
WPI-CS-TR-08-14 October 2008

Well-behaved parsing
of extensible-syntax languages

by

John N. Shutt

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Well-behaved parsing

of extensible-syntax languages

John N. Shutt
jshutt@cs.wpi.edu

Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609

October 2008

Abstract

Some programming languages allow the programmer to extend the language
syntax; this language feature is called extensible syntax. In this paper, we use
formal mathematics to illuminate the general question of what kinds of syntax
extensions can be supported without introducing various forms of undesirable
parsing behavior into the language. We define a parser as a function that
maps each source string, finite set of CFG rules, and start symbol to a set of
syntax trees (usually, a null set or singleton set); and construct well-behavedness
criteria for parsers by considering how the behavior of a parser on one set of
rules relates to its behavior on other, slightly different sets of rules.

Among the results obtained are that there is a unique largest well-behaved
completeness property supporting a universal parser, and that whether an ar-
bitrary grammar satisfies this property is formally undecidable.

Contents

1 Introduction 1

2 Mathematical preliminaries 2

3 Syntax trees 3

4 Association 5

5 Parsers 6

ii

6 Properties 7

6.1 Well-behavedness . 7
6.2 Completeness . 8

7 Classes of grammars and parsers 10

8 Well-behaved completeness 14

9 Comments 20

References 21

List of Definitions

3.1 Universe U , symbols S, terminals ST , nonterminals SN 3
3.2 Constructor T :P(U) → P(SN × U∗) 3
3.3 Accessor lhs: ST ∪ (SN × U∗) → S

Accessor rhs: SN × U∗ → U∗ . 3
3.4 Function mapr: (U → U) × (SN × U∗) → U∗ 4
3.5 Rules R = T (S)

Grammars G = Pω(R) . 4
3.6 Syntax trees T , syntax trees of non-zero depth TN 4
3.7 Accessor fringe: T → S∗

T

Accessor rules: T → G

Accessor subtrees: T → P(TN) . 4
4.1 Associative closure constructor assoc: T → P(T) 6
5.1 Maximal parser f⊤: SN × G × S∗

T → P(TN)
Parsers F

Minimal parser f⊥ . 6
6.1 Set Z = F × G. 7
6.2 Function allows: Z → P(TN) . 7
6.3 Properties, P(Z) . 7
6.4 Property unambiguous, set ZU ⊂ Z 7
6.5 Property cumulative, set ZC ⊂ Z . 7
6.6 Property inductive, set ZI ⊂ Z . 8
6.8 Property well-behaved, set ZW = ZU ∩ ZC ∩ ZI 8
6.10 Property language-complete, set ZL ⊂ Z 8
6.11 Property association-complete, set ZA ⊂ Z 9
6.12 Property tree-complete, set ZT ⊂ Z 9
6.14 Intersection properties, sets ZWL, ZWA, ZWT ⊂ Z 9
7.1 Constructor G:P(Z) → P(G)

Constructor F :P(Z) → P(F) . 10

iii

8.1 Completeness property . 14
8.3 Well-behaved completeness property 14
8.7 Function rbase: TN → P(G) . 16
8.10 Property rulebase-complete, set ZR ⊂ Z 18

List of Theorems

4.2 Associative closure is symmetric . 6
4.3 Association preserves rules . 6
5.2 Extremal parsers . 7
6.7 Cumulativity is inherited . 8
6.9 Well-behavedness is inherited . 8
6.13 Ordering of some completeness properties 9
6.15 Some completeness properties are inherited 9
6.16 Some completeness properties are not inherited 10
7.2 Every grammar has a well-behaved parser 10
7.3 Every grammar has a well-behaved language-complete parser 11
7.4 There is a universally well-behaved parser 12
7.5 There is no universally well-behaved language-complete parser 12
7.6 Exactly the unambiguous grammars have well-behaved tree-complete

parsers . 12
7.7 Character of universally well-behaved tree-complete parsers 13
7.8 Character of grammars with well-behaved association-complete parsers 13
7.9 There exists a universally well-behaved association-complete parser . 13
8.2 Extremal completeness properties . 14
8.4 The maximal parser is x-complete . 15
8.5 Given well-behaved x-completeness, ≡x iff ≡L 15
8.6 Well-behaved x-completeness is inherited 15
8.8 Character of universally well-behaved x-complete parsers 16
8.9 Universally well-behaved complete parsing is inherited 18
8.11 ≡R is decidable . 19
8.12 Largest well-behaved completeness property with a universal parser . 19
8.13 G(ZWR) is undecidable . 19

iv

1 Introduction

Even though most programming languages have non-context-free syntax —in the
sense that the set of all statically valid, i.e. compilable, program texts cannot be
freely generated by a CFG (Context-Free Grammar)1— it is usual to present for
each language a CFG, describing a context-free superset of the language syntax.
CFGs appeal to the human sense of simple syntactic structure, by imposing syntax-
tree structure on every valid source string.2 We define a parser to be, abstractly,
a function that takes as input a start symbol, a set of CFG rules, and a source
string, and produces as output a set of syntax trees consistent with the given inputs.
The parser imposes non-context-free syntactic constraints of the language (such as
requiring identifiers to be declared, or possibly even enforcing a static type discipline)
by selectively omitting from its output some trees allowed by the input set of CFG
rules. The parser rejects a source string by returning the empty set; if the parser
returns more than one tree, the source string is ambiguous. (Ambiguous parsing is
not usually practiced by compilers, but is handled by some parsing algorithms, such
as Earley’s algorithm ([Ea70]).)

Usually, the programming language CFG is fixed by the language designer (who
typically optimizes it for efficient parsing rather than human readability, as in the
case of LR(k) grammars). The parser is then always given the same rule set and
start symbol, with only the source string varying between invocations. However,
some programming languages allow the programmer to extend the language syntax
by means of instructions within the program, a language feature called extensible

syntax. In this case, the parser will not always receive the same rule set, and it is
relevant to ask how its behavior varies as changes are made to the rule set. The current
paper proposes mathematical well-behavedness criteria for parsers over classes of rule
sets, and characterizes parsers that meet the criteria. The properties considered are
purely extensional: their definitions are independent of parsing algorithms, efficiency,
and even computability. Principal results proven are:

• There is no parser that is universally well-behaved and language-complete.
(Theorem 7.5.)

• There are parsers that are universally well-behaved and association-complete.
(Theorem 7.9.)

• There is a unique largest well-behaved completeness property that supports a
universal parser, property ZWR. (Theorem 8.12.)

1This is a common delineation of what constitutes syntax. However, when Donald Knuth devised
Attribute Grammars in the late 1960s, by his own account ([Kn90]), he differed from most of his peers
at the time in that he considered ALGOL to be a context-free language, consisting of a context-free
set of strings some of which had the semantics ‘uncompilable program’.

2The conceptual significance of CFGs is discussed in [Shu03, §§1.6–1.7].

1

• Whether an arbitrary grammar conforms to property ZWR is formally undecid-
able. (Theorem 8.13.)

§2 clarifies a few basic mathematical notations and terms used in the following
treatment. §§3–5 formally develop syntax trees and, building on them, parsers. §6
considers properties of parsers with respect to particular grammars. §§7–8 consider
behavior of parsers with respect to entire classes of grammars. §9 discusses implica-
tions of the results obtained.

