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Abstract

Here improving on our earlier results we prove that there exists an n0

such that for n ≥ n0, in every 2-coloring of the edges of K
(4)
n there is a

monochromatic Hamiltonian 3-tight Berge cycle. This proves the c = 2,
t = 3, r = 4 special case of a conjecture from [5].

1 Introduction

V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A,B, E)
denotes a bipartite graph G = (V, E), where V = A + B, and E ⊂ A× B. For
a graph G and a subset U of its vertices, G|U is the restriction of G to U .
N(v) is the set of neighbors of v ∈ V . Hence the size of N(v) is |N(v)| =
deg(v) = degG(v), the degree of v. δ(G) stands for the minimum and ∆(G)
for the maximum degree in G. When A, B are subsets of V (G), we denote by
e(A,B) the number of edges of G with one endpoint in A and the other in B.
In particular, we write deg(v, U) = e({v}, U) for the number of edges from v to
U . A graph Gn on n vertices is γ-dense if it has at least γ

(
n
2

)
edges. A bipartite

graph G(k, l) is γ-dense if it contains at least γkl edges.
Let H be an r-uniform hypergraph (a family of some r-element subsets of a

set). The shadow graph of H is defined as the graph Γ(H) on the same vertex
set, where two vertices are adjacent if they are covered by at least one edge of
H. A coloring of the edges of an r-uniform hypergraph H, r ≥ 2, induces a
multicoloring on the edges of the shadow graph Γ(H) in a natural way; every
edge e of Γ(H) receives the color of all hyperedges containing e. We shall
denote by c(x, y) the color set of the edge xy in Γ(H). A subgraph of Γ(H) is
monochromatic if the color sets of its edges have a nonempty intersection. Let
K

(r)
n denote the complete r-uniform hypergraph on n vertices.
In any r-uniform hypergraph H for 2 ≤ t ≤ r we define an r-uniform t-tight

Berge-cycle of length `, denoted by C
(r,t)
` , as a sequence of distinct vertices

v1, v2, . . . , v`, such that for each set (vi, vi+1, . . . , vi+t−1) of t consecutive vertices
on the cycle, there is an edge ei of H that contains these t vertices and the edges
ei are all distinct for i, 1 ≤ i ≤ ` where ` + j ≡ j. This notion was introduced
in [5] and for t = 2 we get ordinary Berge-cycles ([1]) and for t = r we get the
tight cycle (see e.g. [14] or [20]). A Berge-cycle of length n in a hypergraph of
n vertices is called a Hamiltonian Berge-cycle. It is important to keep in mind
that, in contrast to the case r = t = 2, for r > t ≥ 2 a Berge-cycle C

(r,t)
` , is not

determined uniquely, it is considered as an arbitrary choice from many possible
cycles with the same triple of parameters.

In this paper, continuing investigations from [5], [8], [10], [11] and [12], we
study long Berge-cycles in hypergraphs. In [5] (by generalizing an earlier con-
jecture from [8]) the following conjecture was formulated.

Conjecture 1.1. For any fixed 2 ≤ c, t ≤ r satisfying c + t ≤ r + 1 and
sufficiently large n, if we color the edges of K

(r)
n with c colors, then there is a

monochromatic Hamiltonian t-tight Berge-cycle.
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In [5] it was proved that if the conjecture is true it is best possible, since for
any values of 2 ≤ c, t ≤ r satisfying c + t > r + 1 the statement is not true. The
conjecture can easily be proved for c = t = 2 and r = 3, see [8]. The asymptotic
form of the conjecture was proved for c = 3, t = 2 and r = 4 in [8] and for
every r and c = r − 1, t = 2 in [11] - in both papers the Regularity Lemma
[21] was used. In this paper we prove the conjecture in a sharp form for the
first non-trivial special case: c = 2, t = 3 and r = 4 and thus providing more
evidence to the truth of the conjecture in general.

