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Abstract

Semantically rich metadata is foreseen to be pervasive in tomorrow’s cyber
world. People are more willing to store metadata in the hope that such extra
information will enable a wide range of novel business intelligent applications.
Provenance is metadata which describes the derivation history of data. It is
considered to have great potential for helping the reasoning, analyzing, validat-
ing, monitoring, integrating and reusing of data. In this paper, we introduce
Butterfly, a provenance management system, which offers the modeling, storage,
and query of provenance.

1 Motivation

With today’s abundant computer storage and powerful processing capability,
people become more and more aggressive in collecting extra data: data inten-
tionally generated to assist the understanding of other data or processes. Simple
form of model and query of such data can not satisfy non-expert users’ growing
appetite for intelligent support in applications. For example,

e an online catalog vendor wants to track the interaction of customers with
the UI to discover the sequential pattern of operations which ends in pur-
chasing a product; find the most visited (used) web page (interface) to
improve user experience; query the connection between two visited web
pages to better understand user behavior and enhance cross-selling.

e a scientist wants to log detailed running steps and intermediate results of
an experiment saving the opportunity for future inspection or reproduction
of the result; providing poof to peer scientists about the authenticity of
the experiment; contributing to the pool of experimental recipes for reuse.

e a food manufacturer wants to record the production and distribution pro-
cess of a product, so whenever the product is found flawed, it is possible to
trace back to the origin of the problem; map the affected vendors, shops,
and regions; estimate the ensuing loss and compensation; submit report
to supervisory authority for conformity check.

There are some common patterns in the aforementioned scenarios:



e People are interested in collecting transient ancillary information, which
is usually not captured or simply discarded. The form of such information
is diverse varying with domain.

e Ad hoc queries are asked about complex relationship among data. Answers
to these queries can benefit people with insight into the domain.

Having realized the usefulness of ancillary data and having envisioned its popu-
larity, we have launched the MetaWare project, which aims at providing a general
solution to the management of metadata.

2 Introduction

We are particularly interested in provenance, a special kind of metadata that
assists in understanding how things are related to each other in their derivation
history. Inquiry of provenance is pervasive in everyday life, and a lot of applica-
tions (like the previous examples) profit from the ability to know the provenance
of an entity.

However, two obstacles are in the way of managing provenance:
e Before we can store provenance, we need a way to describe them.

e Once provenance is stored, we need a query language to extract informa-
tion from them.

Our solution to the first problem is a semantic model of provenance. Our so-
lution to the second problem is an algebraic query model. We combine these
two solutions and call it Butterfly (named after the butterfly effect). It is a
virtual proof-of-concept provenance management system. We are also working
on an initial implementation of Butterfly, which actualizes the semantic model
with a provenance definition language, and actualizes the query model with a
provenance query language.

Assumptions We believe a provenance management system should be ag-
nostic of application domains. We argue that the system itself should not be
held responsible for capturing provenance. Instead, users should decide on what
and how they capture provenance according to their particular needs and views.

Usage Scenario

We imagine a typical scenario of applying Butterfly would look like this: A
programmer is assigned to build a provenance-aware application for a hospital
(e.g., Electronic Health Record or simply paperless office application). He knows
there is a handy middleware called Butterfly which he can easily integrate into



his application for processing provenance. What he needs to do is embed some
provenance processing codes into appropriate places of the business logic. He
can decide what interesting events to record and how to describe them (e.g.,
granularity) using the semantic model. The provenance processing codes talk
to Butterfly in the definition language. After the host application has run
several months, a patient revisits the hospital. A doctor opens an editor and
composes some queries to pull out the sequence of treatment the patient has
received in the past. Later, another patient files a complaint. A supervisor
queries the provenance base to investigate if there is any violation of regulation
in the sequence of treatment.

Contributions

Although there are many systems that utilize the idea of keeping track of data
provenance, most of their provenance tracking components are highly coupled
to their application logic (less reusable) and their provided queries are simple.
More detailed discussion of related work is given in section 6. Standardization
of a general purpose provenance model has recently aroused attention from the
provenance research community. For example, [11] proposes the Open Prove-
nance Model (OPM). The fundamental difference between OPM and our work
is mainly trifold: @) OPM classifies causal relationship into five exact relation-
ships. We use a loose, uniform relationship and leave the exact interpretation of
relationship to varied domains. b) OPM queries are based on logical inference
from the five causal relationships. We use an algebraic approach instead. ¢) Our
goal is to provide a general purpose, independent, working management system
(along with APIs) for provenance. In order to do that, we specify the structural
representation of each provenance concept.