Note: Non-Chomsky grammars

There are a variety of formalisms (grammar models) for describing program syntax
that provide tree structure but also incorporate non-context-free constraints. The
most common in general usage is Attribute Grammars; but there are also a wide
variety of adaptive grammar formalisms that allow the grammar to manipulate its own
rule set during parsing ([Shu03]). Attribute grammars are also used widely outside of
programming language analysis; and adaptive grammar formalisms, though usually
encountered in connection with extensible-syntax programming languages, are also
occasionally used elsewhere (a recent example being [OrCrAl07]), and some adaptive
grammar formalisms could in principle be applied as widely as attribute grammars.

These formalisms are not meant to be excluded, nor even discouraged, by our
choice in this paper to cast our analysis in terms of CFGs. We use CFGs because
we are studying the relation of parsing behavior to tree structure, and CFGs are
the abstract essence of logical tree structure. The non-context-free aspects of syntax
must exist for our analysis to be relevant, because they determine what behavior we
are relating to the tree structure. The formal results of this analysis have no direct
bearing on any assessment of the merits or demerits of any particular non-Chomsky
formalism for use in describing, or mechanically parsing, programs.

2 Mathematical preliminaries

For arbitrary set A, P(A) denotes the power set of A, the set of all subsets of A

(including A itself). P(A) = {B | B ⊆ A}. Pω(A) denotes the set of all finite subsets
of A.3

For arbitrary sets A and B, A − B denotes the set difference of A minus B, the
set of all elements of A that are not elements of B. A−B = {a | (a ∈ A)∧ (a 6∈ B)}.

For arbitrary sets A and B, A×B denotes the product of A and B, the set of all
pairs whose first element is from A and whose second element is from B. Pairs are
denoted 〈a, b〉 or (a, b). A × B = {〈a, b〉 | (a ∈ A) ∧ (b ∈ B)}.

For arbitrary set A, A∗ denotes the set of all strings over A, that is, all strings
whose elements belong to A. The number of elements in a string is its length. Strings

3Notation Pω(A) is borrowed from [We92, p. 47].

2

are understood to have finite length. A+ denotes the set of all non-empty strings over
A, that is, strings with non-zero length. A non-string object (such as an atom or pair)
may be coerced to a string of length one. Strings are usually named by Greek letters,
qualified by subscripts or primes as needed. Concatenation of strings is denoted by
juxtaposition, as ω = αβγ. The set of elements of a string ω is denoted

⋃

ω; thus,
for ω = x1x2 . . . xn,

⋃

ω = {xk | 1 ≤ k ≤ n}.
An entity that must be a set is named by a capital letter, and entities that must

belong to it are named by the corresponding lower-case letter, qualified as needed.
Each function has a fixed arity. If its arity is n ≥ 2, it may be treated interchange-

ably as a unary function whose input is an n-tuple (delimited by angle brackets, 〈〉).
For arbitrary functions f and g, f ⊆ g means that for all possible inputs u, g(u)
is defined iff f(u) is defined, and if they are defined then their results are sets with
f(u) ⊆ g(u). (We do not take the extensional view of functions, whereby a function
is a set of input/output pairs.)

3 Syntax trees

Definition 3.1 Set U is the universe. The following three subsets of U are each
countably infinite:

• Set S of symbols.

• Set ST ⊂ S of terminals.

• Set SN = S − ST of nonterminals.

The following function T will be used to construct both (CFG) rules and (syntax)
trees.

Definition 3.2 T :P(U) → P(SN × U∗)

where T (X) = SN × X∗ .

Accessor functions lhs and rhs return the left- and right-hand parts of a pair con-
structed by T , with the minor complication that, in the subsequent analysis, terminal
symbols will be considered syntax trees of depth zero; a terminal symbol is its own
left-hand side, and has no right-hand side.

Definition 3.3

lhs: ST ∪ (SN × U∗) → S

where lhs(x) =

{

n if x = 〈n, ω〉

x otherwise .
(1)

rhs: SN × U∗ → U∗

where rhs(〈n, ω〉) = ω . (2)

3

The following function mapr applies a function f to each of the components of the
rhs of a construct, and returns the concatenated results.

Definition 3.4

mapr: (U → U) × (SN × U∗) → U∗

where mapr(f, 〈n, u1u2u3 · · ·uk〉) = f(u1)f(u2)f(u3) · · ·f(uk) .

It is now easy to construct rules and grammars. (Here the unadorned word grammar

will always mean unpointed grammar, that is, a set of rules with no designated start
symbol.)

Definition 3.5

Set R = T (S) of rules.
Set G = Pω(R) of grammars.

Trees are only slightly more involved.

Definition 3.6

Sets T0 = ST

∀k ≥ 1, Tk = Tk−1 ∪ T (Tk−1).
(3)

Set T =
⋃

k≥0

Tk of trees. (4)

Set TN = T − T0. (5)

Note that Tk is the set of all trees of depth ≤ k.
Functions fringe, rules, and subtrees map a tree into, respectively, the sentence

that it derives, the set of rules that it uses in doing so, and the set of its proper
subtrees.

Definition 3.7

fringe: T → S∗
T

where ∀t ∈ T0, fringe(t) = t

∀t ∈ TN , fringe(t) = mapr(fringe, t) .
(6)

rules: T → G

where ∀t ∈ T0, rules(t) = {}
∀t ∈ TN , rules(t) = {〈lhs(t),mapr(lhs, t)〉}

∪
⋃ ⋃

mapr(rules, t) .
(7)

subtrees: T → P(TN)

where ∀t ∈ T0, subtrees(t) = {}

∀t ∈ TN , subtrees(t) = (TN ∩
⋃

rhs(t))

∪
⋃ ⋃

mapr(subtrees, t) .

(8)

4

n
�

�
��

A
A
A

α n
B
B
BB

J
J

JJ

�
�

�
n γ

E
E
EE

�
�
��
β

@@
��

n
B
B
BB

J
J
JJ

�
�

�
γn

�
�

��

A
A
A
nα
E
E
EE

�
�
��
β

Figure 1: Left-association.

4 Association

The structural transformation of a tree shown in Figure 1 is called left association.
The inverse transformation is called right association. The associative closure of a
tree t is the set of all other trees that can be formed by a finite number of left or right
associative transformations, either to t itself or to any of its subtrees.

Associative closure is a little too complicated to define formally in one stroke, so
several incidental functions will be defined first. First, function la performs the left
associative transformation illustrated in the figure, mapping a tree t into the singleton
set containing its left association if possible, or into the empty set if t is not of the
correct form.

• la: T → P(T)

where la(t) = {τ ∈ T | ∃n ∈ SN and α, β, γ ∈ T ∗ such that
t = 〈n, α〈n, 〈n, β〉γ〉〉 and
τ = 〈n, 〈n, α〈n, β〉〉γ〉} .

(9)

Function a0 maps a tree t into the set of all trees that can be reached from t by left or
right association in not more than one step. Note that a0(t) must be a set of either
one, two, or three elements.

• a0: T → P(T)

where a0(t) = {t} ∪ la(t) ∪ {τ | t ∈ la(τ)} . (10)

Function a1 is the basis for the inductive construction of associative closure. It maps
a tree t into the set of trees that can be reached from t by applying left or right
association, at most once, either to t or to one of its subtrees.

