

WPI-CS-TR-2009-02

February 2009

Unit Testing of Software Components with Inter-

component Dependencies

by

George T. Heineman

heineman@cs.wpi.edu

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

 Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

Unit testing of Software Components with inter-
component dependencies

George Heineman

Worcester Polytechnic Institute
100 Institute Road

Worcester, MA 01609
heineman@cs.wpi.edu

Abstract

Test Driven Development (TDD) is a process for software engineering that advocates
constructing test cases before writing actual code; indeed, coding is treated as an
exercise in validating the test cases. While such an approach appeals to many software
developers, one cannot simply apply TDD to component-based software engineering
(CBSE). The primary obstacle is the more complex life cycle for software components
that must be packaged, deployed and executed within software containers or deployment
environments. In this paper we describe two case studies that show different ways by
which TDD can be applied to CBSE. Our focus remains on the dependencies that exist
between components and how to manage these dependencies during testing to still enable
successful unit testing.

1. Introduction

Test Driven Development (TDD) is a software development technique that has gained
popularity as of late because of the direct benefit of amortizing the testing effort
throughout the entire development cycle (Beck, 2002). The primary contribution of this
approach is to require automated tests to be written before any code is designed or added
to an existing, working system. Using rapid, brief iterations, developers are able to make
immediate progress on satisfying specific test cases designed to test external behavior.
Then through repeated refactoring effort, the code structure can be improved, and can
always be validated against the existing test cases.

The tight iterative development loop consists of several steps:

1. Add a new test case
2. Run all existing tests and validate that the new test fails
3. Write code to ultimately ensure that the test will succeed
4. Run all existing tests and validate that all succeed
5. Refactor code as necessary, and continue with step 1.

The process as described is agnostic with regard to component technology, except for the
presumed ability to run a set of tests. One might adopt the strategy that all test cases are

carried out natively on the code (i.e., as Java classes or C code). However, this point of
view will not be satisfactory because the component code is expected to execute as
demanded by the underlying component model. In fact, you must test the code in a
testing environment that most closely matches the execution environment in which the
component is to execute.

The problem identified by this paper is that components invariably have dependencies
upon other components. While the ideal case is that each component is wholly
independent, it is not always practical or possible. The trouble with software components
is that the focus is primarily on the ways in which the components are deployed and
composed, rather than on the (often mundane) ways by which the component could be
tested. We’ll use the following definition in this paper.

A Software Component is a software element that conforms to a component
model and can be independently deployed and composed without modification
according to a composition standard (Heineman & Council, 2001).

Many of the dependencies that a software component has may never be explicitly
declared and may only be discovered at assembly time, or sometimes (even worse) at
run-time. The challenge for component testers is to be able to properly assemble the run-
time structures necessary for the unit testing required. For this paper, we avoid discussing
platform dependencies that a component may have (i.e., it may properly execute using
JDK 1.6 but not JDK 1.5) and focus solely on inter-component dependencies.

There are two possible flavors of inter-component dependencies: concrete dependencies
on other components and abstract dependencies on an interface provided by another
component. In this paper we present case studies to explore the challenges faced by unit
testers having to deal with both of these flavors. A concrete dependency exists when a
component makes direct reference to functionality provided by another component
outside of any interface construct; we simulate this issue using the C-based product line
case study described in section 2. When an abstract dependency exists, the tester must
somehow be able to provide some component that provides the desired interface; we
simulate this issue using the CompUnit-based case study described in section 3. Even
though component developers strive to minimize these dependencies, it may not be
possible to eliminate them together, which leads to problems during testing.

1.1 Mock objects
One of the most common approaches to unit testing with dependencies is to introduce
mock objects (Fowler, 2007) that have clear expectations of the calls they are to receive.
One of the more popular frameworks to support Mock objects is JMock
(http://www.jmock.org) The obvious extension is to introduce mock components, yet
these components must then also be packaged, deployed, installed and assembled into test
applications. Since components must execute within an assembly, you need to prepare a
full run-time infrastructure to execute the components. Additionally, whereas it is
possible to simply construct mock objects, using standard class constructors, mock
components require a larger amount of scaffolding to complete.

1.2 Software Component Life Cycle
Kung-Kiu Lau (2007) has described an ideal component life-cycle, to identify
opportunities for reuse both within component design and component deployment phases.
In his view components exist within a component repository during the design phase.
Components can be composed with other components to form larger components stored
during design or component assemblies during deployment. In the final run-time phase, a
run-time infrastructure executes the constructed component assemblies. We consider any
testing during this final phase as integration testing, so we restrict our attention to the
type of testing one might carry out during component design and component
development.

