needed to recompute intermediate tuples.

However, negative correlation between CPU and memory usage could also arise for
multi-join query plan optimization. In other words, an increase in the usage of one re-
source may decrease the usage of the other. While the concept of negative correlation

is well known, to the best of our knowledge none of the state-of-the-art approaches ex-
ploit both positive and negative correlations to generate a query plan that is both CPU and
memory resource adherent. More precisely, rather than only considering different bjtrees
by exploiting only positive correlation, our approach explores removing some intermedi-
ate states to reduce memory usage at the expense of increasing the re-computation CPU
costs, thus also exploiting the negative correlation between resources. Conversely, rather
than choosing between different mjoin orderings, some input streams can be combined to
form binary joins whose results are stored in intermediate states and fed into the mjoin
operator. This reduces CPU costs incurred by the re-computation at the expense of in-
creasing memory usage. In Section, 2.4 we present a formal analysis highlighting these
resource trade-offs.
)

Memory Increasing =
ABCDEF ~ @
CPU Increasing @ @ @

A B C D E F

A B C DE F

MlJoin BJTree
Figure 2: Migrating Between MJoin and BJTree

State-of-the-art algorithms in multi-join query optimization stay within one join method
by exploiting only the positive correlation in each join method. That is, they explore either
solely within the bjtree [5, 2, 10] or the mjoin [19, 15] solution space. [9], which were
the first to introduce the idea of mjoin, also observed that there is a limit in the number of
input streams for an mjoin to be effective. They considered decomposing a single mjoin
operator into two smaller mjoin operators as in Figure 1.d. [9] does not consider memory
resource utilization (assuming it to be always sufficient) and follows the traditional ap-
proach of optimizing the query by simply reducing CPU processing time. Thus [9] fails
to explore a general join plan, as in Figure 1 e, composed of a mixture of both mjoin and
binary join operators at any level henceforth referred to as jtrees. In our experimental
analysis, we observe that these existing algorithms thus may not generate qualified query
plans even when a qualified plan exists in the solution space.

1.3. The Proposed Approach

We first present our dynamic programming-based JTree-Finder algorithm that ex-
plores the complete jtree search space and guarantees the generation of a qualified plan.
This guarantee comes at a high complexity cost, making it not practical for runtime opti-
mization needed for streaming applications.

We thus design a polynomial-time qualified plan generation solution in the form of a
two-layer framework. In the first layer, the 2-dimensional problem is transformed into a
1-dimensional minimization problem. This allows us to employ state-of-the-art solutions
[15, 19, 1, 5, 10] that exploit positive correlation among the two resources to generate
a good mjoin or a good bjtree plan respectively. This layer either returns 1) a qualified
mjoin or bjtree plan, if found, or 2) a negative result to denote that the available resources
are too limiting and hence no qualified plan exists, or 3) triggers the second layer of plan
generation into action.

[Multi-Join Query J Multi-Join Query
@ MJoin Ordering BJ-Tree Ordering l
ABCDEF @

& @\ [N & » &
A B C DE F A BC D E F A BC DE F
MlJoin State-Selection JTree State-Removal BlTree

Figure 3: Two Strategies In Optimization

The second layer of optimization piggybacks on the first layer by using the generated
best possible mjoin or bjtree plans as the starting point as they provide lower bounds on
memory or CPU utilization respectively. For the second layer we propose two polynomial-
time hill-climbing search algorithms, named state-selection and state-removal. Both ex-
ploit the negative correlation between CPU and memory usage to generate a qualified jtree.
More precisely, state-selection starts with the previously generated mjoin-based plan (i.e.,
guaranteed to be minimal in memory usage) and reduces the excessive CPU resource uti-
lization by sacrificing some memory resources (Figure 3). In this process, we aim to save
on CPU costs wasted on the re-computations of intermediate results. On the other hand,
state-removal starts with a good bjtree-based plan (i.e., optimal or near-optimal in CPU
usage), and aims to reduce the excessive memory usage by selecting intermediate states to
be removed at the expense of increasing CPU resources needed for their re-computation.

1.4. Summary of Contributions
e We position the generation of multi-join continuous query plans as a qualified plan
generation problem with the aim of generating a query plan whose usages of both
CPU and memory resources are within the system capacities.

e We consider the extended search space of qualified plans that incorporates general
jtree-based plans. We employ the JTree-Finder algorithm for exploring this search

6

space. Our experimental evaluation demonstrates the need to indeed consider this
extended plan space. It further highlights the need for a polynomial-time approach.
In this performance study, this dynamic progamming technique is not feasible for
stream processing systems due to its exponential time complexity.

e We propose an alternative polynomial-time two-layer plan generation framework,
which exploits existing technologies to first generate an mjoin and a bjtree plan
that are minimal in memory and CPU resources respectively, exploiting the positive
correlation between the resources usages.

e We present two new hill-climbing algorithms, namely state-selection and state-
removal that exploit the negative trade-offs between CPU and memory usages. The
former uses the mjoin-plan and the latter uses the bjtree-plan, both generated in our
first layer of optimization, as their respective starting point.

e We show the effectiveness and efficiency of our algorithms through our second set of
experiments that compares them against each other and to popular approaches. Our
proposed two-layer optimization is shown to as effective in a large variety of testing
scenarios as the exhaustive approach in finding a qualified plan. Additionally, due
its polynomial-time execution it is able to generate qualified plan even when for a
large number of streams, when the dynamic programing solution is to expensive.

1.5. Organization

In Section 7 we survey the related work. We analyze the CPU and memory cost mod-
els to reveal the conditions under which these resources have a positive versus a negative
correlation in Section 2. In Section 3, we present various resource settings that would re-
quire the search space to be extended to include general jtrees. Additionally, here we also
present our dynamic programming based JTree-Finder algorithm. Section 4 experimen-
tally highlights the high time complexity of JTree-Finder. We propose our polynomial-
time two-layer plan generation framework in Section 5. The effectiveness of our approach
is presented in Section 6 through our experiments. Section 8 concludes the paper.

2. Preliminaries

In this section, we analyze the CPU and memory costs for the state-of-the-art methods
of implementing multi-join continuous queries, namely mjoin and bjtree. This comprehen-
sive analysis reveals the conditions under which CPU and memory usage have a positive
or a negative correlation.

(50)

(100)

(a) Join Graph (b) MJoin Operator and Sample Join Ordering (c) BJTree

Figure 4: Commonly Used Join Methodologies

2.1. Join Method Basics

The join graph (JG) (in Figure 4.a) represents a multi-join query along with statistical
information such as input rates, selectivities, etc. A vertex in the join graph represents an
input stream, marked by its stream name and arrival rate. An edge between two vertices
indicates a join predicate between the two streams and is marked by the join selectivity.
For simplicity, henceforth we assume independent join selectivities. In principle a richer
selectivity estimation-model [21, 22] could also be utilized. However, this would further
complicate the already NP-Hard problem considered in this work.

Figures 4.b and c show mjoin and bjtree respectively, two common practices used
for executing multi-join queries over windowed streams. [9] proposed a multi-way join
operator called mjoin to process a multi-join query over windowed streams. An mjoin
operator is a single multi-way operator that takes as input the continuous streams from all
join participants. Two benefits of mjoin are that the order in which the inputs tuples from
each stream are joined with remaining streams can be dynamic, and intermediate tuples
are no longer stored, saving space. To illustrate, in Figure 4.b new tuples from A (A A for
short) are first inserted into the state of A (denoted as S,), then used to probe the state
of B (Sp), and the resulting join tuples then go on to probe the state of stream C (S¢)
to produce the final output result. The key idea is that the order in which the new tuples
from stream A are processed (joined) is independent from the order in which tuples from
streams B and C are processed. Alternative t mjoin a traditional plan (as shown in Figure
4.c) containing binary join operations can also be used to process continuous multi-join
queries.