5

• a1: T → P(T)

where ∀t ∈ T0, a1(t) = {t}
∀t ∈ TN , a1(t) = a0(t) ∪ {〈n, ατ ′β〉 | t = 〈n, ατβ〉 and

τ ′ ∈ a1(τ)} .
(11)

• ∀k ≥ 2, ak: T → P(T)

where ak(t) =
⋃

τ∈ak−1(t)

a1(τ) . (12)

Finally, assoc maps a tree into its associative closure.

Definition 4.1

assoc: T → P(T)

where assoc(t) =
⋃

k≥1

ak(t) .

Theorem 4.2 If τ ∈ assoc(t) then assoc(τ) = assoc(t).

Proof. Follows immediately from the definition of associative closure.

Theorem 4.3 If τ ∈ assoc(t) then rules(τ) = rules(t).

Proof. Left association preserves the value of rules. The desired result follows
by induction.

5 Parsers

A parser maps a nonterminal n, grammar g, and terminal string w into a set of trees
that use rules of g to derive w from n.

Formally, we define first the maximal parser f⊤, which returns the set of all syntax
trees formally consistent with the inputs; then a parser in general must return a subset
of what f⊤ would return. The minimal parser, f⊥, always returns the empty set.

Definition 5.1

Maximal parser f⊤: SN × G × S∗
T → P(TN)

where f⊤(n, g, w) = {t ∈ T | lhs(t) = n and
rules(t) ⊆ g and
fringe(t) = w} .

(13)

6

Set F of all parsers F = {f | f ⊆ f⊤}. (14)

Minimal (or, empty) parser f⊥ ∈ F

where f⊥(n, g, w) = {} . (15)

Theorem 5.2 If f ∈ F , then f⊥ ⊆ f ⊆ f⊤.

Proof. Follows immediately from the definitions of f⊤, F , and f⊥.

6 Properties

Most of our analysis will concern properties of a parser relative to a grammar. To
facilitate this treatment, we define the following set Z.

Definition 6.1 Set Z = F × G.

The following function allows maps a pair (f, g) ∈ Z into the set of all trees that
can be generated by f given g.

Definition 6.2

allows: Z → P(TN)

where allows(f, g) =
⋃

n∈SN, w∈S∗

T

f(n, g, w) .

It is now possible to define properties of parsers relative to grammars by constructing
subsets of Z.

Definition 6.3 A subset of Z is a property (of parsers relative to grammars).

Pairs considered as members of a property are usually denoted using parentheses
rather than angle brackets, to distinguish them visually from trees and rules; thus,
(f, g) ∈ Z, 〈n, ω〉 ∈ TN .

6.1 Well-behavedness

A parser f is unambiguous on a grammar g iff f given g generates at most one tree
for any n and w.

Definition 6.4

Set ZU = {(f, g) ∈ Z | ∀n ∈ SN and w ∈ S∗
T , |f(n, g, w)| ≤ 1}.

f is cumulative on g iff whether a tree t is allowed depends only on rules used by t.

7

Definition 6.5

Set ZC = {(f, g) ∈ Z | ∀t ∈ T and h ∈ G such that rules(t) ⊆ h ⊆ g,

t ∈ allows(f, g) ⇔ t ∈ allows(f, h)}.

f is inductive on g iff, whenever a tree t is allowed, all of its subtrees are also allowed.

Definition 6.6

Set ZI = {z ∈ Z | ∀t ∈ allows(z), subtrees(t) ⊂ allows(z)}.

Theorem 6.7 Suppose (f, g) ∈ ZC , and h ⊆ g. Then the following all hold.
(f, h) ∈ ZC .
If (f, g) ∈ ZU then (f, h) ∈ ZU .
If (f, g) ∈ ZI then (f, h) ∈ ZI .

Proof. Suppose f is cumulative on g, and h ⊆ g. Suppose t ∈ T and h′ ∈ G

such that rules(t) ⊆ h′ ⊆ h. Since rules(t) ⊆ h ⊆ g and f is cumulative on g,
t ∈ allows(f, g) iff t ∈ allows(f, h). Since rules(t) ⊆ h′ ⊆ g and f is cumulative on g,
t ∈ allows(f, g) iff t ∈ allows(f, h′). Therefore, t ∈ allows(f, h) iff t ∈ allows(f, h′).
Therefore, f is cumulative on h.

Suppose f is cumulative and unambiguous on g, and h ⊆ g. Suppose n ∈ SN and
w ∈ S∗

T . Because f is cumulative on g, f(n, h, w) ⊆ f(n, g, w). But f unambiguous
on g implies |f(n, g, w)| ≤ 1, therefore |f(n, h, w)| ≤ 1. So f is unambiguous on h.

Suppose f is cumulative and inductive on g, h ⊆ g, t ∈ allows(f, h), and τ ∈
subtrees(t). Since f is cumulative on g, t ∈ allows(f, g). Since f is inductive on
g, τ ∈ allows(f, g); and since rules(t) ⊆ h, rules(τ) ⊆ h; therefore, since f is
cumulative on g, τ ∈ allows(f, h). So f is inductive on h.

f is well-behaved on g iff f is unambiguous, cumulative, and inductive on g.

Definition 6.8

Set ZW = ZU ∩ ZC ∩ ZI .

Theorem 6.9 If (f, g) ∈ ZW and h ⊆ g, then (f, h) ∈ ZW .

Proof. Follows immediately from Theorem 6.7.

6.2 Completeness

The next several properties are various forms of completeness, meaning they guaran-
tee that certain kinds of trees are allowed. The weakest such property is language-

completeness : f is language-complete on g if, for every n ∈ SN and w ∈ S∗
T , f(n, g, w)

is nonempty iff f⊤(n, g, w) is nonempty.

8

Definition 6.10

Set ZL = {(f, g) ∈ Z | ∀t ∈ allows(f⊤, g) ∃τ ∈ allows(f, g) such that
lhs(τ) = lhs(t) and fringe(τ) = fringe(t)}.

f is association-complete on g if, for every tree t allowed by f⊤, there is a tree in
assoc(t) allowed by f .

Definition 6.11

Set ZA = {(f, g) ∈ Z | ∀t ∈ allows(f⊤, g) ∃τ ∈ allows(f, g) such that
τ ∈ assoc(t)}.

f is tree-complete on g if every tree (using g) allowed by f⊤ is allowed by f .

Definition 6.12

Set ZT = {(f, g) ∈ Z | allows(f, g) = allows(f⊤, g)}.

Note that f⊤ is tree-complete on every g ∈ G.

Theorem 6.13 ZT ⊂ ZA ⊂ ZL.

Proof. From the definitions, it is immediate that z ∈ ZA implies z ∈ ZL, and
z ∈ ZT implies z ∈ ZA. So ZT ⊆ ZA ⊆ ZL.

Since there are trees t such that assoc(t) has more than one element, there exist
z ∈ ZA − ZT , hence ZT ⊂ ZA.

There exist trees t, τ that derive the same sentence from the same nontermi-
nal, but τ 6∈ assoc(t); let g = rules(t) ∪ rules(τ). In order for a parser to be
association-complete on g, it must allow representatives of the disjoint equivalence
classes assoc(t) and assoc(τ); but it can still be language-complete without allowing
both. So there exist z ∈ ZL − ZA, hence ZA ⊂ ZL.