Theorem 1.2. There exists an n0 such that for n ≥ n0, in every 2-coloring of
the edges of K

(4)
n there is a monochromatic Hamiltonian 3-tight Berge-cycle.

This improves a result of [12] where under the same assumptions we could
only find a monochromatic 3-tight Berge-cycle of length at least n − 10. It
also improves a result from [5] where we did manage to find a Hamiltonian
monochromatic 3-tight Berge-cycle but only in 2-colorings of the edges of the
complete 5-uniform hypergraph. In the proof we combine the proof method of
the weaker statement from [12] with stability arguments discussed in the next
section.

2 A stability version of the
Gerencsér-Gyárfás Theorem

For graphs G1, G2, . . . , Gr, the Ramsey number R(G1, G2, . . . , Gr) is the small-
est positive integer n such that if the edges of a complete graph Kn are parti-
tioned into r disjoint color classes giving r graphs H1,H2, . . . , Hr, then at least
one Hi (1 ≤ i ≤ r) has a subgraph isomorphic to Gi. The existence of such
a positive integer is guaranteed by Ramsey’s classical result [19]. The number
R(G1, G2, . . . , Gr) is called the Ramsey number for the graphs G1, G2, . . . , Gr.
There is very little known about R(G1, G2, . . . , Gr) even for very special graphs
(see eg. [7] or [18]). For r = 2 a theorem of Gerencsér and Gyárfás [6] states
that

R(Pn, Pn) =
⌊

3n− 2
2

⌋
.

In the proof we will use a stability version of the Gerencsér-Gyárfás Theorem
that we proved recently in [13]. For this purpose we need to define a relaxed
version of the extremal coloring in this theorem. We work with 2-edge multi-
colorings (G1, G2) of a graph G. Here multicoloring means that the edges can
receive more than one color, i.e. the graphs Gi are not necessarily edge disjoint.
The subgraph colored with color i only is denoted by G∗i , i.e.

G∗1 = G1 \G2, G
∗
2 = G2 \G1.

Extremal Coloring 1 (with parameter α): There exists a partition V (G) =
A ∪B such that
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• |A| ≥ (1− α) 2|V (G)|
3 , |B| ≥ (1− α) |V (G)|

3 .

• The graph G∗1|A is (1− α)-dense and the bipartite graph G∗2|A×B is (1−
α)-dense, where say G1 is red and G2 is blue. (Note that we have no
restriction on the coloring inside the smaller set.)

Then the following stability version of the Gerencsér-Gyárfás Theorem from
[13] claims that we can either find a monochromatic path substantially longer
than 2n/3, or the coloring is close to the extremal coloring.

Lemma 2.1. For every α > 0 there exist positive reals η, c1 (0 < η ¿ α ¿ 1
where ¿ means sufficiently smaller) and a positive integer n0 such that for
every n ≥ n0 the following holds: if the edges of the complete graph Kn are
2-multicolored then we have one of the following two cases.

• Case 1: Kn contains a monochromatic path P of length at least ( 2
3 + η)n.

Furthermore, in the process of finding P , for each vertex of the path P we
have at least c1 log n choices.

• Case 2: This is an Extremal Coloring 1 (EC1) with parameter α.

Surprisingly, as far as we know, this natural question has not been studied,
despite the fact that stability versions for some classical density (see [2]) and
Ramsey-type results (see [9] and [15]) are known.

Lemma 2.1 (and thus Theorem 1.2) can also be proved from the Regularity
Lemma, however, in [13] we used a more elementary approach using only the
Kővári-Sós-Turán bound [16].

For the sake of completeness we will give a sketch of the proof of Lemma
2.1 in Section 4. Actually it turns out that the proof of the lemma is somewhat
easier in this particular application.

