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Abstract

A Gallai-coloring (G-coloring) is a generalization of 2-colorings of edges of
complete graphs: a G-coloring of a complete graph is an edge coloring such
that no triangle is colored with three distinct colors.

Here we extend some results known earlier for 2-colorings to G-colorings.
We prove that in every G-coloring of Kn there exists each of the following: 1.
a monochromatic double star with at least 3n+1

4 vertices; 2. a monochromatic
subgraph H such that all pairs of X ⊂ V (Kn) are at distance at most two in
H where |X| ≥ d3n

4 e; 3. a monochromatic diameter two subgraph with at least
d3n

4 e vertices.
We also investigate Ramsey numbers of graphs in G-colorings with a given

number of colors. For any graph H let RG(r,H) be the minimum m such that
in every G-coloring of Km with r colors, there is a monochromatic copy of H.
We show that for fixed H, RG(r,H) is exponential in r if H is not bipartite;
linear in r if H is bipartite but not a star; constant (does not depend on r) if
H is a star (and we determine its value). Somewhat surprisingly, RG(r,K3)
can be determined exactly.

1 Introduction, Gallai colorings.

We consider edge colorings of complete graphs in which no triangle is colored with
three distinct colors. In [16] such colorings were called Gallai partitions, in [12] the
term Gallai colorings was used for them. The reason for this terminology stems from
its close connection to results of Gallai on comparability graphs [10]. The following
theorem expresses the key property of Gallai colorings (abbreviated as G-colorings
from now on). It is stated implicitly in [10] and appeared in various forms, [5], [6],
[12]. The following formulation is from [12].

Theorem 1. Any G-coloring can be obtained by substituting complete graphs with G-
colorings into vertices of a 2-colored nontrivial complete graph called the base graph
of the G-coloring.

Substitution in Theorem 1 means replacements of vertices of the base graph by
complete graphs so that all edges between replaced vertices retain their colors. It is
important that the base graph is nontrivial, i.e. has at least two vertices. Theorem
1 is the main tool to prove results for G-colorings. For example - a first exercise in
graph theory, (a remark of Erdős and Rado) is that any 2-colored complete graph has
a monochromatic spanning tree. This remains true for G-colorings as proved directly
in [1]. Another proof comes from Theorem 1: it is true for the base graph and
substitution preserves connectivity. Another example - in fact a strengthening of the
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previous remark: in every G-coloring of a complete graph there is a monochromatic
spanning subgraph of diameter at most three. This follows immediately from its 2-
color version, [19]. A third easy example is from [12]: in every G-coloring of Kn there
is a monochromatic spanning tree with height at most two.

Sometimes more work is needed to extend a result from 2-colorings to G-colorings.
A result of Burr - proving a conjecture of Bialostocki, Dierker and Voxman - says that
there is a monochromatic spanning broom in every 2-coloring of a complete graph.
Following Burr’s nice argument on the base graph, it is possible to extend this result
to G-colorings [12].

Theorem 1 is used to extend Lovász’s perfect graph theorem to G-colorings, see
[6], [16]. G-colorings can also be considered as special cases of anti-Ramsey problems
introduced in [9].

A double star is a tree obtained from two disjoint stars joining their centers with
an edge e, that is called the base edge of the double star. Our first result here is

Theorem 2. Every G-coloring of Kn contains a monochromatic double star with at
least 3n+1

4
vertices. This is asymptotically best possible.

The 2-color version of Theorem 2 was proved in [13], it slightly extends a special
case of a result in [7]: in every 2-coloring of Kn there are two points, v, w and a color,
say red, such that the size of the union of the closed neighborhoods of v, w in red is
at least 3n+1

4
. The slight extension is that one can also guarantee that the edge vw is

red. Theorem 2 is asymptotically best possible (see [7]). It is worth noting that stars
behave differently: while 2-colorings of Kn obviously contain monochromatic stars of
at least n

2
vertices, G-colorings may contain only monochromatic stars with at most

2n
5

+ 1 vertices ([12]). Our next theorem extends a result of [11] from 2-colorings to
G-colorings.