It is particularly of interest to consider various forms of completeness in combina-
tion with well-behavedness.

Definition 6.14

Set ZWL = ZW ∩ ZL.

Set ZWA = ZW ∩ ZA.

Set ZWT = ZW ∩ ZT .

Theorem 6.15 Suppose (f, g) ∈ ZW , and h ⊆ g. Then the following both hold.

If (f, g) ∈ ZT then (f, h) ∈ ZT .

If (f, g) ∈ ZA then (f, h) ∈ ZA.

9

Proof. Suppose f is well-behaved and tree-complete on g, and h ⊆ g. Suppose
t ∈ allows(f⊤, h). Then t ∈ allows(f⊤, g), and since f is tree-complete on g, t ∈
allows(f, g). But f is cumulative on g, ergo t ∈ allows(f, h). So f is tree-complete
on h.

Suppose f is well-behaved and association-complete on g, and h ⊆ g. Suppose
t ∈ allows(f⊤, h). Then t ∈ allows(f⊤, g), and since f is association-complete on
g, ∃τ ∈ allows(f, g) such that τ ∈ assoc(t). By Theorem 4.3, rules(t) = rules(τ);
hence, rules(τ) ⊆ h ⊆ g. Since f is cumulative on g, τ ∈ allows(f, g) implies
τ ∈ allows(f, h). So f is association-complete on h.

However, the above theorem does not generalize to language-completeness.

Theorem 6.16 There exist (f, g) ∈ ZWL and h ⊆ g such that (f, h) ∈ ZW − ZL.

Proof. Let n1, n2 ∈ SN be nonterminals; w ∈ S∗
T be a terminal string; r1, r2, r3 ∈

R be rules r1 = 〈n1, w〉, r2 = 〈n2, w〉; r3 = 〈n1, n2〉; and t1, t2, t3 ∈ TN be trees
t1 = r1, t2 = r2, t3 = 〈n1, t2〉. Let g = {r1, r2, r3}.

Let f ∈ F such that allows(f, g) = {t2, t3}, and f is cumulative on g. Since f

is unambiguous and inductive on g, f is well-behaved on g. Since allows(f⊤, g) =
{t1, t2, t3}, and t1 has the same rhs and fringe as t3, f is language-complete on g.
However, allows(f, {r1, r2}) = {t2}, while allows(f⊤, {r1, r2}) = {t1, t2}; so f is not
language-complete on {r1, r2}.

7 Classes of grammars and parsers

So far, we have dealt with properties, i.e., classes of (f, g) pairs. Now we will use
these properties to construct classes of parsers, and classes of grammars.

Definition 7.1

G:P(Z) → P(G)

where G(X) = {g ∈ G | ∃f ∈ F such that (f, g) ∈ X} . (16)

F :P(Z) → P(F)

where F(X) = {f ∈ F | ∀g ∈ G(X), (f, g) ∈ X} . (17)

Note that G uses a weak criterion, while F uses a strong one. g ∈ G(X) means only
that X pairs grammar g with some parser; but f ∈ F(X) means that X pairs parser
f with every grammar in G(X). f is then said to be universal for X.

Theorem 7.2 G(ZW) = G.

10

That is, every grammar has a well-behaved parser.

Proof. By definition, G(ZW) ⊆ G. It remains to show that G ⊆ G(ZW).
Suppose g ∈ G. The empty parser, f⊥, is unambiguous on every grammar; cumu-

lative on every grammar; and inductive on every grammar. Therefore, (f⊥, g) ∈ ZW .
So G(ZW) = G.

Theorem 7.3 G(ZWL) = G.

That is, every grammar has a well-behaved language-complete parser.

Proof. By definition, G(ZWL) ⊆ G. It remains to show that G ⊆ G(ZWL).
Suppose g ∈ G. We will construct a parser f that is well-behaved and language-

complete on g.
Impose an ordering on the set TN of nonterminal trees; this is possible because

TN is countably infinite. Let X ⊂ TN be the set of trees enumerated as follows.

Enumerate all trees in allows(f⊤, g) ∩ T1.
For k := 2 to +∞ do

For t ∈ allows(f⊤, g) ∩ (Tk − Tk−1) do
(18)

If all subtrees of t have been enumerated, then
If no previously enumerated tree derives fringe(t) from lhs(t), then

Enumerate t.

Let f be the following parser.

f(u) = X ∩ f⊤(u) (19)

By construction, f is cumulative on g. By construction of X, f is unambiguous and
inductive on g. Hence, f is well-behaved on g. (In fact it is well-behaved on G, i.e.
on all grammars.)

Suppose n ∈ SN , w ∈ S∗
T , and t ∈ T such that t ∈ f⊤(n, g, w). It will be shown

that ∃τ ∈ f(n, g, w). Proceed by induction on the depth of t.
Base case. Suppose t ∈ T1. Then since t ∈ allows(f⊤, g), t ∈ X.
Inductive step. Suppose k ≥ 2, t ∈ Tk − Tk−1, and the proposition holds for all

trees in Tk−1. Let t = 〈n, w0t1w1t2 · · · tjwj〉, where the wi are terminal strings and the
ti are nonterminal trees. Each ti has depth at most k−1, so by inductive hypothesis,
there exists a tree τi ∈ X that derives the same sentence from the same nonterminal as
ti does. Let t′ = 〈n, w0τ1w1τ2 · · · τjwj〉. Then t′ ∈ f⊤(n, g, w). Since t′ ∈ allows(f⊤, g)
and subtrees(t′) ⊆ X, the only reason why t′ might not be enumerated in X is that
some other tree of w from n is enumerated before t′ is considered. Either way, some
tree of w from n is enumerated. Hence f is language-complete on g.

(Although the theorem does not require f to be computable, in fact it is: it
is decidable whether f⊤(n, g, w) is nonempty (membership in a CFL); and if it is
nonempty, the enumeration can be used to find t ∈ f(n, g, w) in finite time.)

11

Note that the above theorem holds for language-completeness, but not for assoc-
iation-completeness or tree-completeness. Contrast this with Theorem 6.15, which
holds for association-completeness and tree-completeness, but not for language-com-
pleteness.

Theorem 7.4 F(ZW) 6= {}.

That is, there exists a universally well-behaved parser.

Proof. As noted earlier (in the proof of Theorem 7.2), the empty parser f⊥ is
well-behaved on all grammars. Thus, f⊥ ∈ F(ZW).

Theorem 7.5 F(ZWL) = {}.

That is, no parser is universally well-behaved language-complete: for every parser f ,
there exists a grammar g such that some parser is well-behaved language-complete
on g, but f isn’t.

Proof. Suppose f is cumulative and language-complete on all grammars. Let
n, n1, n2 ∈ SN be nonterminals, and w ∈ S∗

T a terminal string. Consider the following
grammars.

g1 = {〈n, n1〉, 〈n1, w〉}

g2 = {〈n, n2〉, 〈n2, w〉}

g = g1 ∪ g2

(20)

Since f is language-complete on all grammars, it is language-complete on g1 and
g2. Therefore, 〈n, 〈n1, w〉〉 ∈ allows(f, g1) and 〈n, 〈n2, w〉〉 ∈ allows(f, g2). Since
f is cumulative on all grammars, it is cumulative on g. Therefore, 〈n, 〈n1, w〉〉 ∈
allows(f, g) and 〈n, 〈n2, w〉〉 ∈ allows(f, g). But then f is ambiguous on g, so f 6∈
F(ZWL).