Roadmap The rest of this paper is structured as follows: we introduce the se-
mantic model in section 3, the query model in section 4, the system architecture
in section 5. We discuss related work in section 6, and conclude with section 7.

3 Semantic Model of Provenance

Definition 3.0.1: A name space is an infinite countable set, denoted as N.
e.g., the set of all possible ASCII strings is a name space.

Definition 3.0.2: A named value is (name, value-list). name € N. value-list is
a list, and it can be empty.

e.g., (Buyer, (John Green)) is a named value. Note if value-list contains only
one element, we can omit the parentheses of value-list. e.g., (Money, $40k) is
also a named value.

Definition 3.0.3: An identifier is a named value.

Two identifiers are equal if and only if their names are equal. For example,
(RO8, (Data File MedReport)) is an identifier, and is equal to (R08, ()).



The semantic model provides a tool for describing provenance. Particularly,
it defines several essential concepts that we believe are closely related to the
modeling of provenance. Our goal in this section is to define what are provenance
entity and provenance relationship.

3.1 Application Environment

Definition 3.1: An application environment is
(NSpace, CLK, ADDR,DICT).

NSpace is a name space. CLK is a set of system-recognizable time (e.g., in the
format of MM-DD-YY). ADDR is a set of system-recognizable addresses (e.g.,
URI address). DICT C NSpace, is a defined vocabulary.

Application environment mandates a minimum integrity constraint on the data,
and provides some degree of interoperability. Note the following concepts are
all defined with respect to an environment.

3.2 Annotation

Definition 3.2: An annotation is a set of named values. Each named value
(name, value-list) is called an entry, and name € DICT.

e.g., {(total-income, $40k), (mortgage-limit, $100k), (mortgage-type, fixed-rate)}
could be an annotation of a mortgage application.

Annotation provides an extensible way to describe something. Due to diversity
of domains, we impose only little restriction upon annotation.

3.3 Static Entity Record
Defintion 3.3: A static entity record is
(entity-id, entity-address, entity-type, annotation,

snapshot-time, record-id).

entity-id is an identifier. entity-address € ADDR. entity-type € DICT. an-
notation is an annotation as in Def. 3.2. snapshot-time € CLK. record-id
€ NSpace.

Static entity record captures some aspects of an entity at a particular moment
(snapshot-time). e.g,



entity-id=(S01, (Aspect,- -))
entity-address=100 Inst. Rd
entity-type=Human
annotation={(Income, $40Kk), -}
snapshot-time=11-01-07
record-id=R01

is a static entity record capturing some facts about a person at some moment.
Note there is nontrivial distinction between entity and static entity record. The
former one refers to the evolving physical existence, while the latter one refers
to a virtual representation (as a record) of some aspects of that entity at a
particular moment. With that being mentioned, it is clear that: a) Our system
does not intend to manipulate (e.g., store) the actual entities (e.g., data files,
pictures), but our system will manipulate their corresponding representations.
b) Theoretically, static entity record is about some facts in the past, and should
not be updated.

entity-id, entity-address, entity-type all refer to an entity. They are self-explanatory.
One example of entity-address is Uniform Resource Identifier (URI). Currently,
entity-type is simply drawn from DZC7T. We intend to introduce hierarchy of
entity types in the future for richer modeling. Past facts (states) of an entity
can be amassed by grouping according to entity-id (recall the equality definition

of identifier). Static entity record with the latest snapshot-time represents the
closest approximation of the corresponding entity. record-id uniquely identifies
the record itself not the entity.

3.4 Activity Record
Definition 3.4.1: An activity type is

(type-name, incoming-list, outgoing-list, annotation).

type-name is an identifier. incoming-list is an ordered list of named values (each
named value in the incoming-list is called an in-pipe). outgoing-list is an or-
dered list of named values (each named value in the outgoing-list is called an
out-pipe). annotation is an annotation as in Def. 3.2.

incoming-list declares the roles and types of the contributing entities in an ac-
tivity. For example,

((Doctor, Human) (Patient, Human) (X-Ray, Machine))

is an incoming-list, with “Doctor”, “Patient”, “X-Ray” as roles and “Human”,
“Machine” as types. Types should be taken from DZCT .