Theorem 3. In every G-coloring of Kn there is a color, say red, and a subgraph
H ⊂ G such that |V (H)| ≥ d3n

4
e and between any pair of vertices in V (H) there is a

red path of length at most two in G. This is best possible for every n.

Notice that the subgraph H in Theorem 3 is not necessarily a diameter two red
subgraph because the midpoints of the connecting 2-paths can be in V (Kn) \ V (H).
However, such a stronger result is proved by Erdős and Fowler [8] for 2-colorings.

Theorem 4. (Erdős, Fowler) In every 2-coloring of Kn there is a a monochromatic
diameter two subgraph with at least d3n

4
e vertices. This is best possible for every n.

The Erdős - Fowler theorem can also be extended to G-colorings.
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Theorem 5. In every G-coloring of Kn there is a a monochromatic diameter two
subgraph with at least d3n

4
e vertices. This is best possible for every n.

The construction in [11],[8] shows that Theorems 3, 4, 5 are sharp: consider a
2-coloring of K4 with both color classes isomorphic to P4. Then substitute nearly
equal vertex sets into this coloring with a total of n vertices. (The colorings within
the substituted parts are arbitrary.)

Since for every n there is a (canonical) G-coloring of Kn where each of the n− 1
color classes is a star, for most H there is a G-coloring of Kn which does not have
a monochromatic copy of H. However, we may define for any graph H a kind of
restricted Ramsey number, RG(r,H), the minimum m such that in every G-coloring
of Km with r colors, there is a monochromatic copy of H.

It turns out that some classical Ramsey numbers that seem hopelessly difficult to
determine even asymptotically, behave nicely if we restrict ourselves to G-colorings
with r-colors. For example, the Ramsey number of a triangle in r-colorings, R(r,K3)
is known to be only between bounds far apart (cr and ber!c + 1, see for example in
[18]) but it is not hard to determine RG(r,K3) exactly as follows.

Theorem 6.

RG(r,K3) =

{
5k + 1 for r = 2k
2× 5k + 1 for r = 2k + 1

It is worth noting that there are several “extremal” colorings for Theorem 6. For
example, let G1 be a black edge and let G2 be the K5 partitioned into a red and a
blue pentagon. The graphs H1, H2 obtained by substituting G1 (G2) into vertices
of G2 (G1) have essentially different 3-colorings and both are extremal for r = 3 in
Theorem 6.

Although one can easily determine some more exact values of RG(r,H) for small
graphs H, we conclude with a general result and a very special one.

Theorem 7. Assume that H is a fixed graph without isolated vertices. Then RG(r,H)
is exponential in r if H is not bipartite and linear in r if H is bipartite and not a
star.

Theorem 8. If H = K1,p is a star and r ≥ 3 then RG(r,H) = 5p−1
2

for odd p,
RG(r,H) = 5p

2
− 3 for even p.

For completeness of the star case, notice that for H = K1,p we have trivially
RG(1, H) = R(1, H) = p + 1 and RG(2, H) = R(2, H) can be determined easily
(2p− 1 for even p and 2p for odd p, [14]). It is also worth noting that while RG(r,H)
is constant (does not depend on r), R(r,H) is linear in r (and in p), see [4].
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2 Extending 2-coloring results to weighted com-

plete graphs.

A straightforward method to prove Theorems 2, 3 and 5 is to extend their correspond-
ing 2-color versions to graphs with positive integer vertex weights. That is what we
shall do in the next three theorems. Let w(x) denote the weight of x ∈ V (G) and for
X ⊂ V (G), w(X) =

∑
x∈X w(x). The weight of a subgraph H ⊂ G is w(V (H)).

Theorem 9. Every 2-coloring of a weighted complete graph K contains a monochro-
matic double star with weight at least 3w(K)+1

4
.

Theorem 10. For every 2-coloring of a weighted complete graph K there is a color,
say red, and a subgraph H ⊂ K such that |w(H)| ≥ d3w(K)

4
e and between any pair of

vertices in V (H) there is a red path of length at most two in K.

Theorem 11. Every 2-coloring of a weighted complete graph K contains a monochro-
matic diameter two subgraph with weight at least d3w(K)

4
e.