The components in the component repository must be independently tested using a unit
testing strategy. However, this requirement is challenged by the inter-component
dependencies that invariably exist within systems decomposed from components. One
must be a bit more careful during design and when developing components, as we discuss
in the paper.

1.3 Requirements
Because we had in mind two separate case studies, with different technologies, we
defined a set of requirements to guide our effort so we could normalize our results.

• Test cases must be defined separately from the component under test – without
such separation, one would be required to repackage and re-deploy software
components whenever new test cases.

• A testing framework must be defined separately from the test cases – we must be
able to support different testing frameworks, such as JUnit
(http://www.junit.org), or home-brewed techniques.

• Testing an individual component must not depend on having all components for
the final application – it must be possible to truly test each component in
isolation from other components; where necessary, mock components are to be
written to substitute for an interface dependency.

Our solutions must also reduce as much as possible the manual human element of testing
and support the greatest amount of automation. Clearly there is more work to be done to
support this principle; in this paper we focus our attention on the “bottom-up” issues
faced by component unit testers.

2. Case Study: Product Line Structure
We created a calculator product line composed of features that one might envision having
in a hand-held calculator. The Feature Model shown in Figure 1 captures the various
features of this product line using the Czarnecki notation (Czarnecki and Wasowski,
2007).

Figure 1: Calculator Product Line Feature Model
Each gray box represents a feature that is encapsulated as a feature component (or
component for short). That is, each component has its own source files and can be
independently compiled. Features with a black dot at the top are mandatory. The larger
white boxes represent feature “families”, some of which are also mandatory. For
example, the type family is mandatory, specifying that one of its child features must be
selected. The white “arc” emanating from the type node declares that only one of the
children is to be included (i.e., XOR functionality) in a product line member. Optional
features have no black dot at the top of their box. Dependencies between features are
captured declaratively and are provided in the large gray box at the bottom of the figure.
For example, the nthRoot feature depends upon having newton’s method available and
that the selected type for the calculator is double.

The product line was implemented in C. The primary goal of this case study was to
demonstrate that one could selectively mix and match desired features in a product line
by simply declaring the desired features. Because the C programming language offered
no capabilities to support a product line, we engineered a set of constructs and processes
to make this happen. This somewhat-academic exercise was intended as a proof of
concept, to show that one could devise component models even when the underlying
programming language offered no support.

include MakefileCommon
MODULE = integer_gcd
SRCS = integer_gcd.c
DEP_MOD = integer_type.c integer_type_impl.c

all: $(MODULE).a

$(MODULE).a: $(SRCS:.c=.o)
 rm -f $(MODULE).a
 ar rv $(MODULE).a $(SRCS:.c=.o)

CORE = input.c process.c calculator.c display.c lineReader.c list.c stack.c

run tests: Must pre-link in required features (if exist)
test: $(SRCS:.c=.test.o)
 ./ut $(TEST_REMOVE) $(SRCS:.c=.test.c) $(SRCS) $(CORE) $(DEP_MOD) >> $(PL_TEST)

invoked by product line architecture
initialization:
 @echo $(LIBS) >> $(FINAL_LIBS)
 @echo "$(MODULE)_init(); " >> $(INITIALIZATION)

clean away the code (including test files)
clean:
 rm -f $(MODULE).a $(SRCS:.c=.o)
 rm -f $(SRCS:.c=.test.gcov) $(SRCS:.c=.test.gcda)
 rm -f $(SRCS:.c=.test.gcno) $(SRCS:.c=.c.gcov)
 rm -f $(DEP_MOD.c=.test.gcov) $(DEP_MOD:.c=.test.gcda)
 rm -f $(DEP_MOD:.c=.gcno) $(DEP_MOD.c=.c.gcov)

Figure 2: integer_gcd.Makefile

2.1 integer_gcd component
It is instructive to show the full details of one of the simpler components. The full case
study can be retrieved via the URL provided at the end of this paper. Each feature is
implemented in its own separate set of C files and is compiled and built by its own
Makefile. We intentionally chose to use Makefile specifications rather than design a
separate language that captures the same information (such as an XML representation).
Indeed, the intent of the Makefile is to produce a single executable integer_gcd.a file
which can be independently deployed during application assembly. The integer_gcd
Makefile shown in Figure 2 defines how to build the component, which simply involves
compiling the integer_gcd.c source file. However, this Makefile specification also
shows how to execute the unit tests for this component (the target “test” in the Makefile).

A collection of Makefiles are used to build individual features as well as to build an
entire product line application member. In this example, the core set of features is defined
as the baseline application. That is, no such application member in this product line can
be constructed without this base. To describe a potential product line member, then, one
need only specify the set of features within the global Makefile. Figure 3 shows some
sample product line specifications.