Similarly, outgoing-list specifies the roles and types of the consequential entities
in the activity. For example,



((Radiographic-Image, Image) (Diagnosis, Report))

is an outgoing-list. The types “Image” and “Report” should be taken from
DICT as well.

Define a symbol ACT, which denotes a dummy activity type. It symbolizes an
insignificant or unknown activity.

Flexibility Because our model is meant to be simple but still flexible and
capable, in our system, we avoid forced detail modeling of activity but reserve
the potential for doing that. For example, based on grouping by type-name, we
can support the concepts of hierarchical view and equivalent view of activities
as follows: Recall type-name (as in Def. 3.4.1) is an identifier, with the form of
(name, value-list). Let value-list = (event, generality, explanation). Intuitively,
event clusters relevant activities of an event. Activities with a smaller generality
value offer a more detailed view of the event. When generality values are the
same, activities with a smaller explanation value are considered a more plausi-
ble explanation of the event. Figure 1 shows an example. It shows there is a
more detailed view of “Building Caught Fire”. The fire is more likely a result of
lightning (ezplanation=1) than short-circuiting (ezplanation=2). There is also
a more detailed view of “Firefighters Put Out Fire”.
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Figure 1: Flexibility—Grouping of Activities

Definition 3.4.2: An activity record is
(activity-id, activity-type, activity-span, annotation, record-id).

activity-id is an identifier. activity-type is an activity type as in Def. 3.4.1.
activity-span=_start, end), start and end € CLK. annotation is an annotation



as in Def. 3.2. record-id € NSpace.

In contrast to static entity record, activity record is used to describe any dy-
namic element of an application system. It is an instance of an activity type,
and a representation of an activity taking place in the physical world (e.g., an
invocation of a computing function).

Each component of activity record is self-explanatory. We recommend to store
in annotation additional application specific information about the running of
an activity.

3.5 Provenance Entity And Relationship

A provenance entity is either a static entity record (Def. 3.3) or an activity
record (Def. 3.4.2).

Definition 3.5.1: A provenance relationship is a relationship between two
provenance entities:

(causal-entity, consequential-entity, role, annotation, relationship-id).

causal-entity, consequential-entity are both provenance entities. role € DZICT.
annotation is an annotation as in Def. 3.2. relationship-id € NSpace.

Relationship between causal-entity and consequential-entity can be thought of
as a parent-child relationship. role refines the relationship by supplementing
the role that causal-entity played in the creation of consequential-entity. Com-
patibility check is required. e.g., when causal-entity is a static entity record and
consequential-entity is an activity record, role and causal-entity must be mean-
ingful to consequential-entity (e.g., in Figure 2, the “buying” role and “Buyer”
type match an in-pipe of activity-type “Closing”).

The semantic model provides a flexible way to describe provenance of both static
and dynamic elements of an application system. Figure 2 shows a simplified
example of house mortgage, where a prospective buyer got a house offer through
a real estate broker, applied mortgage from a mortgage company, closed the
transaction with the seller and got a new house title. There are two activities,
one of which is of dummy type and the other is of “Closing” type. Provenance
relationship is shown as directed link from causal-entity to consequential-entity,
with role as the label of the link, annotation and relationship-id omitted for
simplicity.



entity-id=(B01, (Wife))
entity-address=10 Inst. Rd entity-id=(S01, empty)
entity-type=Buyer entity- addre?{s I1E Mt. Réi

fon—= entity-type=Real Estate Broker
(ap:':'Ii"c‘:‘ﬁ:r:ﬁn$l{2(gi;T1(ea'r(ehgagogtroer?)n}))' annotahtlon ={(agent- réazmoe (Smith White))}
snapshot-time=11-01-07 fgggfd ?t_;{rge 11 7
record-id=RO1

N/A N/A

activity-id=(A01, empty)
activity-type=ACT
activity-span=[11-15-07, 11-20-07]
annotation={(commission, $1k)}
record-id=R03

N/A
entity-id=(D01I, empty) entity-id=(D02, empty)
entity-address=/archive07/323-115.doc entity-address=credit. com/req38 doc
entity-type=House-Offer entlt¥ type=Credit- Re{a
annotation={(house-address, (2 South Rd)),| [@nnotation={(name, (John Green)),
(price, $120k), (owner, (Allen Snow))} (credit-score, 900)}
snapshot-time=11-20-07 snapshot-time=11-23-07
record-id=R04 record-id=R07