The algorithms proposed in this work are general and not restricted by any particular
physical implementation of mjoin or bjtree like hash vs. nested-loop or particular window
type like count- vs. time-based. To anchor our analysis, our cost analysis below makes use

’ Term ‘ Meaning

C; | Cost of inserting a tuple to a state (ms)
Cy | Cost of deleting a tuple from a state (ms)
C; | Cost of joining a pair of tuples (ms)
Ax | Average input rate from stream X (tuples/sec)
oxy | Selectivity of join X XY
W | Sliding time-based window constraint measured in seconds
|Sx| | Number of tuples in state Sx

Table 1: Terms Used in Cost Models

of the widely adopted symmetric stream hash join [9] with time-based windows [23, 8].
Prior work has shown that for most cases of a hash based join implementation is superior
to other implementations such as tree-based and nested-loop join [10]. Each join operator
keeps one state per input stream, storing tuples in one window frame for future joins. For
ease of discussion, we assume all join predicates to have the same window size, though
the techniques proposed in this work are not restricted by it.

We apply the commonly adopted per-unit-time cost metric [23], in which the CPU cost
is the CPU processing time required to process all tuples arriving in one time unit. Table
1 explains the terms used in our cost-model. The cost function CPU(P, JG) returns the
CPU utilization and Memory(P, JG) returns the memory resources needed to execute the
query plan P realizing the user query caaptured by the join graph JG.

2.2. Cost Analysis for MJoin

CPU costs for the mjoin in Figure 4(b) is the cumulative cost of processing tuples
from streams A, B and C'. Based on the optimal join orderings in Figure 4(b), a new tuple
from A is first inserted into state S4 (at cost ;). Existing tuples that are now outside
the window frame are purged! from S, (at cost Cy). This inserted tuple is then joined
with tuples in state Sp and the resulting tuples are used to join with tuples in state Sc. A
similar process applies to tuples from B and C'. The CPU costs for input A in a unit time
are OPUA =)\A(CZ-—I—Cd) +)\A|SB|OABC]' + >\A|SB||Sc‘UA300j, where OABC = O0ABOBC,
‘SB’ =)\BW, and ’SC‘ = ACW

CPU4s = Aa(Ci 4 Ca) + AarpoasW Cj + AarpoaprcopcW3C; M

"We assume self-purge, while cross-purge is also applicable.

The total CPU processing costs for our mjoin are:

CPUmjoin =CPU4,+ CPUg +CPUs
= ()\A —+)\B +)\0)(01 + Cd) —+)\B)\0030W0j (2)
+ 3>\A>\B)\C'0'ABC’WQC]' + QAAABUABWC]‘

The memory cost of an mjoin, immaterial of the chosen join ordering, is the same and
fixed to be the total state size for maintaining input stream tuples. This cost is relatively
stable through out the life span of the query. The run-time memory costs may fluctuate as
intermediate tuples temporarily exist and can be minimized by choosing the optimal join
orderings. The memory costs for the mjoin (Figure 4(b)) thus is estimated as:

MEMyjoin = |Sal +|Ss| + [Sc| = AaW + ApW + AcW (3)
2.3. Cost Models for BJTree

Similarly, the CPU costs of a bjtree are the cumulative cost of processing tuples from
each input stream in one time unit. In Figure 4, a new tuple from A is first inserted into the
state S4 and old tuples from Sy are deleted. The new tuple then joins with tuples in state
Sp. The joined tuples are inserted into intermediate state S4p and older tuples in S4p
are deleted. These joined tuples finally join with tuples in state Sc. Tuples from input
B follow similar steps while tuples from input C' directly join with tuples in state Sap.
The cost models to compute the unit CPU costs for input A is CPU4 = A4(C; + Cy) +
Aa|SBloap(Ci+Ci+Cy) + AalSg||Sc|oapcC). The CPU costs for input B are identical
to A. However the CPU costs of stream C'is CPUc = Ao(C; + Cyq) + Ac|SaploscC.
Given |Sap| = AaApoapW? and |Sp| = AW we have,

CPUbjtree = ()\A —+)\B +)\C)(Cz + Cd) + BAA)\BACUABCWZC]'

4)
+ QAA)\BUABW(C]' —+ CZ -+ Cd)

Estimated memory costs is given by the total state size:

MEMbjtree = ‘SA’ + ’SB’ + ’SC| + |SAB’ = MEMmjoin + >\A/\BUABW2 (5)

The first two terms in Equation 4 are identical for bjtrees of any shape. The third term,
2|S48|(C; + C; + Cy), is join-order-dependent. Choosing a better join ordering lowers
the size of intermediate states, which decreases the memory cost as indicated by Equation
5, and also lowers the CPU costs as indicated by Equation 4. Hence in bjtree, CPU and
memory costs are positively correlated.

10

2.4. Condition For Negative Correlation

As indicated by Equations 3 and 5, M E My, is always larger than M E M, ;,:,, as the
bjtree stores all intermediate states. So a negative correlation between CPU and memory
may exist when the CPU costs of bjtree are smaller than the CPU costs of mjoin. At
first glance, this seems to always hold, because without storing intermediate results, mjoin
requires extra CPU resources for re-computation. However, bjtree also needs extra CPU
resources to maintain intermediate states. The recomputation of the state BC' requires
CPUnpjoin recomput While CPUyjiree maintain 1S the cost to maintain the state AB. From
Equations 2 and 4, we have:

CPUmjoinJ‘ecomput = ABACJBCWC]' (6)
CPUbjtree,maintain = 2)\A>\BUABW(Ci + Cd) (7)

From this, several key observations can be drawn,

1. When C'PU,join recomput > CPUpjirec maintains @ bjtree by storing intermediate re-
sults uses more memory but is able to reduce the CPU usage as no re-computations
are needed.

2. When CPU,,join_recomput < C'PUpjtrec maintain. a1 mjoin by having extra re-computation
CPU costs saves valuable memory resources needed to store them as well as the CPU
resources needed to maintain them.

In this work, we exploit this phenomenon of sacrificing one resource to gain another.

3. Qualified Plan Solution Space

3.1. The Basics on Optimal vs. Qualified Plans

Definition 1. A qguery plan P for the join graph JG is an optimal plan with respect
to CPU (or memory) usage, if there does not exist a plan P # P for JG such that
CPU(P',JG) < CPU(P, JG) (or Memory(P', JG) < Memory(P, JG)).

State-of-the-art algorithms in traditional [1, 2, 3, 4, 5] and continuous query systems
[15, 9, 19] focus on generating a query plan that is minimal in one cost function (such
as in CPU or in memory usage). They however do not tackle the problem addressed
in this work of generating qualified plans that adhere to both CPU and memory usage
constraints. To elaborate, assume the query Q represented by a join graph JG and the
available system resources C' PU,,q.;; and Memy,.;;. Let Py be the optimal and P, be
a near-optimal plan for JG in regards to CPU resources. Let us also assume that both
plans meet the system CPU threshold, i.e., CPU(P;,JG) < CPU(Ps,JG) < CPUpqi- It

11

is easy to envision a scenario where the near-optimal plan P, meets the memory threshold
while the optimal plan P; exceeds the system memory resources, i.e., Memory(Ps,J)
< Memgpeiir < Memory(Py,JG). In such scenarios the state-of-the-art algorithms that
minimize CPU costs will produce query plan P; that does not adhere to both the resource
constraints, while missing the qualified plan Ps.

Definition 2. Given the available system resources C PU ., and M emg,qi1, a plan P for
JG is a qualified plan if CPU(P, JG) < CPUypei and Memory(P, JG) < Memgyair-

The objective of this work is to design algorithm(s) that generate a qualified plan as
in Definition 2.

3.2. The JTree Solution Space

To better understand the entire solution space, we investigate all possible scenarios
depicted in Figure 5 where we vary the system capacities C'PU,,q;; and Memg,qi;, and
the CPU and memory utilization of popular join methods bjtree and mjoin. In Figures 5.a,
5.b and 5.c the estimated CPU and memory usages of bjtree and/or mjoin lie below their
respective system constraints. In such situations the existing optimization techniques can
be successfully applied. That is, in the case of Figure 5.a we can pick either the mjoin or
the bjtree, as both are qualified. However, in Figure 5.b only the bjtree and in Figure 5.c
only the mjoin solution is a qualified solution and therefore we choose accordingly.