Figure 3: Sample Product Line Member Applications

Description Definition
Simplest calculator supporting just basic *, –,
+ and ÷ over doubles

double_type.c
double_type_impl.c

Calculator using complex numbers and
supporting small set of complex operators
(conjugate, absolute value) as well as a bank of
4 memory registers

complex_type.c
complex_type_impl.c
double_type_impl.c
complex_sqrt.c
complex_abs.c
complex_conj.c memory.c
memory_4.c

Calculator supporting arbitrary-precision
accurate integer arithmetic, a bank of memory
registers (defaults to 8), some pre-defined
constants, and the greatest common divisor
function

memory.c constants.c
accurate_type.c
accurate_type_impl.c
accurate_gcd.c

We were successful in this effort. We then wondered how we could add unit testing to the
underlying development process. Since each component was implemented with its own
files, we had to clearly declare its dependencies within its Makefile (note the DEP_MOD
variable in Figure 2). Since the intent is to construct an executable whose purpose is to
execute the test cases specified within integer_gcd.test.c, we must be able to
construct an executable, so all concrete dependencies for the integer_gcd component are
realized. In this example we use the actual components themselves but this could easily
have been rewritten to use mock components.

The result is that each component can be independently built (using make –f
component.Makefile) and independently tested (using make –f component.Makefile
test). We crafted a unit test utility, ut, (referred to in the Makefile) to carry out the unit
tests by replicating much of the functionality as specified by JUnit. The
integer_gcd.test.c source file contains test cases as shown in Figure 4. While some of
the details are unnecessary, one can readily see the use of testXXX() functions to
represent test cases and setUp() and tearDown() functions as supported by JUnit. ut
generates the requisite driver code that launches the four test cases as defined, bracketing
these invocations with calls to set up and tear down resources as required.

#include "calculator.h"
#include "process.h"
#include "integer_gcd.h"
#include "integer_type.h"

#include "ut.h"

/** Useful variables for test cases. */
static CALCULATOR_PTR calc;
static TYPE_PTR at;
static TYPE_PTR bt;
static INTEGER_PTR ai;
static INTEGER_PTR bi;

/** Useful test macro */
#define localCheck(expected,tp) \
{ \
 assertTrue ((tp) != NULL); \
 assertEquals ((expected), \
((INTEGER_PTR)(tp)->inner)->n); \
 freeType ((tp)); \
}

/** allocate resources for each test. */
void setUp() {
 calc = constructCalc();

 at = newType();
 ai = at->inner;
 bt = newType();
 bi = bt->inner;

 /* initialize module under test. */
 integer_gcd_init();
}

/** release resources. */
void tearDown() {
 freeCalc (calc);
 freeType (at);
 freeType (bt);
}

/* this is now a binary operator */
void testisOperator() {
 assertEquals (1, isBinary("gcd"));
}

/* test application */
void testGCD() {
 ai->n = 117;
 bi->n = 13;
 localCheck (
 13, applyGCD (calc, "gcd", at, bt));
}

void testGCD2() {
 ai->n = 1;
 bi->n = 1;
 localCheck (
 1, applyGCD (calc, "gcd", at, bt));
}

void testGCD3() {
 ai->n = 14;
 bi->n = 0;
 localCheck (
 14, applyGCD (calc, "gcd", at, bt));

 localCheck (
 14, applyGCD (calc, "gcd", bt, at));
}

Figure 4: Sample Test cases for integer_gcd

To complete this case study, the primary Makefile for assembling product line
application members was modified to also test the features used within the product line
by repeatedly invoking make –f feature.Makefile test on all of the selected
features. ut uses gprof (the Unix utility for call graph profile data) and gcov (the Unix
coverage testing tool) to generate reports showing the code coverage of the test cases, as
well as identifying those which failed.

One of the lessons learned from this C-based case study is that the testing of individual
features did depend upon having a fully working base. There was no easy way to
eliminate the dependency that a feature component has on the base. A corollary of this
lesson was the observation that the base had to be tested as a single unit because of the
deep interconnections between the requisite C files that made up the base. See Muccini
and van der Hoek (2003) for ideas on testing product lines. Nonetheless, each feature can
be tested independently by identifying the dependencies of the feature in its Makefile.
Another lesson learned was that the unit testing was actually quite effective when using
the actual components themselves, rather than stub or mock objects. The reason was the
structure of the product line specified a clear tree-like set of dependencies between the
feature components, thus it was possible to test small subsets of features first before
expanding up to unit test features that depended upon larger collections of features.