: : entity-id=(D03, empt i i
information ent|t¥ add(r SS= arcphi\\//)eO7/79 doc information
ent|t¥ type=Appraisal-Result
annotation={(name, (John Green))
amount-granted, $100k)}
snapshot-time=11-25-07
participant record-id=R08

participant

appraisal

entity-id=(B01, (Husband))

entity-address=10 Inst. Rd

entity-type=Buyer

annotation={(name, (John Green)),
}

entity-id=(L01, empty)
entity-address=25 Inst. Rd
entity-type=Mortgage-Company
annotation={(agent, (Susan Aaron))}
snapshot-time=11-22-0
record-id=R06

(income, $40k)
snapshot-time=11-22-07
record-id=R05
ing
entity-id=(D04, em

y)
entity-address= regplstry/archlve07/D453
entlt¥ type=Title

activity-id=(A02, empty)
activity-type=Closing
activity-span=[11-26-07, 11-26-07]

annotation={(lawyer, (Louis Arthur))} result annotation={(address, (2 South Rd)),
record-id=R11 (owner, (John Green))}
snapshot-time=11-27-07
record-id=R12
selling lending
entity-id=(S02, empty) entlty -id=(LO1, empty)
z-address 125XII Rd y-address 25 Inst. Rd
-type=Seller entlty type=Mortgage-Compan
annotation={(name, (AIIen Snow))} annotation= {(agent (Tom Aaron))}
snapshot-time=11-26 snapshot-time=11 07
record-id=R09 record-id=R10

type-name=Closing

incoming-list=((buying, Buyer)(selling, Seller)
(lending, Mortgage-Company)(appraisal, Appraisal-Result))
outgoing-list=((result, Title))
annotation=empty

Figure 2: Example—Semantic Model of Provenance

4 Query Model of Provenance

We have defined the semantics of provenance entity and provenance relationship
in section 3. In this section, our goal is to develop an algebraic query model to
manipulate provenance entity and relationship. This query model bases on two
sub-models: a content based model for content based query of provenance and
a structure based model for structure based query of provenance. By combining
the power of two sub-models, we can express a lot of interesting provenance
queries. In order to define the content based query model, we need to first
develop two concepts: provenance entity store and provenance relationship store.
They are corresponding to provenance entity and provenance relationship in the



semantic model.

4.1 Provenance Entity Store

Definition 4.1.1: A provenance entity store is a set of provenance entities.
Recall from section 3, a provenance entity is either a static entity record (defi-
nition 3.3) or an activity record (definition 3.4.2). Since each provenance entity
is uniquely identified by its record-id, we can have a representation schema for
provenance entity store as follows:

(record-id, type, provenance-entity).

type can either be “static entity” or “activity”. provenance-entity holds the
content of the provenance entity. Here is an example of provenance entity store:

record-id=R09
type=static entity
provenance-entity:

entity-id=(502, emp tX/%
entity- -address=125 Mt. Rd
entity-type=Seller
annotation={(name, (Allen Snow))}
snapshot-time=11- 26-07
record-id=R09

record-id=R11
type=activity
provenance-entity:
activity-id=(A02, empty)
activity-type=Closing
activity-span=[11-26-07, 11-26-07]

annotation={(lawyer, (Louis Arthur))}
record-id=R11

Operators For Provenance Entity Store

We can define several manipulating operators for provenance entity store. The
following set of operators is not intended to be exhaustive.

Operator 4.1.1 (filtering by type): The filtering-by-type operator takes a prove-
nance entity store and a type as input, and produces a provenance entity store
with all and only provenance entities of the type.

e.g., we can use this operator to retrieve all activity records in a provenance
entity store.

Defintion 4.1.2: A conditional function of provenance entity takes a prove-
nance entity and a list of parameters as input, and produces either “True” or
“False”.