It has been shown that the condition of well-behaved language-completeness is
a kind of degenerate case: it admits all grammars, and no parsers. The next two
theorems show that well-behaved tree-completeness is degenerate in somewhat the
opposite sense: it admits exactly all unambiguous grammars, and exactly the parsers
that mimic f⊤ on all unambiguous grammars.

Theorem 7.6 G(ZWT) = {g ∈ G | (f⊤, g) ∈ ZU}.

Proof. f⊤ is cumulative, inductive, and tree-complete on all grammars, by the
definitions of those properties. So for all g ∈ G, (f⊤, g) ∈ ZWT iff (f⊤, g) ∈ ZU . It
remains to show that g ∈ G(ZWT) implies (f⊤, g) ∈ ZWT ; that is to say, f⊤ ∈ F(ZWT).

12

Suppose g ∈ G(ZWT). Then there exists f such that (f, g) ∈ ZWT . Since f is
tree-complete on g, allows(f, g) = allows(f⊤, g); but then, since f is unambiguous
on g, f⊤ is unambiguous on g. So (f⊤, g) ∈ ZWT

Theorem 7.7 F(ZWT) = {f ∈ F | ∀g ∈ G(ZWT),
allows(f, g) = allows(f⊤, g)}.

Proof. The theorem says that f ∈ F is well-behaved and tree-complete on
G(ZWT) iff it is tree-complete on that set. Implication left-to-right is trivial; right-to-
left remains to be shown. Suppose f is tree-complete on G(ZWT), and g ∈ G(ZWT).

Then allows(f, g) = allows(f⊤, g). Therefore, since f⊤ is unambiguous on g, so
is f ; and since f⊤ is inductive on g, so is f .

Since f⊤ is well-behaved on g, by Theorem 6.9 it is unambiguous on all subsets of
g, so by Theorem 7.6, all these subsets are in G(ZWT). Hence, f is tree-complete on
all subsets of g. Therefore, f is cumulative on g.

While ZWL and ZWT are somewhat degenerate, ZWA is not, as the following
theorems show. It admits exactly those grammars that are unambiguous except for
association, and admits parsers that may behave differently on such grammars.

Theorem 7.8 G(ZWA) = {g ∈ G | ∀t ∈ allows(f⊤, g),
f⊤(lhs(t), g, fringe(t)) = assoc(t)}.

Proof. Suppose g ∈ G(ZWA) and t ∈ allows(f⊤, g). Let n = lhs(t) and w =
fringe(t). By Theorem 4.3, assoc(t) ⊆ f⊤(n, g, w). Since g ∈ G(ZWA), there exists
f such that (f, g) ∈ ZWA. Since f is association-complete on g, there exists τ ∈
assoc(t)∩ f(n, g, w). Since f is unambiguous on g, f(n, g, w) = {τ}. Since, again, f

is association-complete on g, f⊤(n, g, w) ⊆ assoc(τ). By Theorem 4.2, assoc(τ) =
assoc(t); so f⊤(n, g, w) = assoc(t).

On the other hand, suppose g ∈ G, and for all t ∈ allows(f⊤, g), f⊤(lhs(t),
g, fringe(t)) = assoc(t). Let fright be the unique parser that behaves just as f⊤ except
that from each assoc equivalence class it allows only the tree that is grouped strictly
to the right. fright is cumulative (Theorem 4.3), inductive, and association-complete
on all grammars. Suppose t ∈ allows(f⊤, g); then f⊤(lhs(t), g, fringe(t)) = assoc(t),
and |fright(lhs(t), g, fringe(t))| = 1. So fright is unambiguous on g.

Theorem 7.9 F(ZWA) 6= {}. Moreover, there exist f1, f2 ∈ F(ZWA) and g ∈
G(ZWA) such that allows(f1, g) 6= allows(f2, g).

Proof. It was shown incidentally, in the second half of the proof of Theorem 7.8,
that the right-associating parser fright ∈ F(ZWA). By a similar argument, the left-
associating parser fleft ∈ F(ZWA). Let g ∈ G be any grammar that has associative

13

ambiguity, but is otherwise unambiguous; then g ∈ G(ZWA), but allows(fright , g) 6=
allows(fleft , g).

The parsers fleft and fright resolve associative ambiguity in a way that gives all
operators (= grammar rules) equal precedence, and groups all classes of operators (=
nonterminals) in the same direction. Other parsers in F(ZWA) can be constructed in
which not all operators have the same precedence, and/or not all classes of operators
group in the same direction. In this way, an infinity of parsers can be constructed in
F(ZWA) such that no two of them behave exactly the same way on all grammars in
G(ZWA).

8 Well-behaved completeness

On examining Theorems 7.5, 7.7, and 7.9, the question arises,

What is the weakest completeness property Zweak such that F(ZW ∩ Zweak) 6= {} ?

That is, what is the weakest completeness property for which there is a universally
well-behaved-complete parser?

To address this question, we must first provide a more formal definition of what
constitutes a “completeness” property.

Definition 8.1 Let ≡L be the following equivalence on TN .

≡L = {(t, τ) ∈ TN × TN | lhs(t) = lhs(τ) and
fringe(t) = fringe(τ)}

(21)

A set Zx ⊆ Z is a completeness property iff there exists an equivalence ≡x ⊆ ≡L on
TN such that

Zx = {(f, g) ∈ Z | ∀t ∈ allows(f⊤, g) ∃τ ∈ allows(f, g)
such that t ≡x τ}

(22)

The equivalence ≡x is said to generate Zx.

The completeness properties defined in §6.2 all satisfy this definition. Moreover, the
following generalization of Theorem 6.13 verifies that language-completeness is the
weakest completeness property, and tree-completeness the strongest.

Theorem 8.2 If Zx is a completeness property, then ZT ⊆ Zx ⊆ ZL.

Proof. Let ≡x be an equivalence that generates Zx. ZL is generated by ≡L, as
defined above. ZT is generated by the equality relation on TN ; call this ≡T . The
definition of completeness property guarantees that ≡x ⊆ ≡L, and the reflexive law
guarantees that ≡T ⊆ ≡x. Therefore, ZT ⊆ Zx ⊆ ZL.

14

Definition 8.3 A set ZWx ⊆ Z is a well-behaved completeness property iff ZWx =
ZW ∩ Zx for some completeness property Zx. Any equivalence ≡x that generates
Zx is also said to generate ZWx.

Hereafter we will always prefer ZWx as a shorthand for ZW ∩ Zx.
The question can now be stated more precisely.

For which completeness properties does F(ZWx) = {}, and for which does F(ZWx) 6=
{} ? In particular, is there a completeness property Zx such that for all completeness

properties Zy, F(ZWy) 6= {} iff Zy ⊆ Zx ?

Recall that the weakest completeness property, ZL, has no universal parser, while
stronger properties ZA and ZT do have universal parsers. As equivalence ≡x grows
stronger (with fewer equivalent pairs 〈t, τ〉), completeness property Zx requires the
parser to admit more trees. For a parser to admit these larger numbers of trees, and
yet still be unambiguous on grammar g, g must not support more than one such tree;
so there are a decreasing number of grammars in G(ZWx). This makes the task of a
universal parser easier, since it only has to achieve well-behaved completeness across
a smaller set of grammars.