3 Outline of the proof of Theorem 1.2

As in Lemma 2.1 we will use the following main parameters

0 < η ¿ α ¿ 1,

and the constant c2 = 25. We shall assume that n is sufficiently large.
We will follow the same rough outline as in [12]. Indeed, suppose that a

2-coloring c is given on the edges of K = K
(4)
n . Let V be the vertex set of K and

observe that c defines a 2-multicoloring on the complete 3-uniform hypergraph
T with vertex set V by coloring a triple T with the colors of the edges of K
containing T . We say that T ∈ T is good in color i if T is contained in at least
two edges of K of color i (i = 1, 2). Let G be the shadow graph of K. The
following easy lemma is from [12].

Lemma 3.1. Every edge xy ∈ E(G) is in at least n−4 good triples of the same
color.
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Proof. Consider an edge xy in G. Coloring c induces a 2-coloring c′ on the pairs
of W = V \ {x, y}. Applying a result of Bollobás and Gyárfás, [3], there exists
a subgraph H with at least |W | − 2 = n− 4 vertices such that H is 2-connected
and monochromatic under c′, say in color 1. In particular, every vertex of H
has degree at least two in color 1. Thus, for every vertex z of H, {x, y, z} is a
good triple in color 1. ¤

Using Lemma 3.1, we can define a 2-multicoloring c∗ on the shadow graph
G = Γ(K) by coloring xy ∈ E(G) with the color(s) of the (at least n− 4) good
triples containing xy. We apply the stability version of the Gerencsér-Gyárfás
Theorem (Lemma 2.1) for this 2-multicoloring of G. In Section 4 we will sketch
the proof of Lemma 2.1 in this particular application. Case 2, i.e. Extremal
Coloring 1 (EC1) is handled in Section 7. Assuming that we have the non-
extremal case, Case 1, we can find in G a monochromatic path P (say in red) of
length l ≥ (2/3+η)n. From now on in the non-extremal case we work in the color
red. Label the edges of P by ej = {pj , pj+1}, j = 1, 2, . . . , l − 1. From Lemma
2.1 it also follows that we can guarantee that all the triples {pj , pj+1, pj+2},
j = 1, 2, . . . , l−2 are good in red. Indeed, when we select pj+2 we select a vertex
from the available c1 log n choices that forms a good triple with {pj , pj+1}. Since
only two vertices are forbidden we still have plenty to choose from.

We plan to splice in the remaining vertices in V (G)\V (P ) into (most of) the
edges e2j = {p2j , p2j+1}. For this purpose we make sure that if we plan to splice
in the vertex v ∈ V (G)\V (P ) into the edge e2j , then all 3 triples {p2j−1, p2j , v},
{p2j , v, p2j+1} and {v, p2j+1, p2j+2} are good in red. This guarantees that we
will be able to make this into a 3-tight Berge-cycle later.

However, as in [12], there could be a small (constant) number of exceptional
vertices in V (G) \ V (P ) that simply cannot be spliced in into any of the edges
e2j . In order to avoid this technical difficulty we do the following. First we
build an initial red path P ′ that has length c2. This determines a small number
of exceptional vertices in V (G) \ V (P ′) that cannot be spliced in into P ′. For
each such exceptional vertex v we make sure artificially that we will be able to
splice it in. Indeed, we define a v-absorbing bridge {p1, p2, p3, p4} (in red) in the
following way. The edges {p1, p2}, {p2, p3} and {p3, p4} are all red (under c∗) in
G and either all 3 triples {p1, p2, v}, {p2, v, p3} and {v, p3, p4} are good in red
(type 1 bridge), or otherwise there exists a vertex w 6∈ {v, p1, p2, p3, p4} such
that {p1, p2, v, w}, {p2, v, p3, w} and {v, p3, p4, w} are all red edges of K (type
2 bridge). Note that in the second case the triples {p1, p2, v}, {p2, v, p3} and
{v, p3, p4} might not be good in red, as w might be the only vertex that can be
added to them. However, this definition will imply that in both cases v can be
spliced in into the edge {p2, p3}. We will call the coloring an Extremal Coloring
2 (EC2) if the following statement is not true: For every vertex v ∈ V (G) and
for both colors there are at least