Here is a simple example:



BOOLEAN

TimeLargerThan(ProvenanceEntity e, CLK time)
IF (e.SnapshotTime > time) RETURN True
RETURN False

Conditional functions are combinable using logical conjunctions (e.g., “And”,
“Or”, “Not”) to achieve more expressiveness. Still, conditional functions could
be very complex and highly native to an application domain (e.g., in Figure
1, a condition like “an activity that belongs to the most plausible and detailed
view of an event”). Thus besides providing basic conditional functions (e.g.,
equality, greater than, less than, pattern matching test) for each component of
provenance entity (e.g., entity-address in static entity record, activity-span in
activity record), we need to support user customized conditional functions that
comply with the function signature in definition 4.1.2. Detailed discussion of
the design of conditional functions is beyond the scope of this paper. We simply
consider it as an abstraction here.

Operator 4.1.2 (filtering by condition): The filtering-by-condition operator
takes a provenance entity store and a condition (conditional function plus list
of actual parameters) as input, and produces a provenance entity store with all
and only provenance entities that satisfy the condition.

e.g., we can use the filtering-by-condition operator to retrieve all activity records
that happened within the time interval [10-01-07, 12-1-07] and were annotated
as having “critical-level” larger than 99.

Operator 4.1.3 (set operators): Since provenance entity store is defined as
a set of provenance entities, ordinary set operators (e.g., union, intersection,
difference) are applicable to provenance entity store as well.

The next two operators are mainly used for interfacing with the structure based
sub-model of query.

Operator 4.1.4 (filtering by record-id): The filtering-by-record-id operator
takes a provenance entity store and a set of record-ids as input, and produces a
provenance entity store with all and only provenance entities whose record-ids
are in the record-id set.

Operator 4.1.5 (projecting of record-id):
The projecting-record-id operator takes a provenance entity store as input, and
produces a set of record-ids of all the provenance entities in the store.

Definition 4.1.3 (valuation): A waluation function of provenance entity takes
a provenance entity as input, and produces a value as output. A value adder is
a function @ : VALUE x VALUE — VALUE.

We do not give an explicit meaning for “value” here. It could be a number,
string etc depending on applications. Binary arithmetic or maximum opera-
tors, string concatenation operator are examples of value adder.
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Operator 4.1.6 (aggregation): The aggregation operator takes a provenance
entity store, a valuation function and a value adder as input, and produces a
value by applying the valuation function to each provenance entity and combin-
ing the values using the value adder.

Except for operators 4.1.5 and 4.1.6, provenance entity store is closed under the
others. We can compose those operators to form a query.

4.2 Provenance Relationship Store

Similar to the concept of provenance entity store, we can define the concept of
provenance relationship store.

Definition 4.2.1: A provenance relationship store is a set of provenance rela-
tionships.
However, in provenance relationship store, we only perceive each provenance
relationship as

(relationship-id, role, annotation).

Compared with definition 3.5.1 of provenance relationship, we hide causal-entity
and consequential-entity from provenance relationship. This is because, in the
content based query model, we focus on the content (i.e. role and annotation) of
the relationship instead of its structure (i.e. from causal-entity to consequential-
entity). Here is an example of provenance relationship store (referring to Figure
2):

relationship-id: R14 Hidden :
role: participant R06->R08
annotation: {(comment, lender)} ‘

relationship-id: R15 :
role: lending R10->R11 :
annotation: {(payment, cheque)}

Operators For Provenance Relationship Store

Provenance entity store and relationship store are very similar (e.g., both de-
fined as set, both aimed for content style query). We can define a rather similar
set of operators (e.g., filtering, aggregating, interfacing) for manipulating rela-
tionship store. The following examples are not intended to be exhaustive.

Operator 4.2.1 (filtering by role): The filtering-by-role operator takes a prove-

nance relationship store and a role as input, and produces a provenance rela-
tionship store with all and only provenance relationships that have the specified

11



role.
e.g., we can use this operator to retrieve all provenance relationships of the
“lending” type.

Operator 4.2.2 (filtering by annotation): The filtering-by-annotation operator
takes a provenance relationship store and an annotation condition as input, and
produces a provenance relationship store with all and only provenance relation-
ships that satisfy the condition.

e.g., imagine in an application, each provenance relationship was annotated with
(importance, number) to indicate how important a role had been. Then we can
retrieve all the provenance relationships with importance above a threshold.

Operator 4.2.3 (set operators): Ordinary set operators (e.g., union, intersec-
tion, difference) are applicable to provenance relationship store.