Theorem 8.4 If Zx is a completeness property, then f⊤ ∈ F(Zx).

Proof. Follows immediately from the definition of completeness property.

Theorem 8.5 If Zx is a completeness property generated by ≡x, g ∈ G(ZWx),
and t, τ ∈ allows(f⊤, g), then t ≡L τ iff t ≡x τ .

Proof. By the definition of completeness property, ≡x ⊆≡L. On the other hand,
suppose t ≡L τ . Since g ∈ G(ZWx), there exists (f, g) ∈ ZWx. Since f is x-complete
on g, allows(f, g) must have some τ ′ ≡x τ and some t′ ≡x t. Since f is unambiguous
on g, τ ′ = t′. Therefore, τ ≡x t.

The following result is based on a generalization of the proof of Theorem 7.3.

Theorem 8.6 If Zx is a completeness property, g ∈ G(ZWx), and h ⊆ g, then
h ∈ G(ZWx).

Proof. Suppose Zx is a completeness property, g ∈ G(ZWx), and h ⊆ g. Let
≡x be an equivalence that generates Zx. We will construct a parser f such that
(f, h) ∈ ZWx.

Impose an ordering on the set TN of nonterminal trees; this is possible because
TN is countably infinite. Let X ⊂ TN be the set of trees enumerated as follows.

15

Enumerate all trees in allows(f⊤, h) ∩ T1.
For k := 2 to +∞ do

For t ∈ allows(f⊤, h) ∩ (Tk − Tk−1) do
(23)

If all subtrees of t have been enumerated, then
If no previously enumerated tree is ≡L to t, then

Enumerate t.

Let f be the following parser.

f(u) = X ∩ f⊤(u) (24)

By construction, f is cumulative on h. By construction of X, f is unambiguous and
inductive on h. Hence, f is well-behaved on h.

Suppose n ∈ SN , w ∈ S∗
T , and t ∈ T such that t ∈ f⊤(n, h, w). It will be shown

that ∃τ ∈ f(n, h, w) with τ ≡x t. Proceed by induction on the depth of t.
Base case. Suppose t ∈ T1. Then since t ∈ allows(f⊤, h), t ∈ X.
Inductive step. Suppose k ≥ 2, t ∈ Tk − Tk−1, and the proposition holds for

all trees in Tk−1. Let t = 〈n, w0t1w1t2 · · · tjwj〉, where the wi are terminal strings,
and the ti are trees. Each ti has depth at most k − 1, so by inductive hypothesis,
there exists a tree τi ∈ X such that τi ≡x ti. Let t′ = 〈n, w0τ1w1τ2 · · · τjwj〉. Then
t′ ∈ f⊤(n, h, w), and t′ ≡L t. Since t′ ∈ allows(f⊤, h) and subtrees(t′) ⊆ X, the
only reason why t′ might not be enumerated in X is that some other tree ≡L to t′ is
enumerated before t′ is considered. Either way, some tree τ ≡L t is enumerated. By
Theorem 8.5, τ ≡x t. So (f, h) ∈ Zx.

To simplify the statement of subsequent results, we introduce the notion of the
rule base of a tree t, which is the set of all minimal subsets of rules(t) needed to
construct trees ≡L to t. That is, out of all the subsets of rules(t), take just the ones
that can be used to construct trees ≡L to t; and then out of those subsets, take just
the ones that have no proper subset with that property.

Definition 8.7

rbase: TN → P(G)

where rbase(t) = min{rules(τ) | τ ≡L t and rules(τ) ⊆ rules(t)} .

For example, consider nonterminals n, n′ ∈ SN ; nonempty terminal string w ∈
S+

T ; rules r1 = 〈n, nn〉 r2 = 〈n, n′〉, r3 = 〈n, w〉, r4 = 〈n′, w〉; and tree t =
〈n, 〈n, w〉〈n, 〈n′, w〉〉〉. rules(t) = {r1, r2, r3, r4}; but tree t1 = 〈n, 〈n, w〉, 〈n, w〉〉 is
≡L t with rules(t1) = {r1, r3}, and tree t2 = 〈n, 〈n, 〈n′, w〉〉, 〈n, 〈n′, w〉〉〉 is ≡L t

with rules(t2) = {r1, r2, r4}. Further, these are the only proper subsets of rules(t)
that can be used to construct a tree ≡L t. So rbase(t1) = {{r1, r3}}; rbase(t2) =
{{r1, r2, r4}}; and rbase(t) = {{r1, r3}, {r1, r2, r4}}.

So far, the only proven result of the form F(ZWx) = {} is Theorem 7.5. The
technique used to prove that theorem suggests the following result.

16

Theorem 8.8 Suppose Zx is a completeness property. Then F(ZWx) 6= {} iff
∀g ∈ G(ZWx) and t ∈ allows(f⊤, g), both of the following hold.

|rbase(t)| = 1; and
∀τ ≡L t, if τ ∈ allows(f⊤, g) then rbase(τ) = rbase(t).

In words: there exists a universally well-behaved x-complete parser iff, for every gram-
mar g that has a well-behaved x-complete parser, and every tree t over g, (1) there
is only one set of rules in the rule base of t, and (2) all trees over g that are ≡L to
t have that same rule base. To see where these criteria come from: For every set h

in the rule base of any allowed τ ≡L t, let τ ′ ≡L t be some tree that uses exactly
h. (Some such τ ′ must exist, by the definition of rule base.) A ZWx-universal parser
must be x-complete on h, so it must allow on h some τ ′′ ≡x τ ′. Since this parser is
cumulative on g, it must retain on g all such trees τ ′′; and since the number of trees
τ ′′ equals the number of sets h in the rule bases of the ≡L-class on g of t, unambiguity
requires that there is only one such set, i.e., all trees in the ≡L-class on g have the
same singleton rule base.

Proof. Suppose Zx is a completeness property generated by ≡x.
Suppose f ∈ F(ZWx), g ∈ G(ZWx), and t ∈ allows(f⊤, g). By the definition of

completeness property, ∃t′ ∈ allows(f, g) such that t′ ≡x t. It will be shown that
∀τ ≡L t with rules(τ) ⊆ g, rules(t′) ⊆ rules(τ). Suppose τ ≡L t, rules(τ) ⊆ g,
and r ∈ rules(t′) − rules(τ). Let g′ = g − {r}. By Theorem 8.6, g′ ∈ G(ZWx);
and f ∈ F(ZWx), therefore (f, g′) ∈ ZWx. But then, since τ ∈ allows(f⊤, g′), there
must be some τ ′ ∈ allows(f, g′) such that τ ′ ≡x τ . And since f is cumulative on g,
τ ′ ∈ allows(f, g). But if t′ and τ ′ are both in allows(f, g), then f is ambiguous on g,
which is a contradiction. Therefore there cannot exist any r ∈ rules(t′) − rules(τ).
This proves the first half of the theorem (left-to-right implication).

On the other hand, suppose that ∀g ∈ G(ZWx) and t ∈ allows(f⊤, g), |rbase(t)| =
1 and ∀τ ≡L t if τ ∈ allows(f⊤, g) then rbase(τ) = rbase(t). We will construct a
parser f ∈ F(ZWx).