. mjoin
mjoin mjoin
CPUyir [7~ "‘/' T CPU o] 777777777 1 CPU,f "‘/_ K bitree
../i bitree i bjtree i
0 Memavail 0 Memavail 0 Memavail
(a) (b) (©)
mjoin mjoin

O/j e O/ Notations

CPU,f ~=="""

avai .‘;/ <>‘/‘)tr ee CPU
i CPUavai F--=
i O'\ I O\ 0 Memory

bjtree i bjtree
L @ Qualified Plan
0 Mem,; 0 Mem,,; O Un-Qualified Plan
(d) (©

Figure 5: Various System Resource Settings

12

Now consider the scenario in Figure 5.d where the CPU utilization of mjoin and the
memory utilization of the bjtree are above their respective available system resources. We
observe that in such scenarios where neither mjoin nor bjtree query plans are qualified,
a qualified plan may nonetheless exist. This is achieved by exploiting the negative cor-
relation that arises between CPU and memory utilization (as discussed in Section 2.4).
To elaborate, in Figure 5.d the CPU utilization of mjoin (C'PU,,, ;i) is above the system
CPU threshold. While the memory utilization of mjoin (M emy,;qin) 1s well below the
available system memory resources. In such scenarios we can sacrifice memory resources
by storing some intermediate results and therefore saving CPU resources that would have
otherwise been wasted for their re-computation. The resulting query plan is a jtree whose
memory and CPU resource consumptions meet their respective resource constraints (as in
Figure 5.d). As neither the pure mjoin operator nor a pure bjtree are viable at all times, we
now introduce a generalization of a join plan that enables us to profit from this negative
resource correlation.

Definition 3. A join tree (JTree) for a query Q represented by a join graph JG is a query
plan where each node is a join with arity, k > 2. k = 2 implies that it is a symmetric binary
join, while k > 3 means that the node is an mjoin operator.

The intuition is to have a join solution that now exploits the benefits of both mjoin
and bjtree join methods. Our experimental evaluation supports the claim that considering
jtrees in the solution space increases the possibility of finding qualified plans (See Section
4). Lastly, scenarios (as depicted in Figure 5.e) where the available system resources are
too restrictive, no qualified plan exists. In such cases, a deployed system would have
to resort to applying more drastic approaches such as load-shedding [13] and memory-
spilling [11, 12] to reduce the load of the system. These techniques incur loss of result
accuracy or delays due to the addition of I/O costs. Since these strategies are orthogonal
to our topic of generation of query plans that are CPU and memory resource adherent, we
refer the reader to the literature to learn more about these methodologies [11, 13, 12].

In summary, state-of-the-art techniques avoid including general jtree shaped plan as
this makes the search space considerably bigger and therefore have longer execution time.
However, generating an optimal plan for one resource usage while being out-of-bound in
another resource is not a viable solution in our context. Figure 5 clearly demonstrates
that exploring the extended search is indeed useful and can potentially avoid the repeated
triggering re-optimization or load shedding.

3.3. Dynamic Programming-Based Exploration Of JTree Space

To understand the search space and provide the baseline to compare our polynomial-
time heuristics, we now extend the classical bottom-up dynamic programming approach

13

[2] to now search the extended jtree solution space and generate qualified plans. Hence-
forth, it is called JTree-Finder. For a given user query and system resource constraints, if
a qualified jtree plan exists in the solution space, JTree-Finder is guaranteed to find it. In
this work, we primarily introduce JTree-Finder and its results as a benchmark for evalu-
ating the effectiveness our heuristic-based two-layer qualified plan generation framework
presented in Section 5. In principle, other dynamic programming techniques [24, 5] and
pruning techniques [25] could similarly be employed.

JTree-Finder differs from the classical algorithm [2, 5, 24] in several aspects. First,
rather than just looking into left-deep bjtrees [2], the proposed algorithm explores the
much richer jtree solution space. The complete search space contains all possible query
plan shapes, including bushy bjtrees, mjoins and jtrees, as in Figure 1.

Step 1: i A B C D E F |
Step 2: {A B} {A C} s {E F}
Step 3: {A B 9} {A, B, C} {B, C, D}

=

A B C {AB} C C {A B} B {AC}
Step 4: {A B, g} {A B, C} {B, C, D}
*.ABCB’ /’\ ’ \\’
A B CD{ABC} D D {A B,C} A {B, C, D}

D Join Subsets E:j Base Input Streams ~ ————- Possible Permutation

Figure 6: Steps In JTree-Finder For 6-way Join

Second, JTree-Finder makes use of the two-dimensional cost model described in Sec-
tion 2 which calculates both CPU and memory resource utilizations. While traditional
optimizers [24, 5, 2] instead only use the one-dimensional CPU or 1O processing costs.
The dual-constraints cost model enables us to prune sub-plans whose memory or CPU
usage is greater than their respective system thresholds at an early stage.

14

Lastly, termination condition. J7ree-Finder terminates either by 1) returning a posi-
tive result in the form of a set of qualified plans to choose from, or 2) returning a negative
result when the available system resources are too limiting and thus no qualified plan exists
in the solution space. When the available system resources are too restrictive, the algo-
rithm can terminate early without having to explore the full search space. More precisely,
the iterative process of the algorithm can terminate at some iteration &k, where k£ < n, if no
sub-plans of size k are found to be qualified.

Algorithm 1 JTree-Finder For Exploring JTree Solution Space

Input: Join Graph JG over U = {A, B, C ...}; Dual-Resource Constraints: C PUqyqi1, Memayail
Output: Set of Qualified Query Plans (Q) or -1

1: SubPlans[1=0; //SubPlans[k]: set of plans of size k

2: Add all input streams in I/ to SubPlans[1]

3: for pSize =2 to |U| do

4: forall V C U and |V| = pSize do

5 PT — Find all distinct partitions of V'
6: for each partition PT'[i] € PT do
7.
8

P = Generate_Plans(PT|i], SubPlans[])
for each P; € P do

9: if (Memory(P;, JG) < Memgyai) AND (CPU(P;, JG) < CPU,ypqi) then
10: if pSize = |U| then

11: Add P; to Q

12: else

13: Add P; to SubPlans[pSize]

14: if (SubPlans[pSize] = ¢) then return -1

15: return Q // Return Qualified Plans

Algorithm 1 presents the pseudo-code of JTree-Finder. Given a multi-join over a set
of input streams, U = {A, B,C, D, E, F'} and represented by a join graph JG. The
available system resources are C'PUy,.i; and Memgyqi. In the kt* iteration of the algo-
rithm, all combinations of input streams of size k over the set U/ are considered (Line:
4). V={A, B,C, D} is one such combination of size 4. We then partition V' into pair-
wise disjoint subsets (of V') whose union is V. The total number of partitions for V' is
given by the Bell number (By,), where k = |V|. For V = {A, B, C, D}, the various parti-
tions (PT) are {(D), (A, B,C)}, {(A, B),(C, D)}, {(A), (B), (C), (D)}, etc. A partition
PTY[i] € PT is made up of subsets whose size is less than k. Partition {(D), (4, B,C)}
of V' is made of two subsets (D) and (A, B, C'). All possible implementations of subplans
of size less than £ have already been generated in the previous iterations. The algorithms
then generates all possible query plans for the partition {(D), (A, B,C)}. We defined
a function called Generate_Plans (Line: 7) that takes as input arguments, a partition
PTYi] and all query plans generated in the previous iterations (SubPlans| |) and returns

15

a set of valid query plans that implement the partition P7T[i|]. Query plans of the parti-
tion {(D), (A, B,C)} whose CPU or memory consumptions are within their respective
available system resources are retained and added to SubPlans[k]| (Line: 13). While the
plans whose CPU or memory resource consumptions are above their respective thresholds
are pruned. If a qualified plan exists in the solution space, JTree-Finder is guaranteed to
generate it in the n'” iteration.