√
αn4 v-absorbing bridges (with the same w if

they are type 2). Extremal Coloring 2 (EC2) is handled later in Section 6.
Assuming that EC2 does not hold we connect P ′ and these red absorbing

bridges for the exceptional vertices into a path P ′′ that still has a constant
length. Then we extend this to a red cycle C ′ that has length at least (2/3+η)n
and that contains P ′′ as a subpath. Now we are able to splice in all the remaining
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vertices into the cycle C ′ and thus resulting in a red Hamiltonian 3-tight Berge-
cycle.

4 Sketch of the proof of Lemma 2.1

We follow a similar outline as in applications of the Regularity Lemma. However,
a regular pair is replaced with a complete balanced bipartite graph K(t, t) with
t ≥ c log n for some constant c (thus the size of the pair is somewhat smaller but
this is still good enough for our purposes). Then a monochromatic connected
matching in the reduced graph (the usual tool in these types of proofs using
the Regularity Lemma) is replaced with a monochromatic cover consisting of
vertex disjoint complete balanced bipartite graphs Ki(ti, ti), 1 ≤ i ≤ s such
that ti ≥ c log n for every 1 ≤ i ≤ s for some constant c. Let us call a cover like
this a monochromatic complete balanced bipartite graph cover. The size of this
cover is the total number of vertices in the union of these complete bipartite
graphs. In the general proof of Lemma 2.1 in [13] it was also important to make
these complete bipartite graphs connected in a certain sense; in this particular
application the connection will be automatic as we shall see.

Then Lemma 2.1 follows from the following lemma.

Lemma 4.1. For every α > 0 there exist a positive real η (0 < η ¿ α ¿ 1
where ¿ means sufficiently smaller) and a positive integer n0 such that for
every n ≥ n0 the following holds: if the edges of the complete graph Kn are
2-multicolored then we have one of the following two cases.

• Case 1: Kn contains a monochromatic complete balanced bipartite graph
cover of size at least ( 2

3 + 2η)n.

• Case 2: This is an Extremal Coloring 1 (EC1) with parameter α.

Indeed, let us assume that we have Case 1 in this Lemma. It is easy to
connect these monochromatic (say red) complete balanced bipartite graphs
Ki(ti, ti) into one red path. Indeed, if p1 and p2 are the last two vertices on
the subpath corresponding to a complete bipartite graph, and p3 and p4 are the
first two vertices on the subpath corresponding to the next complete bipartite
graph, we just have to make sure that both triples {p1, p2, p3} and {p2, p3, p4}
are good in red. But we can easily achieve this as for each red edge we have
at most 2 exceptional vertices. Then of course the connecting pair {p2, p3} is
not necessarily a red edge in G so we get a somewhat weaker statement than
Lemma 2.1 but this is just as good for this application. We just have to make
sure that we are not splicing in any vertices into this {p1, p2, p3, p4} section of
the path, but this does not create any difficulties.

To prove Lemma 4.1 we proceed as follows. Let us assume that the majority
of the edges are red. Then we repeatedly apply in the red subgraph the Kővári-
Sós-Turán theorem [16] to find complete balanced bipartite graphs Ki(t, t), 1 ≤
i ≤ s with t ≥ c log n until we can. Denote the resulting red complete balanced
bipartite graph cover by M1. If this red cover M1 has size |M1| ≥ (2/3 + 2η)n,
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then we are done, we have Case 1 in Lemma 4.1. Otherwise we can show that
we can either increase the size of this red cover by a constant fraction, or we can
find directly a monochromatic complete bipartite graph cover of size at least
(2/3 + 2η)n unless we are in the Extremal Coloring 1 (Case 2), as desired.