Impose an ordering on the set TN of all trees; this is possible because TN is
countably infinite. Let s: TN → TN be the following partial function.

s(t) = the earliest t′ in the ordering such that
t′ ≡L t

∀τ ≡L t if rules(τ) ⊆ rules(t) then rules(t′) ⊆ rules(τ)
∀τ ∈ subtrees(t′), s(τ) = τ .

(25)

This is a non-circular definition of s(t), because the recursion checks only proper sub-
trees of t′, which are strictly smaller than t′. (In fact, although we do not require s(t)
to be computable, it is; the key to computing it is that, without actually enumerating
the possibly-infinite set of all trees ≡L t on given subset of g, one can decide whether
any such trees exist, because this is just the membership problem for a CFL.)

It will be shown that s(t) is defined for all trees t such that ∃g ∈ G(ZWx) with
t ∈ allows(f⊤, g). Proceed by induction on the depth of t.

17

Base case. Suppose t ∈ T1. Then t has no subtrees. rules(t) = {t}, so the only
τ ≡x t with rules(τ) ⊆ rules(t) is τ = t. So s(t) = t.

Inductive step. Suppose k ≥ 2, t ∈ (Tk − Tk−1) ∩ allows(f⊤, g) for some g ∈
G(ZWx), and the proposition holds for trees in Tk−1. By supposition, |rbase(t)| = 1
and ∀τ ≡L t if τ ∈ allows(f⊤, g) then rbase(τ) = rbase(t). Since |rbase(t)| = 1,
there exists a tree t′ ≡L t with rbase(t) = {rules(t′)}. Let t′ = 〈n, w0t

′
1w1t

′
2 · · · t

′
jwj〉,

where the wi are terminal strings and the t′i are nonterminal trees. Each t′i ∈ Tk−1 ∩
allows(f⊤, g), so by inductive hypothesis, s(t′i) exists. Let t′′ = 〈n, w0 s(t′1) w1 s(t′2) · · ·
s(t′j) wj〉. Then t′′ ≡L t. By supposition, rules(s(t′i)) ⊆ rules(t′i); and they both use
the same top-level rule; therefore, rules(t′′) ⊆ rules(t′). Also, t′ was chosen so that
t′′ ≡L t implies rules(t′) ⊆ rules(t′′); therefore, rules(t′′) = rules(t′). So t′′ is a tree
satisfying the candidate criteria for s(t), and the only reason for it not be chosen as
s(t) is that some other candidate was enumerated first. Either way, s(t) is defined.

Let f be the following parser.

f(u) = {t ∈ T | s(t) = t} ∩ f⊤(u) . (26)

By construction, f is cumulative on G. By construction of s, f is inductive on G.
Suppose g ∈ G(ZWx) and t ∈ allows(f⊤, g). Then s(t) is defined. Further suppose
τ ≡L t and rules(τ) ⊆ g. By the definition of s, s(τ) = s(t). By Theorem 8.5,
τ ≡x t. By construction of f , s(τ) = s(t) guarantees that (f, g) is unambiguous, and
τ ≡x t guarantees that (f, g) is x-complete. So f ∈ F(ZWx).

Theorem 8.9 Suppose Zx and Zy are completeness properties. If ZWx ⊆ ZWy

and F(ZWy) 6= {}, then F(ZWx) 6= {}.

Proof. Follows immediately from the definition of F .

Theorem 8.8 implies that in order to maximize G(ZWx) without nullifying
F(ZWx), trees t, τ with rule base of size 1 must be ≡x exactly when they are ≡L

and rbase(t) = rbase(τ). Moreover, the equivalence classes of trees with larger
rule bases don’t matter, because grammars that support such trees are excluded from
G(ZWx).

There is no largest equivalence satisfying these conditions. To see why, suppose
t1 ≡L t2 have different rule bases of size one, so that the conditions require t1 6≡x t2,
and τ ≡L t1 has a larger rule base. Then, without violating the conditions, ≡x can
be chosen so that τ ≡x t1, and another ≡y can satisfy the conditions with τ ≡y t2;
but any equivalence ≡z that contains both, (≡x ∪ ≡y) ⊆ ≡z , must have t1 ≡z t2,
violating the conditions.

So there is no largest completeness property Zx such that F(ZWx) 6= {}. However,
since the trees with large rule bases are exactly the ones that are excluded by all
ZWx, there is a unique largest ZWx such that F(ZWx) 6= {}, and there is a decidable
equivalence that generates it.

18

Definition 8.10 Let ≡R be the following equivalence on TN : ∀x, y ∈ TN , x ≡R y

iff x ≡L y and rbase(x) = rbase(y).
The generated completeness property ZR is called rulebase-completeness.

A modified choice of ≡R, excluding all non-reflexive relations t ≡R τ where t

has a large rule base, would have produced the smallest equivalence that generates
the property of interest; but since trees with large rule bases are intrinsically not of
interest, the formally simpler definition has been used.

Theorem 8.11 ≡R is decidable.

Proof. Deciding ≡L is trivial. Suppose t ∈ TN . For each of the finitely many
subsets h of rules(t), membership of w in the language generated by h from n is
decidable. Therefore, rbase(t) is computable.

Theorem 8.12 Suppose Zx is a completeness property. Then F(ZWx) 6= {} iff
ZWx ⊆ ZWR.

Proof. Suppose Zx is a completeness property, F(ZWx) 6= {}, and (f, g) ∈ ZWx.
It will be shown that (f, g) ∈ ZR.

Suppose t ∈ allows(f⊤, g). Since (f, g) ∈ Zx, ∃t′ ≡x t such that t′ ∈ allows(f, g).
By Theorem 8.8, |rbase(t)| = 1, and ∀τ ≡L t if τ ∈ allows(f⊤, g) then rbase(τ) =
rbase(t). In particular, rbase(t′) = rbase(t), and by definition of ≡R, t′ ≡R t.
Therefore (f, g) ∈ ZR.

On the other hand, suppose Zx is a completeness property and ZWx ⊆ ZWR. By
Theorem 8.9, it suffices to show that F(ZWR) 6= {}. The parser constructed in the
proof of Theorem 8.8 is in F(ZWR).

Theorem 8.13 G(ZWR) is undecidable

Proof. The problem is to decide, for an arbitrary grammar g ∈ G, whether or
not g ∈ G(ZWR).

In the proof of [HoUl79, Theorem 8.9], ambiguity is shown to be undecidable for
arbitrary pointed CFGs of the following form. Let w1, . . . wn and x1, . . . xn be two
lists of terminal strings. Let a1, . . . an be a list of terminal symbols that do not occur
in any of the wk or xk. Let n, nw, nx be nonterminal symbols. Let g be the following
set of rules.

〈n, nw〉
〈n, nx〉

∀1 ≤ k ≤ n, 〈nw, wknwak〉 〈nw, wkak〉
〈nx, xknxak〉 〈nx, xkak〉 .

(27)

19

The pointed CFG has rules g and start symbol n.
For every terminal sentence v, there is at most one way to derive v from nw, and

at most one from nx. Therefore, g is ambiguous iff the pointed CFG is ambiguous.

Every syntax tree t over g has |rbase(t)| = 1; and there exist t ≡L τ over g with
different rule bases iff g is ambiguous.