The algorithm returns a set of qualified plans found in the search (Line: 15). The
choice of which qualified query plan to use is dependent on the end-applications. A few
such decision policies are: 1) randomly choose one qualified query plan, 2) choose a query
plan that is minimal in one of the resource usages (either CPU or memory), or 3) choose
any one query plan that is not dominated with respect to both resource consumptions.
Other choices among qualified plans may also be worth considering in special context,
such as when handling multiple user queries, which we leave for future work (Section 8).

Time Complexity: Traditional optimizers [2] that use dynamic programming to gen-
erate optimal plans have an exponential time complexity [5]. Similarly, JTree-Finder has
an exponential time-complexity and therefore is not practical for stream query processing

4. Evaluation of JTree-Finder

4.1. Experimental Methodology

Objectives. The goals of the first experiment are: 1) Verify the cost analysis used
(Section 2) by comparing the performance of best mjoin and bjtree plans against the gen-
eral jtree-based plans generated by JTree-Finder under different resource constraints, and
2) show that the inclusion of jtrees in the solution space increases the possibility of finding
a qualified plan.

’ Parameter \ Set 1 \ Set 2 \ Set 3 \ Set 4 ‘

M, (MB) 300 300 30 30

A4 (tuples/sec) | 20 20 10 20

Ap (tuples/sec) | 20 20 10 20

Ac (tuples/sec) | 20 50 10 20

Ap (tuples/sec) | — — 10 20
OAB 0.05 | 0.02 0.1 0.02
oBC 0.5 0.5 0.15 0.2
ocp — — 0.1 0.05

W (ms) 5000 | 15000 | 15000 | 50000

Table 2: Parameter Configurations

16

Environment. The proposed plan generation framework is implemented in the contin-
uous query processing system, [26]. Algorithms proposed in this work were implemented
in Java. All experiments are conducted on an Intel 1.5 GHz machine with a 512 MB.

Organization: Our experiments are categorized into four sets by adjusting 1) avail-
ability of system resources C'PU,,,;; and Mem,q; and 2) input stream arrival rates and
selectivities. Our aim is to reproduce the four distinct scenarios presented in Section 3.1
(Figures 5.a-d), where a qualified plan exists in the solution space. The experimental sets
are: 1) memory and CPU resources are sufficient for executing both bjtree and mjoin (Fig-
ure 5.a), 2) where CPU resources are sufficient for executing the bjtree but insufficient for
mjoin (Figure 5.b), 3) memory is configured such that it is sufficient for mjoin but not for
bjtree (Figure 5.c¢), 4) both CPU and memory resources are insufficient for either bjtree or
mjoin, hence needing to include general jtrees (Figure 5.d) in the solution space.

Experimental Setup: A continuous query processing engine is stable when it can
process the tuples accumulated in the each of its queues with none to little delay. By
the cost-per-unit-time CPU metric, we mean the CPU time required by the query plan to
process the tuples accumulated in all of its queues within one unit time. In this work,
this is denoted as C'PU,.4q. Therefore for a stable query processing the required CPU
(CPU,eqq) must be < 1 unit time (implying CPU,,q; = 1). In our query engine, the
time unit is seconds and thus CPU,,qq = 1 sec. If CPU,¢4q > 1 sec then the system
will be saturated, with more and more tuples accumulating in the input queues making it
infeasible to keep up with the new tuples coming from input streams.

Table 3: CPU Cost (ms) of Basic Tuple Operations

C; C; Cy
22x10° [20x 101 |2.0x10°

We measured the per tuple run-time average costs of join (C}), insert (C;) and delete
(Cy) using our query engine [26] running on a machine with 1.5MHz processor and
516MB memory. The results are displayed in Table 3. Given the per-tuple cost met-
rics, for an mjoin, bjtree or jtree plan we compute the CPU-utilization by our cost model.
The effect of different CPU availabilities is achieved by increasing or decreasing parame-
ters, like window sizes, stream arrival rates, and join selectivities. The available memory
resource M em,q;; 1s controlled by setting the maximum Java heap size. Table 2 lists the
parameter settings in the 4 sets of experiments.

17

Accumulated Throughput (tuples)

1e+06 - 2000

BJTree ---3--- BJTree ---3---
9e+05 [MJoin --©-- 1800 | n| MJoin --©-- |
8e+05 | 1600 | a —
7e+05 w 1400 - i \ R q

n i 3 / N
= / / ./ s}
6e+05 £ 1200 i [1 h —
2 P
5e+05 | S 1000 - @ 4
= /
46405 | S 800t ,
[} /
S /
3e+05 |- 5 600 | / g
=z ',1 o
L i NP RN
26+05 400 [y N s
1e+05 | 200 E} 1
0e+00 e O L"V . . L L L L
0 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 60000 70000
Time (ms) Time (ms)
(a) (b)
500
BJTree ---f3---
MJoin --©--
400 +
123
(0]
=3
[
=3
¢}
< 300
1723
°
Q
=}
=]
S 200 -
[
o
€
=3
=z
100 -
2
)= ari=nac)=
ALBL SN N ABeg B
0T H & & @ o—
0 10000 20000 30000 40000 50000 60000 70000
Time (ms)
(©

Figure 7: Experiment Set 1: (a) Accumulated Throughput (b) Tuples in States (c) Tuples in States Queues

4.2. Analysis of Different Plan Types

Experiment Set 1: When both mjoin and bjtree are qualified plans they have similar
accumulated throughput® as shown in Figure 7.a. Sufficient CPU ensures that new tuples
can be processed quickly without delay, which is true for both mjoin and bjtree, as in
Figure 7.c. Figure 7.b clearly displays the much larger memory usage of bjtree for storing
intermediate results in comparison to mjoin.

Experiment Set 2: In this scenario, the stream characteristics (input rate and selectivity)
and window size make the best mjoin plan not qualified while the best bjtree plan be qual-
ified. Figure 8.a shows that bjtree has a much higher throughput (> 100% improvement)

2accumulated throughput: total number of output tuples produced thus far.

18

Accumulated Throughput (tuples)

Accumulated Throughput (tuples)

Accumulated Throughput (tuples/sec)

8e+06

7e+06 -

6e+06 -

5e+06 -

4e+06 -

3e+06 -

2e+06 -

1e+06

0e+00

1.8e+07

1.6e+07

1.4e+07

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

0

1.6e+07

4e+07

.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

BJTree ---
MJoin --©-

] 10000 20000 30000 40000 50000 60000 70000

Time (ms)

(a) Set 2: Accumulated Throughput

BJTree —5—
MdJoin --#--

100000 150000 200000
Time (ms)

(c) Set 3: Accumulated Throughput

50000

BJTree - -
MJoin --©--

50000 100000 150000 200000
Time (ms)

Tuples in Input Queue (Tuples)

(e) Set 4: Accumulated Throughput

Memory Consumption (MB)

Memory Consumption (MB)

3000

BJTree -

MJoin -
2500 - 4

o
O
/07
2000 - |
iﬁ
1500 /_Ql 1
o
1000 /@" 4
/9‘
500 | o 1
0 ez T e

0 10000 20000 30000 40000 50000 60000 = 70000
Time (ms)
(b) Set 2: Tuples in Input Queues

35 T T T
BJTree - -

MJoin --©--

25

[Mo

.
B

100000 150000

Time (ms)

(d) Set 3: Memory Consumption

50000 200000

35

BJTree - -
MJoin --©--
30 JTree —A— |

25

20

[Y-= . . .
0 50000 100000 150000 200000

Time (ms)

(f) Set 4: Memory Consumption

Figure 8: Experiment Set 2: (a and b), Experiment Set 3 : (c and d) and Experiment Set 4: (e and f)

19

than mjoin. Since mjoin is not qualified, new tuples cannot be processed right away and
thus accumulate quickly in stream input queues (Figure 8.b), while bjtree processes new
tuples right away keeping up with the input queues. Thus, the queue sizes are kept small
on an average.
Experiment Set 3: When given enough CPU resources but limited memory, both mjoin
and bjtree have similar throughput in the beginning (Figure 8.c). As the memory of bjtree
accumulates (Figure 8.d) it reaches the threshold (1/,=30MB) at around 50,000ms. Once
the memory threshold is reached the bjtree crashes due the lack of additional memory re-
sources. In comparison, the memory consumed by mjoin is smaller and averages around
12MB after the start-up. Memory usage fluctuations in mjoin are due to memory tem-
porarily used by the intermediate results.
Experiment Set 4: Neither mjoin nor bjtree are qualified plans, while a general jtree is
found to be qualified. Figures 8.e and f compare the accumulated throughput and memory
consumptions of the three plans. BJTree has the highest initial throughput. However,
it quickly runs out of memory at around 80,000ms. Although jtree has a lower initial
throughput than bjtree, it has a higher throughput than mjoin. Since jtree requires less
memory than bjtree, it is able to continuously produce results.