Operator 4.2.4 (aggregation): The aggregation operator takes a provenance
relationship store, a valuation function of annotation and a value adder as input,
and produces a value by applying the valuation function to the annotation of
each provenance relationship and combining the values using the value adder.
e.g., if a valuation function maps any annotation to 1, by using this operator,
we can count the number of provenance relationships in a store.

In order to interface provenance relationship store and structure based query
model, we need the next two operators.

Operator 4.2.5 (filtering by relationship-id):

The filtering-by-relationship-id operator takes a provenance relationship store
and a set of relationship-ids as input, and produces a provenance relationship
store with all and only provenance relationships whose relationship-ids are in
the relationship-id set.

Operator 4.2.6 (projecting of relationship-id):

The projecting-relationship-id operator takes a provenance relationship store as
input, and produces a set of relationship-ids of all the provenance relationships
in the store.

4.3 Content Based Query Model

Definition 4.3: The concept of provenance entity store and its relevant query
operators and the concept of provenance relationship store and its relevant query
operators constitute the content based query model of provenance.

The distinctiveness of provenance data compared with ordinary record data re-
sides in its implication of complex relationships. For ordinary record data, the
main goal of query design is being able to retrieve the content of data (content-
oriented). However, for provenance data, it is also important to understand the

12



underlying complex relationships (structure-oriented). Because of that, we di-
vide the query model of provenance into two sub-models: one for content based
query and one for structure based query. A provenance query seamlessly inte-
grates these two sub-models.

Next, we introduce the structure based model of query.

4.4 Structure Based Query Model

Definition 4.4.1: A structure graph of provenance is
(N,E, f).

N C NSpace, is a set of record-ids of provenance entities. E2 C NSpace, is a set
of relationship-ids of provenance relationships. f : E — N x N is a function
that specifies the causal-entity and consequential-entity of a relationship.

To perform query over structure graphs, we need to define a set of manipulating
operators. A few operators are illustrated here. It should be emphasized that
users may want to invent their own sets of operators which suit particular ap-
plication needs. So it is important that users are able to implement their own
operators and plug them into the structure model framework. The following
operators are intended to be informative rather than exhaustive.

Ordinary Operators

The next two operators are mainly for interfacing with content based query
model.

Operator 4.4.1 (projecting of record-id):
The projecting-of-record-id operator takes a structure graph (N, E, f) as input,
and produces N as output.

Operator 4.4.2 (projecting of relationship-id):
The projecting-of-relationship-id operator takes a structure graph (N, E, f) as
input, and produces E as output.

Sometimes, users want to narrow the structure graph to focus on some inter-
esting entities and their relationships. If we perceive f : E — N X N as a
function that defines how “edges” connect “nodes”, we can abstract the user
requirements as follows:

Operator 4.4.3 (reducing by record-id):

The reducing-by-record-id operator takes a structure graph (N, E, f) and a set
N’ of record-ids as input, and produces a structure graph with {n | Ja,b €
NNN',n e N is on a path from a to b} U(N NN') as the set of record-ids, and

13



{e|Ja,b e NNN',e € E is on a path from a to b} as the set of relationship-ids.

Operator 4.4.4 (abstracting by record-id):

The abstracting-by-record-id operator takes a structure graph (N, E, f) and a
set N’ of record-ids as input, and produces a structure graph with N N N’
as the set of record-ids, and the set of relationship-ids defined as follows: Let
Co={(a,b,0) | a,b € NNN',Je € E, f(e) = (a,b)}, C1={(a,b,1) | a,b € NNN’,
there exists a path, with length larger than 1, from a to b, and no intermediate
node on the path is in NN N'}, C = Cy U C4. For every (a,b,c) € C, if ¢ =0,
then for any e € F with f(e) = (a,b), include e in the set of relationship-ids;
else if ¢ = 1, generate a new unique relationship-id for (a,b) and include it in
the set of relationship-ids.

Operator 4.4.5 (filtering by record-id): The filtering-by-record-id operator
takes a structure graph (N, E, f) and a set N’ of record-ids as input, and pro-
duces a structure graph with N N N’ as the set of record-ids, and {e | e €
E, and f(e) = (a,b), and a,b € NN N’} as the set of relationship-ids.