3. Case Study: Component-Based Structure
In our second case study, we create a small CAPTCHA (Completely Automated Public
Turing test to tell Computers and Humans Apart) utility that involved a client/server
system. On the client-side, the user is challenged to identify words in a moving image,
and the server processes the messages sent by the user; should the words match, a new
user account would be created for the user in a database.

Figure 5: CAPTCHA application

To build the application, we used the open source CompUnit (Heineman, 2009)
component model, which has been developed to properly teach issues regarding CBSE at
both the undergraduate and graduate level. All components are written in Java and
conform to an interaction standard where each component is able to interact with other

components only through well-defined interfaces. In short, a component can provide (or
otherwise implement) an interface and that component can be connected to another
component that requires the functionality as defined by that interface. CompUnit
components are assembled into applications by connecting components to each other
using these defined interfaces. There is a set of tools to help developers package their
CompUnit components into stand-alone JAR files that contain the encapsulated
implementation; one can also assemble applications using a graphical editor. An
application consisting of CompUnit components executes within a run-time environment
container called Foundation.

Each component in Figure 5 is represented by a rectangle. A component may provide a
set of services (identified by the “lollipop” handles emanating from the components) and
may require services (identified by the lines with diamonds). Components can
communicate directly with other components only through such interfaces. The primary
modeling novelty of CompUnit is that each component must clearly identify (with meta
data) the interfaces which it requires to perform its functionality. CompUnit assumes that
each interface, once published, becomes immutable, which ensures the long-term
interoperability of components that require and provide the same interface.

Each component is independently built, packaged and installed into a CompUnit
environment and then an application is defined by assembling the components together;
in Figure 5, there are two applications. The challenge for the unit tester is to find some
way to test the CaptchaServer component even though it has three dependent interfaces
(one on the Communicator and two on the DBM component).

We approach this concrete dependency by constructing a mock component to aid the
effort. The challenge, naturally, is for the tester to be able to execute the CaptchaServer
component. Towards this end, we developed a SuiteRunner component, whose purpose
in life was to manage the JUnit test cases that were to be separately written. The final
application assembly is shown in Figure 6.

Figure 6: Assembly to test CaptchaServer

SuiteRunner takes over the responsibility of launching the JUnit test cases that are
packaged within the TestCaptchaComponent. In this way, each component under test
can have its own TestXXX component that is connected to the common testing
infrastructure. Other helper components are written as needed, such as the StubOutput
component whose sole purpose is to receive responses back from the CaptchaServer and
enable the TestCaptchaComponent to validate the response is as expected.

Each CompUnit component is packaged into a JAR file by a CompUnit utility known as
the “Packager” and then installed into a CompUnitEnvironment using the “Installer”
utility. Figures 5 and 6 show screenshot captures of the CompUnit utility, “Café” that
allows users to graphically construct application assemblies. Each of these CompUnit
utilities is actually implemented using CompUnit components.

If one were to truly follow the TDD strategy outlined in the introduction of this paper,
then each new test case would require the repackaging and redeployment of a component.
While such a process would be developmentally sound, it leads to gross inefficiencies,
which is why the case study was carried out entirely within Eclipse
(http://www.eclipse.org).

3.1 Extended support provided by Eclipse
Many developers have grown accustomed to the powerful support that Integrated
Development Environments (IDEs) such as provided by Eclipse. For example, one can
develop web services without ever leaving Eclipse (Eclipse, 2009). Clearly such
capabilities reduces the effort in developing these services by reducing the overhead of
having to package and deploy the requisite code “natively” as required by the various
Web-based protocols and Web servers. Much of the development within the CompUnit
case study was performed within Eclipse, and we were able to bypass two key phases of
the component-based development life-cycle. In particular:

• Installation – once a component was installed into the CompUnit container, there
was no need to reinstall it whenever changes were made to the component. This
was made possible because the user can set the CLASSPATH within Eclipse to
include to the component under development. Thus we only needed to install the
component once, and this typically was done when the first few lines of code
were written for the component.

• Packaging for deployment – since the component only needed to be installed
once, it meant that it only needed to be properly packaged once, just prior to this
installation.

Another important productivity enhancer is the ability in Eclipse to allow developers to
change code while the system is being debugged (Holzner, 2004). Under most
circumstances, Eclipse is able to “rewind” the computation back to the beginning of the
method (or earlier depending upon the call stack). As the components are executing, the
software engineer can set breakpoints and view the step-by-step execution of the
component, rewriting the code as necessary when defects are detected.