In summary, the above results confirm our cost analysis, and demonstrate the need to
extend the search space to also include general jtrees.
Comparative Study: In Section 6, we present an extensive comparative study of the
proposed polynomial-time techniques by varying the number of streams N in between 3
to 20 streams.

5. Our Approach: Two-Layer Plan Generation

5.1. Overview

Qualified plan generation is an exponential time-complexity problem even with richer
pruning techniques [25]. We therefore now put forth an efficient hill-climbing based two-
layer plan generation framework that generates qualified query plans. Algorithm 2
presents the pseudo-code of our framework.

The first-layer utilizes the positive correlation between memory and CPU by trans-
forming the two-dimensional problem into a one-dimensional minimization problem, this
way focusing on minimizing one of the two cost metrics. This offers three benefits. First, it
allows us to employ state-of-the-art algorithms to optimize mjoin [15, 9, 19] (Line: 2) and
bjtrees [5, 1] (Line :7). Second, the generated mjoin is guaranteed to utilize the minimum
memory resources of all possible plans, while the generated bjtree has the least amount
of CPU usage as no re-computation is required. By piggybacking on the mjoin and bjtree
plans generated by the first-layer we identify starting points for our hill-climbing algo-
rithm in our second-layer of optimization. Third, early termination can often be achieved,

20

namely when either a qualified plan is found (Line: 5, 10), or when the minimal bounds on
the required system resources are larger than their respective system thresholds (Line: 6,
11). For example, consider the scenario when the memory resources needed by the mjoin,
Memory(Py,join, JG) are larger than the available memory, M emg,qq. In such cases no
plan exists in the search space with a lesser memory utilization than P,, ;. If the first-
layer is unable to return a qualified plan yet does not determine the in-feasibility of the
problem, the second-layer is triggered to explore the jtree search space.

Algorithm 2 Two-Layer Plan Generation

Input: Join Graph JG, S = {A, B, C ...} Resource Constraints: CPU,yqi1, Memapail
Output: Qualified Query Plan P or -1
1: // Layer-One
Pmjoin = Find_MJoin_Ordering(JG)
if Memory(Pjoin, JG) < Memgyq: then
if CPU(ijoina JG) < CPUavail return ijoin
else return -1 // Mem,q; Bound Restrictive
Pyjiree = Find_BJTree_Ordering(JG)
if CPU(Pyjtree, JG) < CPUqyqq then
if Memory(Pyjtree, JG) < Memgyqq return Py jiree
9: else return -1 // CPU,,.;; Bound Restrictive
10: // Layer-Two
11: P = State_Selection(JG,CPUgyait, MeMmavaits Pmjoin)
12: Mem, = Memory(P, JG); CPU, = CPU(P, JG)
13: if (Mem, < Memgyai) AND (CPU,. < CPU,pqi) return P
14: P = State_Removal(JG, CPUqyqit, Memayail, Pojtree)
15: Mem, = Memory(P,JG); CPU, = CPU(P,JG)
16: if (Mem, < Memgyaeir) AND (CPU, < CPU,yq;1) return P
17: return -1 // No Qualified Plan Found

Intuitively, the aim of the second layer is to decrease one cost factor while increas-
ing the other, until both are under the system thresholds. In this regard, we present two
polynomial-time algorithms that start from either P, oin, OF Ppjiree plan generated in the
previous layer. Our state-selection algorithm (Section 5.2) starts with an mjoin plan P, o,
and selects intermediate states to be materialized. In contrast, our state-removal algorithm
(Section 5.3) starts with a bjtree Py;src. and selects smaller binary joins to be merged into
a single mjoin. In either case, the result is a jtree. The choice of which algorithm is depen-
dent on several factors such as where Py, o, and P, lie in the solution space (Figure
5.d). If no qualified plan can be generated by the second-layer of plan generation, the
only alternative is to invoke more radical adaptation techniques, such as memory-spilling
[11, 12, 9], load shedding [8, 10] or query distribution [27, 28].

In summary, the plan generation framework will have one of four possible results:
(1) a qualified mjoin, (2) a qualified bjtree, (3) a qualified jtree, or (4) a negative result

21

indicating that the system resources are not sufficient. The first-layer either outputs (1),
(2) or (4), or triggers the second-layer. The second-layer either identifies a qualified jtree
(3), or terminates without a result (4).

5.2. The State-Selection Algorithm

We now describe our state-selection algorithm that iteratively selects intermediate re-
sults to be stored thereby saving valuable CPU resources otherwise spent on re-computation.
The pseudo-code for the algorithm is presented in Algorithm 3.

The algorithm takes as input arguments a user query represented by its join graph JG,
system resource constraints C'PU,,qi; and M em,q;; and the mjoin plan Py, 0:, generated
by the first layer of plan generation. Mjoin plan only stores the tuples from each of the
input streams in states, thus P, 0, has the least memory utilization. However, since
the mjoin plan has to recompute all intermediate results, the CPU resource usage needed
to recompute the intermediate tuples is high. In this technique, we apply the principle
of negative correlation of sacrificing memory resources by storing some intermediate
results, thereby saving on the corresponding re-computation CPU costs.

Selecting which intermediate state(s) to be stored can be viewed as selecting edges
in a join graph. The choice of which intermediate states to store is determined by two
factors: edge frequency and edge weight. The edge frequency is the number of times
an edge appears in the join sequences. In Figure 9.b, for input stream A the first layer
of optimization generates the best possible join order (in polynomial time) to process the
input tuples from A, similarly we have a join ordering for the input stream 5, and so on. In
Figure 9.b, the edge between input stream A and C' appears 6 times in the set of join orders,
while the edge between D and C' appears twice. Therefore, storing the intermediate results
of A X C' would be of more benefit than storing results of D X E. Thus, heuristically, the
higher the edge frequency, the more likely it is that storing the corresponding intermediate
results can save CPU costs.

The edge weight connecting vertices V, and V/, is the estimated intermediate state size,
Av, Av,ov,v,. The aim of the algorithm is to reduce the CPU resource consumption by
using the least amount of memory resources. Therefore, the state selection algorithm
chooses the edge with the largest (frequency/weight) ratio.

To illustrate, for the join graph in Figure 9.a and the join ordering in Figure 9.b we
can derive the edge frequency as described in Figure 9.c. In each iteration the algorithm

selects an edge with the max(%;gy) ratio as the next state to be stored.