E12
E13
E23

originial reducing-by-record-id
E13 E13
E-New

abstracting-by-record-id filtering-by-record-id

Figure 3: Constricting Structure Graph By record-id

Figure 3 contrasts the three aforementioned operators by applying them to the
same structure graph (with {R1, R3} being the constricting set of record-ids).
As an example, note that we can use the abstracting-by-record-id operator to
make an “activity” view of the provenance structure.

Operator 4.4.6 (filtering by relationship-id):

The filtering-by-relationship-id operator takes a structure graph (N, E, f) and a
set B’ of relationship-ids as input, and produces a structure graph with £ N E’
as the set of relationship-ids and {n | e € ENE’, and f(e) = (n,*) or (x,n)}
as the set of record-ids.
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Operator 4.4.7 (union):

The union of two structure graphs (N, E, f) and (N',E’, f') is (NUN', E U
E' fUf). Tt is easy to verify that the result of union is still a structure graph.
Similarly, we can define an intersection operator.

Operator 4.4.8 (descendant):

The descendant operator takes a structure graph (N, E, f) and a set N’ of
record-ids as input, and produces a structure graph with (N N N )U{n | n €
N,ds € NN N’, and there is a path from s to n} as the set of record-ids, and
{e| e € E,3s € NN N’ and e is on a path starting from s} as the set of
relationship-ids.

Operator 4.4.9 (ancestor):

The ancestor operator takes a structure graph (N, E, f) and a set N’ of record-
ids as input, and produces a structure graph with (NN N )U{n | n € N,3d €
NN N’ and there is a path from n to d} as the set of record-ids, and {e | e € E,
dd € NN N’ and e is on a path ending at d} as the set of relationship-ids.

A Pattern Matching Operator

Sometimes, users may want to retrieve complex relationships that match a pat-
tern.

Defintion 4.4.2: A labeling function is | : NSpace — NSpace. Intuitively, a
labeling function assigns labels to the “nodes” and “edges” of a structure graph.
Definition 4.4.3: The label of a path is the sequential concatenation of each
node label and edge label along the path. A path pattern is a reqular expression
over the labels. There can be other interesting ways of defining ”label of path”
and ”path pattern”.

Operator 4.4.10 (path matching): The path-matching operator takes a struc-
ture graph G, a labeling function [ and a path pattern PAT as input, and
produces a structure graph G’ defined as follows: Let P={p | p is a path of G,
and [(p) matches PAT}.

G = U Pp.

peEP

Figure 4 is an example of path pattern matching. And the patternis SX*CX*D.
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labeling

Figure 4: Path Pattern Matching

Ad Hoc Operators

Based on the concept of structure graph, it is also possible to define ad hoc
operators that fit particular needs for analysis of provenance structure. For
example, a) operator that returns “shortest path” between two provenance en-
tities. b) operator that returns the provenance entities that have “out-degree”
larger than a number.

Definition 4.4.4: The concept of structure graph and its relevant query oper-
ators constitute the structure based query model of provenance.

4.5 Combining Two Sub-models of Query

Figure 5 roughly illustrates how the content based model and the structure
based model fit together to carry out provenance query.

Structure Based Model ... Content BasedModel . .. ... ... ...

Op4.15
Op4.2.6

Provenance Entity Store

Stucure raph Provenance Relationship Store

Figure 5: Query Model of Provenance

A Fictitious Example

We conclude this section with an illustrative scenario of food safety tracking. In
today’s globalized economy, the production and consumption of goods are often
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distributed at different places. For example, a manufacturer may use parts and
material from different countries, and the final products are shipped around the
globe. In this case, it is helpful to keep track of the provenance of goods for
quality assurance, dispute settlement, etc.

Figure 6 shows an assumptive workflow of powdered milk production and con-
sumption. Powdered milk is produced in country Z, and is exported to country
X and country Y. Some confectionary companies in country X use imported
powdered milk from country Z in their production of chocolate candy. In this
scenario, we don’t consider how data is collected, but focus on the intuition of
how provenance queries are used.

Farmers Produce Raw Milk [—>=1 Companies Collect Raw Milk (> Raw Milk Processing Facotry Product Inspection

| Exportation | ’ Domestic Distribution ‘
. < v v
’Qualitylnspection of Imports ‘ ’ Distributors Rebranding ‘ ’ Chain Stores Retail ‘ ’Restaurant Processing ‘
Confectionary Factories Processing ‘ \
‘ Chain Stores Retail ’ Human Consumption ‘
oot cany Humn Consumption || Lcouney 2
Chain Stores Retail ’ Exportation ‘ Country Y
1]

Human Consumption ‘

Country X

Figure 6: Powdered Milk Production And Consumption

Q1: Imagine one day, a brand of powdered milk produced in country Z is found
contaminated. What brands of chocolate candy are affected in country X? How
much is the total worth of the affected products?