These productivity enhancers are not limited to CompUnit; indeed, it must not be the
case! Fortunately, the leading IDE vendors for Java (NetBeans and Eclipse) provide
various ways to productively test component technologies, such as EJB, servlets, and web
services, just to name a few.

Related Work
The field of software testing is vast and cannot be captured in a single paper. We focus
our attention on the most closely-related efforts for testing software components which
has been explored by various researchers within the CBSE symposium series over the
years (Jalote et al., 2006) (Tyler and Soundarajan, 2004) (Gao, 2000). In general, these
researchers focused on specific techniques for testing, rather than the complications
arising from interdepdencies.

Built-in test (BIT) component capability enables the black-box testing of components
through fine-grained decorator “wrappers” that enable assertions to be checked as the
component executes (Edwards, 2001). Edwards describes a framework that fully
automates the process of testing components, including generating the test data and the
drivers that execute the components. To incorporate BIT components into a test-driven
process, the developer would describe the pre- and post-conditions using the contract-
based approach as popularized by Bertrand Meyer (Meyer, 1997). From these contracts,
the code to execute the test cases would be generated. Nothing in the wrappers is able to
address component dependencies, however.

Throughout the paper we referenced various projects (JMock, Cactus, JunitEE) whose
purpose is to enable unit testing of components developed using various technologies.
The unit testing supported by these projects is still complicated by the dependencies that
invariably exist between components. The ideas presented in our paper can be used to
guide these technologies to handle inter-component dependencies.

Conclusion
Unit testing of software components is hard enough without having to deal with the
added complications of inter-component dependencies. We constructed two case studies
that showed how to address the issue. When component dependencies are concrete, one
strategy is to assemble component “sub-assemblies” that enable the construction of an
application with the component under test. Should the dependency relationship be cyclic,
then the only recourse is to develop mock components using the same component model
and define assemblies with the component under test. When abstract dependencies are
present, one has greater flexibility in whether to choose actual components or to develop
mock components in their place. In both cases, the success of the unit testing is made
possible by applying the right tool support and infrastructure to automate the code tests.
The full calculator product line can be retrieved from
http://web.cs.wpi.edu/~heineman/CBSE2009/CalculatorProductLine.zip.

References
Apache, Cactus Test Framework, http://jakarta.apache.org/cactus, 2009.

Beck, K., Test Driven Development: By Example, Addison-Wesley Longman, 2002

Czarnecki, K. and Wasowski, A.. “Feature Diagrams and Logics: There and Back
Again”, proceedings of the 11th International Software Product Line Conference (SPLC),
2007, pp. 23 – 34.

Eclipse Foundation, Web Tool Platform (WTP) project, http://www.eclipse.org/webtools,
2009.

Edwards, S. H., “Framework for Practical, Automated Black-Box Testing of
Component-Based Software”, Software Testing, Verification and Reliability, 11(2), 2001.

Fowler, M. “Mocks aren’t stubs”, January 2007,
http://martinfowler.com/articles/mocksArentStubs.html

Gao, J., “Component Testability and Component Testing Challenges”, Component-Based
Software Engineering Workshop, 2000.

Heineman, G. “CompUnit Component model”, http://sourceforge.net/projects/compunit,
2009.

Heineman, G. and Council, W, Component-Based Software Engineering: Putting the
pieces together, Addison-Wesley, 2001.

Holzner, S., Eclipse Cookbook, O’Reilly Media Inc., 2004.

Jalote, P., Munshi, R., Probsting, T., "Components Have Test Buddies", Component-
Based Software Engineering Symposium, June 2006, pp. 310—319.

Janzen, D., Saiedian, H., “Test-driven development concepts, taxonomy, and future
direction”, IEEE Computer, 38(9), 2005, pp. 43 – 50.

JUnitEE, http://www.junitee.org, 2009.

Lau, K-K. and Wang, Z., “Software component models”, IEEE Transactions on Software
Engineering, 33(10), pp. 709 – 724, October 2007.

Meyer B., Object-Oriented Software Construction, 2nd Edition, Prentice Hall, 1997.

Muccini, H. and van der Hoek, A., “Towards Testing Product Line Architectures”,
International Workshop on Test and Analysis of Component-Based Systems (TACoS),
82(6), 2003, pp. 99-109.

Muthu R., “Testing Software Components Using Boundary Value Analysis”, proceedings
of the 29th EUROMICRO conference "New Waves in System Architecture", 2003.

Pavlova, I., Akerholm, M., Fredriksson, J., “Application of built-in-testing in component-
based embedded systems”, ROSATEA 2006, pp. 51—52.

Tyler, B. and Soundarajan, N., “Testing Framework Components”, Component-Based
Software Engineering Workshop, May 2004, pp. 138-145.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