For each edge V,V,, the algorithm accesses the benefits of storing its intermediate
states. Vertices V, and V, are merged into one vertex with input rate of Ay, Ay, ov, v, , i.€.,
we create a binary join V, X 1V, whose output is now fed to the mjoin operator. Now,
for the mjoin with one less input stream, we employ the popular polynomial-time mjoin

22

(10)
A oos ASCIDIBIESF A
e B>A>C>D>E>F ﬂ/ \E

30)B C (50)
0_1‘ C>A>D>B2>E>F 5|
D (20) D>C>A>B>ESDF D
0L \02 E3>D>C>A>B>F 2"\l
(100) E F100) F3D>C>A>B>E E F
(a) Join Graph (b) MJoin - Join Sequences (c) Edge Frequencies

Figure 9: Counting Edge Frequencies

A/ /C
a
B/ ’ pE T—> AB \DE

Join Graph
ABCDEF @ ABCDEF @ ABCDEF
(DEDC F
MJoin
A B D E

(a) (b)

Figure 10: Generating JTree By State Selection

ordering algorithm [15, 19, 9] to generate the best possible join ordering for each of its
input streams. If CPU costs of the new mjoin are smaller than the current plan, the state
Sy,v, is stored. The algorithm proceeds iteratively until: (1) no intermediate states can
further be stored to reduce the CPU usage, or (2) memory usage of jtree exceeds M emyq;-

To elaborate, let the edge DE in Figure 10.a be the candidate edge to be merged. The
mjoin with 6 input streams is now transformed into an mjoin with 5 inputs where one of
its inputs is the results from the binary join D X E (Figure 10.b). The output rate of the
merged vertices DFE is A\pAgopE.

The process described so far ends up generating binary join nodes for the merged
vertices. We now add further steps to merge several binary joins into an mjoin. This is
done only when both memory and CPU costs can be saved. Let the edge between vertex C'
and DFE in Figure 11.a be chosen as the next edge to be merged. The new merged vertex
can either be implemented as a bjtree or a single mjoin as shown in Figures 11.b and ¢
respectively. In the state-selection algorithm, we define a function called Optimize (Line:
9) that takes as inputs the merged vertex, the modified join graph and the system resource

23

Algorithm 3 State Selection Algorithm
Input: Dual-Resource Constraints: C'PUqyait, M eMavqir; Join Graph JG5 Pryjoin
Output: Qualified JTree Plan P or -1

1: P = Prjoin

2: CPU,. =CPU(P,JG); Mem, = Memory(P,JG)

3: while (CPU, > CPUgupqit) AND(Mem, < Memgyqi) do

4: E = Set of candidate edges in JG
5: while (£ !=null) do
6: Choose E; € E with max(%g‘ffy
7. Let E; be an edge that connect vertices V,, and V),
8: JGpew = Merge vertices V,, and V,, to V,, in JG
9: Optimize(Vyy, JGrew, CPUqyqit, Memayair)
10: Prew — Mloin_Ordering(J G e)
11: CPU, e = CPUPreow, JGrew)
12: if (CPU,c, < CPU,) then
13: P = Pnew; CPU’! = CPUnew; JG = JGnew
14: if Memory(P, JGrew) > Memgyqi then
15: return -1; // No qualified plan found
16: Remove F; from E

17: if (|E| ==0) then return -1
18: return P // Exist loop when qualified plan found

A/Q A\
/ / CDE
=
A B CF A B(CPE F A B(DE F

D E

C D E

D
(a) (b) (c)
Figure 11: Operator Breaking and Merging

constraints to return a qualified implementation of the merged vertex.

Time Complexity: A join graph with n streams has at most n(n — 1)/2 edges. After
merging an edge, we select a state-of-the-art ordering algorithm [9, 15] having a time-
complexity of O(n%log(n)) to recompute the join sequences. Thus state-selection has a
worst case time-complexity of O(n3log(n)).

24

5.3. The State-Removal Algorithm

We now present the state-removal algorithm that aims to save precious memory re-
sources by removing intermediate states and merging the join operators into an mjoin
operator that does not store intermediate states. The pseudo-code for the algorithm is pre-
sented in Algorithm 4. The algorithm takes as input arguments a user query represented
by its join graph JG, system resource constraints C'PU,,.; and Mem,q; and the bjtree
plan Pyji generated by the first layer of plan generation. This bjtree plan has the least
amount of CPU resources usage as it does not perform any re-computation of intermediate
results as in an mjoin plan. However, the memory resources needed to store these inter-
mediate results is very high. Therefore, this technique of state removal aims to use the
principle of negative correlation and removes some intermediate results thereby saving
on the memory resources utilized but in turn increasing the total CPU consumption.

Figure 12 illustrates the application of the state-removal techniques for a bjtree with
four intermediate states (represented by a rectangle in Figure 12.a). To remove the in-
termediate state at join operator BC' the algorithm merges operators AB and BC' into a
single mjoin operator ABC' (as in Figure 12.b). A state-of-the-art mjoin ordering algo-
rithm [15, 19, 9] is then used to find the join orderings for the new mjoin operator ABC.
This process is repeated until a qualified jtree is found, or all states have been explored.

[|
(e |:> @ @%

CDABCD A BCD E

A B E
(@)

Figure 12: Removing State by Merging Joins.

For each candidate intermediate state to be removed, two factors must be considered,
namely, the memory saved by removing the state and the additional CPU resources needed
to recompute the intermediate results. If C'PU.y rens and C'PU,,.,, represent the CPU re-
source utilization of the current plan and the new candidate plan after operator merging re-
spectively, the increase in CPU costs can be computed as Acpy = CPU, ey — CPUyrrent-
The memory saved is in fact the size of the removed intermediate state. State quality ratio
is defined as Acpy/|S[é]|- Intuitively, in each iteration of the algorithm the intermediate
state with the smallest state quality ratio is removed. The intermediate states are removed
by merging two corresponding join operators into a larger mjoin operator. In scenarios
when the CPU costs of maintaining intermediate states surpasses the cost of recomputing
the state, the A py factor is negative.

25

Algorithm 4 State Removal Algorithm
Input: Dual-Resource Constraints: C'PUyyqir, M emapqir; Join Graph JG Pyjiree
Output: Qualified JTree Plan P or -1

1: P= ijtree

2: S = set of all intermediate states in Peyrrent

3: while S # ¢ do

4. CPU,=CPU(P, JG); min_ratio = 0o
5. for (each S; € S) do
6:
7
8

opl = join operator contains S;
op2 = join operator with feeds tuples to .S;
. Prew = Merge('P, opl, Op2)
9: /I 1. Merges opl and op2 into newOp;

10: /2. Generates join ordering for newOp

11: CPU, e = CPU(P e, JG)

12: state — ratio = (CPUpeyw — CPU,) /(|S:])

13: if (state — ratio < min_ratio) then

14: min_ratio = state — ratio; state = S;; Ps = Prew

15: Remove state from S; P = P,

16: if (CPU(P, JG) < CPUgypq1) AND (Memory(P, JG) < Memgyqq) then
17: return P // A Qualified Plan

18: return -1 // No Qualified Plan Found

Time Complexity: A join graph with n vertices has at most n — 1 intermediate states.
Therefore, state selection and operator merging process may be repeated at most n — 1
times. If the chosen state-of-the-art mjoin ordering algorithm [15, 9, 19] has the time-
complexity of O(n?log(n)), the total running time is bounded by O(n?log(n)).

6. Comparative Study
6.1. Experimental Methodology

Objectives. The goals of this second experimental evaluation include the comparison
of: 1) the average time required by the proposed algorithms to generate a qualified plan,
and 2) the effectiveness of the proposed algorithms to find a qualified query plan if one
such plan exists in the solution space. 3) the memory and CPU resource utilization of the
qualified plans generated by the state-selection versus by the state-removal algorithms.

Environment. We use the same testing environment that was presented in Section 4.

Organization. To determine the effectiveness of the proposed algorithms and observe
trends we varied the number of input streams N from 3 to 20. For each N, the setup
process involves: 1) randomly generate an input rate for each stream within the range
of [1, 100] tuples/second, 2) joins among input streams are randomly selected, and 3)

26

the corresponding join selectivities are randomly generated within the range of (0,1).
This setup process is repeated 100 times for each N. Therefore, a total of (20-3+1)*100
= 1800 different parameter settings, which is a sufficiently large sample set to illustrate
performance trends studied. The CPU threshold defined as the maximum amount of time
needed to process the tuples arriving within the time unit of 1 second, thus C'PU,,q; = 1
second.