So g ∈ G(ZWR) iff g is unambiguous; and ambiguity of g is undecidable in general,
therefore g ∈ G(ZWR) is undecidable in general.

9 Comments

A basic difficulty with extensible-syntax languages is that, in attempting to casu-
ally peruse source code written under an arbitrarily extended syntax, a programmer
may not even be sure what the syntactic structure of the source code is.4 This is
an ergonomic problem before it can become a computational one, because the dif-
ficulty of compiling extensible-syntax languages —thus, of parsing some extensions,
and of rejecting others— can only be judged once one knows which extensions are
ergonomically admissible — hence, which must be parsed, and which must be re-
jected. Although the treatment here has been mathematical, the choice of which
mathematical properties to study was based on conjectured ergonomic relevance to
the programmer.

The question effectively addressed by this paper has been, given the particular
well-behaved parsing criteria defined, how much ambiguity can be tolerated in the
grammar? It was shown that there is a greatest tolerable degree of ambiguity (whereas
one might have imagined that some kinds of ambiguity would be tolerable individually
but not when taken together); and that whether or not an arbitrary grammar has
the intolerable type of ambiguity is formally undecidable (which is not too surprising,
since ambiguity in general is famously undecidable for CFGs).

Supposing, for a moment, that this mathematical sense of “tolerability” is in fact
necessary and sufficient to render syntax extension ergonomically tolerable, there
are two main strategies possible to cope with the undecidability result. The lazy
strategy is to admit syntax extensions regardless of ambiguity, and then check for
ambiguity on whatever particular source string is compiled; this exploits the fact
that ambiguity on any one given sentence is decidable, even though the existence
of ambiguous sentences is not. Ambiguity seems, however, to be an error in the
syntax extension rather than in the source string, and as such the designer of the
extension would want to know about the ambiguity at extension time. An eager
strategy may therefore be preferable, which detects and rejects ambiguities when the
grammar is extended. However, the grammar admission criterion must be decidable,

4Allusions to this problem were scattered through the extensible language symposia of 1969 and
’71; for example, [Sha69], [Du71], [Wo71].

20

so it cannot be membership in G(ZWR); and the admission criterion cannot admit any
grammar outside G(ZWR), because we are supposing well-behaved universal parsing
ergonomically necessary; therefore, the admission criterion must be strictly stronger
than membership in G(ZWR). One would prefer this stronger criterion to be not only
decidable but efficiently decidable — say, checkable in time logarithmic or less in the
size of the grammar. Further, it might be possible to choose the criterion so that it
facilitates parser efficiency as well.

However, even if one stipulates that the mathematical criteria satisfy the purposes
for which they were subjectively chosen, they weren’t chosen to be ergonomically nec-
essary and sufficient: they were chosen (by intent, whether achieved or not) to be
ergonomically necessary. That is, it was supposed that parser behavior violating
these criteria would be counter-intuitive for the programmer, and therefore undesir-
able; but no hypothesis was formed as to whether guaranteeing these behaviors would
actually guarantee that the programmer would be able to cope with syntax exten-
sions. Indeed, considering the arbitrary nature of the parsing algorithm described in
the proof of Theorem 8.8, it does not seem to require behavior intuitively obvious
to a human observer. One might therefore wish to stipulate for an extensible-syntax
programming language that the shape of every syntax tree —that is, the arities of
its parent nodes and contents of its leaves— must conform to a reasonably small
context-free grammar. An example (not necessarily an exemplar) of a programming
language with this property is Lisp, whose parse-tree shape is unambiguously deter-
mined by requiring unexcepted use of reserved parentheses.5 Under that stipulation,
the mathematical treatment here would be mostly trivial; eager admissibility-testing
of extensions would be not only decidable, but probably logarithmic-time or better
in the size of the grammar; and adaptive grammars, while possibly of interest for
describing the language, would be superfluous to parsing it.

References

[ChrSh69] Carlos Christensen and Christopher J. Shaw, editors, Proceedings of the

Extensible Languages Symposium, Boston Massachusetts, May 13, 1969 [SIG-

PLAN Notices 4 no. 8 (August 1969)].

[DeJo90] Pierre Deransart and Martin Jourdan, editors, Attribute Grammars and

their Applications [International Conference WAGA] [Lecture Notes in Com-

puter Science 461], New York: Springer-Verlag, 1990.

5The extreme parenophile syntax of Lisp isn’t necessary for unambiguous tree shape, of course
— although, somewhat ironically from the current perspective, efforts to reduce the density of
parentheses in Lisp have often concentrated on introducing associative ambiguity with disambiguat-
ing operator-priorities (see [StGa93, §3.5.1]). One might actually produce more readable code if
parentheses on most small expressions were left in place, and parentheses were eliminated instead
from large expressions, perhaps using significant linebreaks and indentation, and other multi-line
matching constructs such as braces or begin/end statements.

21

[Du71] J. J. Duby, “Extensible Languages: A Potential User’s Point of View”, in
[Sc71], pp. 137–140.

[Ea70] Jay Earley, “An Efficient Context-Free Parsing Algorithm”, Communications

of the ACM 13 no. 2 (February 1970), pp. 94–102.

[HoUl79] John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata Theory,

Languages, and Computation, Reading, Massachusetts: Addison-Wesley, 1979.

[Kn90] Donald E. Knuth, “The Genesis of Attribute Grammars”, in [DeJo90], pp. 1–
12.

[OrCrAl07] A. Ortega, M. de la Cruz, and M. Alfonseca, “Christiansen Grammar
Evolution: Grammatical Evolution with Semantics”, IEEE Transactions on

Evolutionary Computation 11 no. 1 (February 2007), pp. 77–90.

[Sc71] Stephen A. Schuman, Proceedings of the International Symposium on Exten-

sible Languages, Grenoble, France, September 6–8, 1971 [SIGPLAN Notices 6
no. 12 (December 1971)].

[Sha69] Christopher J. Shaw, Chair, “Extensible Language Symposium — Panel of
Language Authors”, in [ChrSh69], pp. 37–39.

[Shu03] John N. Shutt, “Recursive Adaptable Grammars”, M.S. Thesis, WPI CS
Department, 10 August 1993, emended 16 December 2003. Available (as of
October 2008) at URL:
http://www.cs.wpi.edu/~jshutt/thesis/top.html

[Shu08] John N. Shutt, “Well-behaved parsing of extensible-syntax languages”, tech-
nical report WPI-CS-TR-07-14, Worcester Polytechnic Institute, Worcester,
MA, October 2008. Available (as of October 2008) at URL:
http://www.cs.wpi.edu/Resources/techreports.html

[StGa93] Guy L. Steele Jr. and Richard P. Gabriel, “The Evolution of Lisp”, SIG-

PLAN Notices 28 no. 3 (March 1993) [Preprints, ACM SIGPLAN Second His-

tory of Programming Languages Conference, Cambridge, Massachusetts, April
20–23, 1993], pp. 231–270.

[We92] Wolfgang Wechler, Universal Algebra for Computer Scientists [EATCS Mono-

graphs on Theoretical Computer Science 25], New York: Springer-Verlag, 1992.

[Wo71] P. L. Wodon, “A Syntax Macro Processor”, in [Sc71] pp. 48–50.

22