S1: a) Find the problematic batch of powdered milk by content based query
(by “brand name”, “address” and “production time”). b) Get the descendants
of the problematic batch by structure based query (the descendant operator).
¢) Conduct content based query on the descendants (e.g., “type”="‘“chocolate
candy”, “address”="“country X”) to get affected brands of chocolate candy in
country X. d) Use operator 4.1.6 (aggregation) to calculate the total worth.

Q2: How was the problematic batch of powdered milk produced, transported

and processed to make an affected brand of chocolate candy? Was the powdered
milk inspected both before and after exportation?
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S2: a) Find the problematic batch of powdered milk and the affected brand
of chocolate candy by content based queries. b) Relate the problematic batch
of powdered milk and the affected brand of chocolate candy by using operator
4.4.3 (reducing by record-id). ¢) In the structure graph obtained from the pre-
vious step, use operator 4.4.10 to check whether there exists a path matching
pattern (inspection)X*(exportation) X * (inspection).

Q3: There are two separate brands of chocolate candy that have received com-
plaints. Do they share some kind of similarity in their production processes?

S3: a) Find these two brands by content based queries. b) Find the ancestors of

each brand separately (operator 4.4.9). ¢) Compare the results obtained from
the previous step by, e.g., intersection of structure graphs.

5 System Architecture

Figure 7 shows the architecture of Butterfly.

Provenance-Aware Apps

Graphical User Interface

provenance Query Language | APIS
Provenance Definition Language

Content Based Query Operators
Structure Based Query Operators
Provenance Storage Operators

.NET LINQ Technology

SQL Server

Figure 7: Butterfly System Architecture Stack

The implementation is in the initial stage. We use Microsoft Language Inte-
grated Query (LINQ) and SQL Server as the underlying storage engine. Upon
that, we are building a set of operators for creating and manipulating prove-
nance data. Currently, we have not focused on operator optimization issues.
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6 Related Work

Data provenance, also called data lineage, describes how a piece of data was
obtained from its predecessor. Many projects in data provenance rose from the
domain of scientific computing and experiments. Survey paper [14] develops
taxonomy of provenance techniques to compare nine key provenance systems.
Survey paper [5] proposes a meta-model for architectures of lineage retrieval
systems. The Chimera project [7] proposes the idea of explicit representation of
computational procedures and their invocations in a virtual data catalog in the
Data Grid environment. In the myGrid project [13], semantically rich execu-
tion logs [16] are automatically produced during work-flow invocations. CMCS
[12] develops a meta-data infrastructure for chemical science where lineage re-
lationships between data entries can be visualized. Paper [4] proposes a lineage
meta-data model and associates meta-data to every constituent of a work-flow.
In database research area [6, 2, 3], the provenance problem focuses on locating
the source data items that produced or influenced the production of the result
data items, rather than the process of transformations that was applied to ob-
tain the result. Paper [10] names such type of provenance as input provenance.
Paper [2] and [3] use logging to store provenance information during execu-
tion of simple queries. More particularly, paper [2] logs the causal relationships
between output rows and source rows. Paper [3] tags every piece of data at
attribute level in the source tables with a unique identifier, propagates the iden-
tifiers along with the data they tagged during the query processing. There are
other ad hoc systems that apply the idea of storing and utilizing provenance
information for a variety of application specific needs [9, 15, 1]. Project PASOA
[8] attempts to provide a general provenance architecture that satisfies the need
of applications whose system architectures are service oriented.

7 Conclusion And Future Work

In this paper, we introduce Butterfly, a provenance management system. The
advantages of Butterfly are a) it is agnostic of domains. b) its semantic model
is flexible, and its algebraic query model is extensible and intuitive. These
make Butterfly a strong candidate for a general purpose management system
for provenance.

Future work can be categorized as follows:
e Richer semantic model elements of provenance
e Query operators optimization

e Provenance storage optimization

User interface design and system implementation

Novel provenance-driven applications
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