1000

Two-Layered-w/c-State-Selection Exxxx Two-Layered-w/c-State-Selection xxxx1
Two-Layered-w/c-State-Removal ===x1 Two-Layered-w/c-State-Removal =~=x1

JTree-Finder JTree-Finder
100 -
100 +

80 -

60 -

40 ¢

Average Execution Time (ms) [Log Scale]
5
Qualified Percentage (%)

B I

Number Of Input Streams Number Of Input Streams

(@) (b)

20

100

40 1

20

% of Scenarios When a Qualified Plans Exists

Two-Layered-w/c-State-Removal --f-}--
Two-Layered-w/c-State-Selection --z-
‘) JTrep-Finder -

0 5 10 15 20
Number Of Input Streams

©
Figure 13: a) Avg. Execution Time b) Qualified Percentage c) % Of Scenarios when a Qualified Plan Exists

6.2. Effectiveness of Proposed Algorithms

Figure 13 compares the average execution times needed for our proposed algorithms
to generate a qualified plan. JTree-Finder, due to its exponential time complexity is much
slower in comparison to our polynomial time strategies, and runs out of resources for a

3Join selectivity = (num of outputs)/(num of possible outputs)

27

smaller N. Since the JTree-Finder algorithm is searching the much larger qualified plan
solution space, it can only support a smaller N that other state-of-the-art dynamic pro-
gramming techniques [5, 24]. Also, all algorithms are implemented in Java.

Definition 4. Given X different experimental settings where a qualified plan exists in the
solution space, if an algorithm finds a qualified query plan in Y (Y < X) such settings,
the qualified percentage of the algorithm is (Y/X * 100).

The effectiveness of an algorithm is quantified by its qualified percentage. Figure
13.b illustrates the effectiveness of the proposed algorithms. JTree-Finder is guaranteed to
find a qualified plan by searching the entire general jtree solution space, if one such plan
exists. We observe that our heuristic-based state-selection and state-removal algorithms
have identical qualified percentage (=100%) to JTree-Finder for various N. Comparison of
our heuristic-based algorithms cannot be done for larger N as JTree-Finder fails due to its
exponential time-complexity.

We note that for some stream characteristics and system resource threshold settings a
qualified plan may not exist in the solution space. This is reflected in Figure 13.c where
JTree-Finder is unable to find a qualified plan— given that JTreeFinder explores the full
search space, this implies that no solution exists. No trends can be drawn from Figure 13.c
as it merely reflects the state of the particular solution space we studied.

6.3. Resource Utilization of Generated Plans

Lastly, we compare the memory and CPU usages of the qualified plans generated by
state-selection and state-removal. Figures 14 a, b and c¢ depict the distributions of memory
and CPU costs for all qualified query plans found for N equal to 3, 5 and 10, respectively.
Qualified plans generated by state-selection generally tend to have smaller memory costs
but larger CPU costs as compared to the qualified plans generated by state-removal. This
trend becomes apparent as N increases. In Figure 14.a when N = 3, the qualified plans
from both algorithms are mixed on the plot. As N increases, the qualified plans generated
by state-selection tend to be located more at the upper-left area, while the qualified plans
generated by state-removal tend to be located more at the lower-right area. The two sets of
qualified plans are clearly separated from each other. This is due to in part their differences
in the starting points of the two strategies. An mjoin usually has smaller memory costs but
larger CPU costs than a bjtree for the same query. Optimizing from each starting point has
the tendency to reach a qualified plan that is closer to that starting point.

6.4. Discussion: Statistic Gathering and Plan Migration

The focus of this work is to design efficient algorithms for finding qualified continu-
ous query plans at runtime. We employ existing methods [29, 15] to collect statistics at

28

TwoLLayered-w/c-étate-SeIeclioH *
Two-Layered-w/c-State-Removal K

0.8 -

0.6 -

CPU Cost (sec)

04 -

0.2 -

**
*
*

TWo-Layered-v‘//c-State-Sel‘ection . ‘
Two-Layared-w/c-State-Removal K
1r -
R .0 ¥ Ke
08 - XK * y%é
g . X S
5 . K
0.6 | A
8 Koo ek K %
2 *K
5 -
04t ¢ %g
LR ‘éé
%0
02 r *
L ¥ e 3
¥ x
ol % ‘ ‘ ‘ ‘
0 50 100 150 200 250

Memory Cost (tuples)

(a)

300 0

200 300 400 500

Memory Cost (tuples)

1.2

0.8 -

0.6 -

CPU Cost (sec)

04 -

0.2 -

TwoLLayered-w/c-étale-SelectioH *
Two-Layered-w/c-State-Removal

400 600
Memory Cost (tuples)

©

200

800 1000

Figure 14: Distribution of Qualified Plans: a) N=3b) N=5and c) N=10

runtime. When a better plan is found by any one of our proposed algorithms, we apply mi-
gration strategies [30, 31] to safely transfer the current query plan to the new plan. These
migration strategies which focus on binary join plans can be easily extended to handle the

movement of join states across our general jtree plans.

7. Related Work

The growing number of on-line users as well as the increased usage of sensors and
RFID networks in various real-world scenarios has increased the availability of data streams
on the web [32]. This phenomenon has resulted in the development of alternative stream-
ing database systems [33, 34, 35, 36, 37]. The CQL continuous query language by A.
Arasu et al [38] is a general SQL-based language proposed to express continuous queries
against streams and updatable relations.

29

State-of-the-art techniques [1, 2, 9, 15, 19] have focused on the optimization of a sin-
gle cost function by exploiting the positive correlation between memory and CPU usages.
However, qualified plan generation has largely been ignored. Multi-join query optimiza-
tion in static databases has focused on bjtrees [1, 2, 3, 5]. In contrast, the mjoin operator
[9, 19] is popular in streaming databases, supported by several heuristic-based ordering al-
gorithms [15, 19]. After inventing the mjoin for stream processing, [9] acknowledges the
problem of excessive re-computation costs of intermediate states. While [9] suggests that
a large mjoin with > 5 streams may need to be split into two smaller mjoins, they do not
concern themselves with memory constraints. Their experiments all deal with extremely
small join selectivities (¢ = 0.0005%) and therefore the total number of intermediate re-
sults are relatively small in their experiments — thus memory overflow is not dealt dealt
with in their work. Therefore, [9] does not tackle the open problem of qualified plan gen-
eration - the focus of our work. The Eddy approach [7] simulates an mjoin operator by
introducing the STEM structure to enable dynamic join ordering at the tuple granularity.
However, like mjoin, it suffers from the additional re-computation CPU costs.

The A-Caching algorithm [29] optimizes a single mjoin operator by adding/removing
temporary caches for certain intermediate results. Our proposed algorithms differ signif-
icantly from A-Caching in several aspects. First, A-Caching only deals with equi-join
predicates, relying on value-based hashing to detect a cache hit/miss. Our two-layer plan
generation framework is general and can work with any physical implementation of multi-
join queries. Second, A-Caching restricts the problem space by only considering solutions
with a set of non-overlapping caches. In other words, two caches cannot have common
joins. Our proposed algorithms do not have this restriction, thus broadening the range
of intermediate results that can be simultaneously stored. Lastly, A-Caching is a novel
operator-level join implementation strategy of a single mjoin operator. Our solution in-
stead looks at the query plan-level, exploring the entire jtree solution space.

Handling multiple resources has been studied in distributed systems for parallel query
optimization and task scheduling [39, 17, 16, 40, 14]. Parallel optimization proposed in
[39] minimizes CPU costs at compile time, and delays the decision on buffer size to run-
time. At run-time, based on observed cardinalities, one of the sub-plans is chosen. In
contrast, our algorithms considers both CPU and memory costs factors when generating
qualified query plans. Mariposa [14] optimizes a parallel query plan based on a concrete
user-defined cost-delay curve. In our work, we do not assume that the relationship between
CPU and memory is given a priori. In fact, in practice this is hard to capture, as elaborated
in Section 1. [40] distributes operators of a plan to several processors while exploring the
trade-offs among multiple system resources. Our work instead finds a plan that satisfies
multiple resource constraints within a central system.