Let Ki(t, t) = (V i
1 , V i

2 ), 1 ≤ i ≤ s. Denote

V1 = ∪s
i=1V

i
1 , V2 = ∪s

i=1V
i
2 and V3 = W \ (V1 ∪ V2).

Since in V3 we cannot pick another red complete balanced bipartite subgraph
K(t, t), V3 is almost complete in the blue-only subgraph. Next let us look at the
bipartite graphs (V1, V3) and (V2, V3). We can show that either one of them is
almost complete in blue-only or we can increase our red cover M1. We continue
in this fashion; we collect more and more information about the structure of the
coloring until we arrive at the Extremal Coloring 1 (Case 2). For details consult
[13].

5 The non-extremal case

Assume in this case that we do not have Extremal Colorings 1 or 2. Following the
outline above first we build an initial red path P ′ in G that has length c2 = 25.
Label the edges of P ′ by ej = {pj , pj+1}, j = 1, 2, . . . , 24. P ′ determines a
small number of exceptional vertices in V (G) \ V (P ′) in the following way. As
indicated above for a vertex v ∈ V (G)\V (P ′) and for an edge e2j = {p2j , p2j+1}
of P ′ we say that v can be spliced in into e2j if all 3 triples {p2j−1, p2j , v},
{p2j , v, p2j+1} and {v, p2j+1, p2j+2} are good in red. A vertex v ∈ V (G)\V (P ′)
is exceptional if it can be spliced in into at most 6 edges e2j of P ′. We claim
that the number of these exceptional vertices in V (G) \ V (P ′) is at most 12.
Indeed, for each fixed edge e2j of P ′, 1 ≤ j ≤ 12, there could be only at most
6 vertices of V (G) \ V (P ′) that cannot be spliced in into e2j since for each of
the pairs {p2j−1, p2j}, {p2j , p2j+1} and {p2j+1, p2j+2} there could be at most 2
exceptional vertices. Then, as usual, we define an auxiliary bipartite graph Gb

between the edges e2j and the vertices v ∈ V (G) \ V (P ′) where we put an edge
between e2j and v, if v cannot be spliced in into e2j . By the above Gb has at
most 6·12 = 72 edges. Then indeed the number of exceptional vertices is at most
12, since otherwise the number of edges of this bipartite graph would be more
than 12 · 6 = 72, a contradiction. Note that the degree of all non-exceptional
vertices of V (G)\V (P ′) in Gb is at least 6, i.e. each non-exceptional vertex can
be spliced in into at least 6 edges e2j of P ′; a fact that will be important later.

For the at most 12 exceptional vertices we will find vertex disjoint absorbing
bridges in red where they will be spliced in. The fact that we are not in EC2
makes this possible. Indeed, we do the following for the exceptional vertices.
Denote the exceptional vertices with v1, v2, . . . , v12 (we may assume that there
are exactly 12 such vertices by taking arbitrary vertices from V (G)\V (P ′). We
find vertex disjoint vi-absorbing bridges Pi = {pi

1, p
i
2, p

i
3, p

i
4} for 1 ≤ i ≤ 12 such

that the following are true (to make sure that the paths can be connected and
that this new path can be a part of a 3 -tight Berge-cycle).

7



• The triples {pc2−1, pc2 , p
1
1} and {pc2 , p

1
1, p

1
2} are good in red. This allows

us to connect P ′ and the bridge P1.

• The triples {pi
3, p

i
4, p

i+1
1 } and {pi

4, p
i+1
1 , pi+1

2 } are good in red for 1 ≤ i ≤
11. This allows us to connect the bridges Pi and Pi+1.

• If Pi is a type 2 bridge with the 4th vertex wi, then the vertices pi−1
4 (or

pc2 if i = 1) and pi+1
1 are not equal to wi.