Before proving the theorems above, we show how Theorems 2, 3, 5 follow from
them. Suppose that a G-coloring is given on Kn. By Theorem 1 this coloring comes
by substitutions into a 2-colored nontrivial base graph. Use the cardinalities of the
substituted vertex sets to weigh the vertices of the base graph and apply theorems
9, 10, 11 to get a monochromatic subgraph H with the required portion of the total
weight n. Then the proofs can be finished by observing that the properties P1:
“having a spanning monochromatic double star”, P2: “there is a monochromatic
path of length at most two between any pair of vertices in V (H)” and P3: “having
a spanning monochromatic diameter two subgraph” are preserved by substitutions -
i.e. H corresponds to a monochromatic subgraph of Kn that has w(H) vertices.
Proof of Theorem 9: Let G1, G2 denote the graphs spanned by the edges of color
1,2, respectively. The open neighborhood of a vertex x ∈ V (Gi) is denoted by Γi(x).
Let v ∈ V (K) and A = Γ1(v), B = Γ2(v). The graphs G1, G2 decompose the complete
bipartite graph [A,B] into bipartite graphs H1, H2. We shall prove the following claim.
Either there exists a ∈ A such that

w(B \ Γ1(a)) ≤ w(A) + w(B)

4

or there exists b ∈ B such that

w(A \ Γ2(b)) ≤ w(A) + w(B)

4
.
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To prove the claim, suppose that w(B \ Γ1(a)) ≥ t, w(A \ Γ2(b) ≥ t holds for all
a ∈ A, b ∈ B.

Then

w(A)w(B) =
∑

a∈A,b∈B

w(a)w(b) =
∑

ab∈E(H1)

w(a)w(b) +
∑

ab∈E(H2)

w(a)w(b) =

=
∑

a∈A

w(a)
∑

b∈B∩Γ1(a)

w(b) +
∑

b∈B

w(b)
∑

a∈A∩Γ2(b)

w(b) ≤

≤ ∑

a∈A

w(a)(w(B)− t) +
∑

b∈B

w(b)(w(A)− t) =

= w(A)(w(B)− t) + w(B)(w(A)− t) = 2w(A)w(B)− t(w(A) + w(B))

therefore t(w(A) + w(B)) ≤ w(A)w(B) and

t ≤ w(A)w(B)

w(A) + w(B)
≤ (w(A) + w(B))2

4(w(A) + w(B))
=

w(A) + w(B)

4
,

proving the claim.
Selecting either a or b from the claim and selecting the base edge of the double

star accordingly as va or vb, we get a monochromatic double star whose weight is at
least

w(A) + w(B) + w(v)− w(A) + w(B)

4
=

3w(K) + w(v)

4
.

2

Proof of Theorem 10: The proof follows the argument in [11]. Consider a red-blue
coloring of the edges of a weighted complete graph K. An edge e = xy in E(K) is
called a red (blue) spanner if each vertex of K is adjacent in red (blue) to at least
one vertex of {x, y}.

Lemma 1. Assume that in a 2-colored complete graph there is at least one red and at
least one blue spanner edge. Then the red and blue spanner edges form vertex disjoint
bipartite graphs.

Proof: Suppose that xy is a red spanner and zy is a blue spanner. Then the edge
xz can not have a color, showing that the red and blue spanners form vertex disjoint
subgraphs.

Assume that C is a cycle formed by red spanner edges. Let e be a blue spanner
edge, e is vertex disjoint from C. Each vertex of C is adjacent to some end of e in
blue from the definition of e. But two consecutive vertices of C can not be adjacent
in blue to the same end of e because the edges of C are red spanners. This is possible
only if C is an even cycle, thus the red spanners form a bipartite graph. Applying
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the same argument to cycles formed by blue spanner edges, the proof of the lemma
is finished. 2