30

8. Conclusions and Future Work

In this work, we recast that continuous query plan generation, no longer a minimization
problem as typically approached by state-of-the-art techniques, but rather as a constraint
satisfaction problem. For this, we expand the traditional search space of pure mjoin- or
pure bjtree-based query plans to include general jtrees. We explore the trade-offs and cor-
relations between CPU and memory usage functions, both positive and negative. In this
effort, we first present our JTree-Finder algorithm that is guaranteed to generate a quali-
fied plan. Second, to provide an efficient run-time solution we present a two-layered plan
generation framework. In our framework, we propose two polynomial-time algorithms
state-selection and state-removal exploit the correlations to generate a qualified plan. Our
experimental evaluation using an existing continuous query engine verifies our cost model
and measures the CPU and memory resource usages of the generated plans. The experi-
mental results clearly demonstrate: 1) the need to search the entire solution space includ-
ing general jtrees so not to miss potentially qualified plans and 2) the effectiveness of our
algorithms over the state-of-the-art techniques.

Many directions for future work are possible. We could consider the constraint prob-
lem for handling multiple queries. Two alternatives for addressing this problem may be
to: 1) first allocate a fixed amount of the CPU and memory resources to each query, and
then to directly apply the strategies presented in this work to each of the queries, or 2) to
simultaneously build the plans for the different queries such that their collective resource
consumptions are within bounds. While the former alternative can be easily achieved, the
latter may be more practical as the criteria for pre-allocation of resources is a challenging
problem in itself. Another avenue for future work is to add additional constraints such as
latency and then to identify their correlations to CPU and memory resource usages.

References

[1] T. Ibaraki, T. Kameda, On the optimal nesting order for computing n-relational joins,
TODS 9:3 (1984) 482-502.

[2] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, T. G. Price, Access
path selection in a relational database management system, in: SIGMOD, 1979, pp.
23-34.

[3] A. N. Swami, B. R. Iyer, A polynomial time algorithm for optimizing join queries,
in: ICDE, 1993, pp. 345-354.

[4] Y. E. loannidis, Y. C. Kang, Left-deep vs. bushy trees: An analysis of strategy spaces
and its implications for query optimization, in: SIGMOD, 1991, pp. 168-177.

31

[5] D. Kossmann, K. Stocker, Iterative dynamic programming: a new class of query
optimization algorithms., TODS 25:1 (2000) 43-82.

[6] M. Steinbrunn, G. Moerkotte, A. Kemper, Heuristic and randomized optimization
for the join ordering problem, VLDB J. 6:3 (1997) 191-208.

[7] S. Madden, M. A. Shah, J. M. Hellerstein, V. Raman, Continuously adaptive contin-
uous queries over streams, in: SIGMOD, 2002, pp. 49-60.

[8] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-
braker, N. Tatbul, S. B. Zdonik, Monitoring streams - a new class of data management
applications, in: VLDB, 2002, pp. 215-226.

[9] S. Viglas, J. F. Naughton, J. Burger, Maximizing the output rate of multi-way join
queries over streaming information sources, in: VLDB, 2003, pp. 285-296.

[10] A. Ayad, J. F. Naughton, Static optimization of conjunctive queries with sliding win-
dows over infinite streams, in: SIGMOD, 2004, pp. 419-430.

[11] B. Liu, Y. Zhu, E. A. Rundensteiner, Run-time operator state spilling for memory
intensive long-running queries, in: SIGMOD, 2006, pp. 347-358.

[12] T. Urhan, M. J. Franklin, Xjoin: A reactively-scheduled pipelined join operator, IEEE
Data Eng. Bull. 23 (2) (2000) 27-33.

[13] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, M. Stonebraker, Load shed-
ding in a data stream manager, in: VLDB, 2003, pp. 309-320.

[14] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, A. Yu,
Mariposa: A wide-area distributed database system, VLDB J. 5 (1) (1996) 48-63.

[15] S. Babu, R. Motwani, K. Munagala, 1. Nishizawa, J. Widom, Adaptive ordering of
pipelined stream filters., in: SIGMOD, 2004, pp. 407-418.

[16] C. H. Papadimitriou, M. Yannakakis, Multiobjective query optimization, in: PODS,
2001, pp. 52-59.

[17] W. Hasan, R. Motwani, Optimization algorithms for exploiting the parallelism-
communication tradeoff in pipelined parallelism, in: VLDB, 1994, pp. 36-47.

[18] C. Monma, J. Sidney, Sequencing with series-parallel precedence constraints, in:
Maths of Operations Research 4, 1979, pp. 215-224.

32

[19] L. Golab, M. T. Ozsu, Processing sliding window multi-joins in continuous queries
over data streams, in: VLDB, 2003, pp. 500-511.

[20] M. A. Hammad, M. J. Franklin, W. G. Aref, A. K. Elmagarmid, Scheduling for
shared window joins over data streams., in: VLDB, 2003, pp. 297-308.

[21] L. Getoor, B. Taskar, D. Koller, Selectivity estimation using probabilistic models, in:
SIGMOD, 2001, pp. 461-472.

[22] A. Deshpande, M. N. Garofalakis, R. Rastogi, Independence is good: Dependency-
based histogram synopses for high-dimensional data, in: SIGMOD, 2001, pp. 199-
210.

[23] J. Kang, J. F. Naughton, S. Viglas, Evaluating window joins over unbounded
streams., in: ICDE, 2003, pp. 341-352.

[24] G. Moerkotte, T. Neumann, Dynamic programming strikes back, in: SIGMOD, 2008,
pp- 539-552.

[25] S. Ganguly, W. Hasan, R. Krishnamurthy, Query optimization for parallel execution,
in: SIGMOD, 1992, pp. 9-18.

[26] Reference omitted due to double blind reviewing.

[27] Y. Xing, S. B. Zdonik, J.-H. Hwang, Dynamic load distribution in the borealis stream
processor, in: ICDE, 2005, pp. 791-802.

[28] F. Tian, D. J. DeWitt, Tuple routing strategies for distributed eddies, in: VLDB, 2003,
pp- 333-344.

[29] S. Babu, K. Munagala, J. Widom, R. Motwani, Adaptive caching for continuous
queries, in: ICDE, 2005, pp. 118-129.

[30] Y. Yang, J. Krdmer, D. Papadias, B. Seeger, Hybmig: A hybrid approach to dynamic
plan migration for continuous queries, TKDE. 19 (3) (2007) 398—411.

[31] Y. Zhu, E. A. Rundensteiner, G. T. Heineman, Dynamic plan migration for continu-
ous queries over data streams, in: SIGMOD, 2004, pp. 431-442.

[32] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, M. A. Shah, Tele-
graphcq: Continuous dataflow processing for an uncertain world., in: CIDR, 2003.

33

[33]

[39]

[40]

D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,
W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, S. B. Zdonik, The
design of the borealis stream processing engine, in: CIDR, 2005, pp. 277-289.

M. H. Ali, W. G. Aref, R. Bose, A. K. Elmagarmid, A. Helal, I. Kamel, M. F. Mokbel,
Nile-pdt: A phenomenon detection and tracking framework for data stream manage-
ment systems., in: VLDB, 2005, pp. 1295-1298.

B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data
stream systems, in: PODS, 2002, pp. 1-16.

R. Avnur, J. M. Hellerstein, Eddies: Continuously adaptive query processing, in:
W. Chen, J. F. Naughton, P. A. Bernstein (Eds.), SIGMOD, 2000, pp. 261-272.

J. Chen, D. J. DeWitt, F. Tian, Y. Wang, Niagaracq: A scalable continuous query
system for internet databases, in: SIGMOD, 2000, pp. 379-390.

A. Arasu, S. Babu, J. Widom, The cql continuous query language: semantic founda-
tions and query execution, VLDB J. 15 (2) (2006) 121-142.

W. Hong, M. Stonebraker, Optimization of parallel query execution plans in xprs, in:
PDIS, 1991, pp. 218-225.

M. N. Garofalakis, Y. E. Ioannidis, Multi-dimensional resource scheduling for paral-
lel queries, in: SIGMOD, 1996, pp. 365-376.

34