Indeed, from the fact that we have at least
√

αn4 vi-absorbing bridges for each
1 ≤ i ≤ 12 (since we are not in EC2) we can find vertex disjoint {pi

2, p
i
3} in such

a way that we have at least
√

αn/4 available choices for both pi
1 and pi

4. Then
clearly we can pick pi

1 and pi
4 such that the above properties hold.

Thus indeed we can connect P ′, P1, P2, . . . , P12 into one path. Splice in
the vertices v1, v2, . . . , v12 into their bridges between pi

2 and pi
3. Denote the

resulting path by P ′′. For technical reasons let us “leave open” the endpoints
of this path. This P ′′ has the following properties. Any triple of consecutive
three vertices on P ′′ is good in red if it does not contain any of the vertices
vi, 1 ≤ i ≤ 12, or if it does contain a vertex vi with a type 1 bridge. For the
consecutive triples T that contain a vertex vi with a type 2 bridge with the 4th
vertex wi, the corresponding 4-edge of K containing T will be T ∪ {wi}. The
above construction guarantees that there will not be any repetitions of these
4-edges and thus indeed P ′′ can be a part of a 3-tight Berge-cycle. Note that
the length of P ′′ is still a constant (25 + 60 = 85).

Using the fact that P ′′ has length 85, we can still apply Lemma 2.1 to find in
G a red path Q = {q1, q2, . . . , ql}, fi = {qi, qi+1}, l ≥ (2/3 + η)n that is vertex
disjoint from P ′′. Indeed, we mark the vertices in P ′′ as forbidden vertices, and
by Lemma 2.1 we still have at least c1 log n − 85 ≥ c1 log n/2 available choices
for each vertex of Q (using that n is sufficiently large). Furthermore, as in P ′,
we can also guarantee that any triple of consecutive three vertices on Q is good
in red and that we can connect the endpoints of P ′′ and Q similarly as above.
Thus we get a cycle C ′ = P ′′ ∪Q. Consider the bipartite graph Gb between the
remaining vertices in V (G) \ V (C ′) and the set of edges

E = {e2j | 2 ≤ 2j ≤ c2 − 1}
⋃
{f2i | 2 ≤ 2i ≤ l − 1},

where we put en edge between a vertex v ∈ V (G) \ V (C ′) and an edge e2j or
f2i if the vertex can be spliced in into the edge.

Claim 1. There is a perfect matching M in Gb from V (G) \ V (C ′).

Indeed, we have to check Hall’s condition, i.e. for every S ⊂ V (G) \ V (C ′)
we need |NGb

(S)| ≥ |S|. For |S| ≤ 6, this is true as

|NGb
(S)| ≥ deg(v) ≥ 6 ≥ |S|,

for an arbitrary v ∈ S. However, for |S| ≥ 7 we have

|NGb
(S)| = |E| ≥ (1/3 + η/2)n ≥ |S|, (1)
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as desired (since for each e ∈ E we can have at most 6 exceptional vertices that
cannot be spliced in into e).

We splice in the vertices of V (G) \ V (C ′) into the edges where they are
matched under M . Now we finish the proof of the non-extremal case by claim-
ing that the Hamiltonian cycle C that we get after splicing in the vertices of
V (G) \ V (C ′) is indeed a red 3-tight Berge-cycle. Indeed, every triple of three
consecutive vertices on C that does not contain a vertex vi with a type 2 bridge
is good in red. For the triples containing a vertex vi with a type 2 bridge we
already found the distinct red 4-edges of K containing them (by adding the cor-
responding wi to the triple). For the other triples, since they are good in red,
there are at least two red 4-edges of K available to cover them. However, no
edge of K can cover more than two of these triples of C. Thus, by Hall’s theorem
again, there is a matching from these triples of C to the set of red edges of K
containing them, and thus resulting in a red Hamiltonian 3-tight Berge-cycle
finishing the proof in the non-extremal case.