Now the proof of the theorem is finished as follows. If there is no spanner in one
of the colors then K has diameter two in the other color, so H = K satisfies the
requirements of the theorem. Otherwise, by Lemma 1, the spanner edges form two
vertex disjoint bipartite graphs. Among their four partite classes select one, say Z,
with the smallest weight (resolving ties arbitrarily), w.l.o.g. Z is a partite class of the
bipartite graph formed by the red spanner edges. Consider X = V (K) \ Z. Clearly

|w(X)| ≥ d3w(K)
4
e from the definition of Z. On the other hand, for x, y ∈ X either

xy is blue or - since xy can not be a red spanner edge - there exists z ∈ V (K) such
that both zx, zy are blue. Thus the blue color and X satisfy the requirements. 2

Proof of Theorem 11: The proof is implicitly in the Erdős - Fowler proof of
Theorem 4 in [8]. With an argument that is similar but much more involved than the
one used in the proof of Theorem 10, Erdős and Fowler proved that - unless there is
a spanner in some of the colors - the vertex set of K has a partition into four parts
such that the deletion of any of these parts leaves a monochromatic graph of diameter
two. Therefore, deleting the part with the smallest weight proves the theorem. 2

3 G-colorings with r colors.

Proof of Theorem 6: Let f(r) denote the function one less than the claimed value
of RG(r,K3). Observe that

f(r) ≥ 2f(r − 1) (1)

for r ≥ 2 with equality for odd r, and

f(r) = 5f(r − 2) (2)

for r ≥ 3.
To show that RG(r,K3) > f(r) let G1 be a 1-colored K2 and let G2 be a 2-colored

K5 with both colors forming a pentagon. Recursively construct Gr for odd r ≥ 3 by
substituting two identically colored Gr−1’s into the two vertices of G1 (colored with
a different color). Similarly, for even r ≥ 4, let Gr be defined by substituting five
identically colored Gr−2’s into the vertices of G2 (colored with two different colors).
The r-coloring defined on Gr is a G-coloring, clearly has f(r) vertices and contains
no monochromatic triangles.

We prove by induction that if a G-coloring of K with r-colors and without
monochromatic triangles is given then |V (K)| ≤ f(r). Using Theorem 1, the col-
oring of K can be obtained by substitution into a 2-colored nontrivial base graph B.
In our case clearly 2 ≤ |V (B)| ≤ 5.
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Case 1: |V (B)| = 2. Since there are no monochromatic triangles, the graphs substi-
tuted can not contain any edge colored with the color of the base edge, therefore, by
induction, they have at most f(r − 1) vertices. Thus

|V (K)| ≤ 2f(r − 1) ≤ f(r)

using (1).
Case 2: |V (B)| = 3. The base graph has no monochromatic triangle so it has
an edge b1b2 whose color is used only once (as a color on a base edge). Then the
graphs substituted into b1, b2 must be colored with at most r−2 colors and the graph
substituted into the third vertex must be colored with at most r − 1 colors. Thus

|V (K)| ≤ 2f(r − 2) + f(r − 1) ≤ f(r − 1) + f(r − 1) = 2f(r − 1) ≤ f(r)

using (1) twice.
Case 3: 4 ≤ |V (B)| ≤ 5. The base graph has no monochromatic triangle so each
vertex in the base is incident to edges of both colors. Therefore

|V (K)| ≤ |V (B)|f(r − 2) ≤ 5f(r − 2) = f(r)

using (2). 2

Proof of Theorem 7: First we give an upper bound on RG(r,H) that is exponential
in r by showing RG(r,H) ≤ t(n−1)r+1 where t = R(2, H) − 1 and n = |V (H)|. We
shall assume that |V (H)| ≥ 3 therefore n ≥ 3, t ≥ 2. Suppose indirectly that a G-
coloring with r colors is given on K, |V (K)| ≥ t(n−1)r+1 but there is no monochromatic
H. The base graph B of this coloring has no monochromatic H therefore |V (B)| ≤
R(2, H) − 1 = t. This implies that some of the graphs, say G1, substituted into B
has at least t(n−1)r vertices. Let v1 be an arbitrary vertex of K not in V (G1). Note
that every edge from v1 to V (G1) has the same color. Iterating this process with
G1 in the role of K, one can define a sequence of vertices v1, v2, . . . , v(n−1)r+1 such
that for every fixed i and j > i the colors of the edges vi, vj are the same. By the
pigeonhole principle there is a subsequence of n vertices spanning a monochromatic
complete subgraph Kn ⊂ K and clearly H is a monochromatic subgraph of Kn - a
contradiction. Thus, for any - in particular non-bipartite - H we proved an upper
bound exponential in r.