6 Extremal Coloring 2

For technical reasons we treat first Extremal Coloring 2. In fact, this can be
reduced to the non-extremal case. Let us assume that we have an Extremal
Coloring 2. By the definition there must exist a color (say red) and a vertex
vr, such that we cannot find at least

√
αn4 vr-absorbing bridges in red. In this

case we will show that either we can find a Hamiltonian 3-tight Berge-cycle in
blue or we can find sufficiently many vr-absorbing bridges in red after all with
a somewhat weaker definition of a bridge, that is just as good.

We will show first that we may assume that the blue edges form a (1−α1/10)-
dense subgraph in G. Indeed, if the density of the red edges is at most α1/10,
then this is immediate. Otherwise, consider the set of red edges and mark
those red edges e for which vr is not among the at most 2 exceptional vertices,
i.e. for which (e, vr) forms a good triple in red. If the density of the marked
red edges is at least α1/10, then we could clearly find at least

√
αn4 paths of

length 3 consisting of marked red edges. However, these paths are vr-absorbing
bridges in red, a contradiction with our assumption. Indeed, one may take a
subgraph of the marked red edges where the minimum degree is at least half of
the original average degree (see e.g. Proposition 1.2.2 in [4]), and then use a
greedy procedure and the fact that α ¿ 1.

Thus we may assume that this is not the case, the density of the marked
red edges is less than α1/10. Next we will show that we may assume that all
unmarked red edges are blue as well in this 2-multicoloring. Let us take an
unmarked red edge f . By definition, the triple (f, vr) is not a good triple in
red, so apart from at most one edge all 4-edges of K containing the triple are
blue. In other words f is contained in at least (n− 4) blue triples. It seems as
this is a slightly weaker condition than being blue in G, as these (n − 4) blue
triples might not be good in blue. On the other hand, it is always the same
vertex (namely vr) that we have to add to each of these triples to get a blue
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4-edge of K, and this property is just as good for building a 3-tight Berge-cycle
and that is our ultimate goal. Let us call these edges weak blue edges, since
they are almost as good as blue edges. Then every unmarked red edge of G is
weak blue and thus the density of the blue edges (blue or weak blue) is at least
(1− α1/10), as claimed.

Thus certainly in this case in blue (or weak blue) we can find a monochro-
matic path much longer than (2/3+η)n. Next we will show that we may assume
that in blue we have sufficiently many absorbing bridges for every vertex, and
thus we are in EC2 only because of the red color. Then we can proceed sim-
ilarly in blue, as in the non-extremal case in red. Indeed, having weak blue
edges instead of blue edges is not going to create any difficulties since we can
always choose vr as the 4th vertex of the blue 4-edge containing a triple of three
consecutive vertices with a weak blue edge. This finishes the proof in this case.

Thus to finish let us assume that we do not have sufficiently many absorbing
bridges for every vertex in blue, i.e. there exists a vertex vb such that we cannot
find at least

√
αn4 v-absorbing bridges in blue. Similarly as above (with the

colors playing the opposite roles) we may assume that the density of red edges
(red or weak red, where here for the weak red edges we always have to add vb

as the 4th vertex) is at least (1 − α1/10). Thus at least (1 − 2α1/10)-portion
of all the edges are both red and blue. Consider all those 4-edges of K that
we get when we add {vr, vb} (if vr = vb, we add an arbitrary other vertex) to
these edges and the majority color induced by these edges. If this color is red,
then we can find many (certainly much more than

√
αn4) vr-absorbing type 2

bridges in red where the vertex w in the definition of the type 2 bridge can be
chosen as vb. We might have to use weak red edges on these red bridges instead
of just red edges, but they are just as good for building bridges. We just have
to make sure that vb is never used on these bridges. Thus we have sufficiently
many vr-absorbing bridges in red after all. If the majority color is blue then we
have sufficiently many vr-absorbing type 2 bridges in blue, as desired.

We can repeat the same argument for blue as well if blue also violates the
condition of having sufficiently many bridges. Thus in summary we can claim
that either we can find a monochromatic Hamiltonian 3-tight Berge-cycle or
we can assume that we have sufficiently many bridges for every vertex in both
colors.

7 Extremal Coloring 1

Assume finally that we have an Extremal Coloring 1. Thus there exists a par-
tition V (G) = A ∪B such that

• |A| ≥ (1− α) 2|V (G)|
3 , |B| ≥ (1− α) |V (G)|

3 .

• The graph G∗1|A is (1−α)-dense and the bipartite graph G∗2|A×B is (1−α)-
dense, where say G1 is red and G2 is blue.

The main idea is the same as in the non-extremal case; either in red or in blue
we have to find a long enough monochromatic cycle in G and then we splice in
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the remaining vertices into roughly every other edge on the cycle. In light of
the previous section we may assume that we have sufficiently many bridges for
every vertex in both colors, so this is not going to be a problem. However, here
we might not be able to find a long enough monochromatic cycle since we are
in EC1.

First we will redistribute certain exceptional vertices from A and B. A vertex
u ∈ A is exceptional if its red-only degree in A is significantly less than |A|, i.e.
we have

degG∗1 (u,A) < (1− α)|A|, (2)

From the density condition in G∗1|A, it follows that the number of these excep-
tional vertices in A is at most α|A|. If in (2) we have the stronger inequality

degG∗1 (u,A) <
√

α|A|,

then we move u from A to B, since indeed now we have

degG2(u,A) > (1−√α)|A|.

Similarly, a vertex v ∈ B is exceptional if its blue-only degree in A is significantly
less than |A|, i.e. we have

degG∗2 (v, A) < (1− α)|A|, (3)

From the density condition in G∗2|A×B , it follows again that the number of
these exceptional vertices in B is at most α|B|. If in (3) we have the stronger
inequality

degG∗2 (v, A) <
√

α|A|,
then we move v from B to A, since now we have

degG1(v, A) > (1−√α)|A|.

For simplicity let us denote the resulting sets still by A and B. We distinguish
two cases.

Case 1: |B| ≤ bn
3 e. In this case we will find a red Hamiltonian 3-tight

Berge-cycle. We proceed exactly as in the non-extremal case, but we have to
be slightly more careful because of the sharp size conditions. We will build
P ′′ consisting of P ′ and the absorbing bridges for the exceptional vertices as in
the non-extremal case. However, here we also make sure that the connecting
edges between the subpaths are also red edges (it is not hard to see from the
degree conditions that this is possible). Furthermore, we can also see from the
degree conditions (e.g. using Pósa’s condition, see [2] or [17]) that C ′ = P ′′ ∪Q
may cover all vertices in A. The set of edges E where we can splice in the
remaining vertices includes now literally every second edge on C ′, so it has size
|E| ≥ b |C′|2 c ≥ bn

3 c. Then corresponding to (1) we still have

|NGb
(S)| = |E| ≥ bn

3
c ≥ |S|, (4)
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and thus we can still splice in every remaining vertex of V (G) \ V (C ′) resulting
in a red Hamiltonian 3-tight Berge-cycle.

Case 2: |B| > bn
3 e. In this case we will find a blue Hamiltonian 3-tight

Berge-cycle. Now we build C ′ = P ′′ ∪Q in the blue almost-complete bipartite
graph between A and B in such a way that we cover all vertices of B with
C ′. Then (4) is true again, and we can splice in every remaining vertex of
V (G) \ V (C ′) resulting in a blue Hamiltonian 3-tight Berge-cycle. This finishes
the proof of Theorem 1.2. ¤
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[8] A. Gyárfás, J. Lehel, G.N. Sárközy, R. H. Schelp, Monochromatic Hamil-
tonian Berge-cycles in colored complete uniform hypergraphs, Journal of
Combinatorial Theory, Ser. B 98 (2008), pp. 342-358.
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