For a bipartite H assume that both color classes of H have at most n vertices. We
show that RG(r,H) ≤ pt(n− 1), where p = (n− 1)r + 2 ( and t is as defined earlier),
providing an upper bound linear in r. Indeed, suppose indirectly that a G-coloring
with r colors is given on K, |V (K)| ≥ pt(n − 1) but there is no monochromatic
H. The base graph of the G-coloring has at most t vertices, otherwise we have a
monochromatic H. Applying the same argument as in the previous paragraph, we
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find that there is a graph G1, substituted to some vertex of the base graph, such that
|V (G1)| ≥ |V (K)|

t
≥ p(n − 1). If |V (K) \ V (G1)| ≥ 2n − 1 then - by the pigeonhole

principle - we can select X ⊂ V (K) \ V (G1) so that |X| = n and [X,V (G1)] is
a monochromatic complete bipartite graph - this graph contains H and the proof is
finished. We conclude that |V (G1)| ≥ pt(n−1)−2(n−1) = (pt−2)(n−1). Select v1 ∈
V (K)\V (G1) and iterate the argument: into some vertex of the base graph of the G-

coloring on G1 a graph G2 is substituted with at least |V (G1)|
t

≥ (p−1)(n−1) vertices.
Selecting v2 ∈ V (G1)\V (G2) we continue until T = {v1, v2, . . . , vp−1} is defined. There
is still at least 2(n−1) > n vertices in Gp−1 thus selecting Y ⊂ V (Gp−1) with |Y | = n,
we have a complete bipartite graph [Y, T ] such that from each v ∈ T all edges from Y
to v are colored with the same color. Since |T | = p−1 = (n−1)r+1, by the pigeonhole
principle there is Z ⊂ T such that |Z| = n and [Y, Z] is a monochromatic complete
bipartite graph which obviously contains a monochromatic H - a contradiction. Thus,
for bipartite H we have an upper bound linear in r.

Lower bounds of the same order of magnitude can be easily given. For a non-
bipartite H it is obvious that RG(r,H) > 2r because we can easily define a suitable
G-coloring with r colors by repeatedly joining with a new color two identically colored
complete graphs of the same size. In fact, for certain graphs H a more refined
lower bound can be given as follows. Suppose that H is a connected graph without
equivalent vertices (two vertices are equivalent if their open neighborhoods coincide).
Then

RG(r,H) >

{
tk for r = 2k
(n− 1)tk for r = 2k + 1

(3)

where t = R(2, H) − 1, n = |V (H)| as defined above. Note that for H = K3 we get
the lower bound of Theorem 6. To see that (3) is right, call a G-coloring of a complete
graph K with r colors optimal if it has no monochromatic H and |V (K)| agrees with
the formula in (3). It is obvious that there are optimal colorings for r = 1, 2. Suppose
that G is optimal for r − 2 colors. Take an optimal 2-colored base graph B colored
with colors distinct from the colors of G. Substitute G into each vertex in B. The
resulting graph is an optimal coloring with r colors.

If H is bipartite and not a star, it contains two independent edges. Then we have
RG(r,H) > r+1 because the canonical G-coloring of Kr+1 with r colors (where color
class i is a star with i edges) does not have a monochromatic H. 2

Proof of Theorem 8: Assume H = K1,p, r ≥ 3. We use a construction and a
result from [12]. To see that the claimed values of RG(r,H) can not be lowered, let
C be a K5 colored with red and blue so that both color classes form a pentagon. For
odd p substitute a green K p−1

2
to each vertex of C. For even p substitute K p

2
into one

vertex of C and K p
2
−1 to the other four vertices of C. The claimed upper bound for
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RG(r,H) follows immediately from the following result of [12]: any G-coloring of K

contains a monochromatic star with at least 2|V (K)|
5

edges. 2
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