Long monochromatic Berge cycles in colored
4-uniform hypergraphs

Andras Gyarfas*

Computer and Automation Research Institute
Hungarian Academy of Sciences
Budapest, P.O. Box 63
Budapest, Hungary, H-1518
gyarfas@sztaki.hu

Gabor N. Sarkozy'

Computer Science Department
Worcester Polytechnic Institute
Worcester, MA, USA 01609
gsarkozy@cs.wpi.edu
and
Computer and Automation Research Institute
Hungarian Academy of Sciences
Budapest, P.O. Box 63
Budapest, Hungary, H-1518

Endre Szemerédi

Computer Science Department
Rutgers University
New Brunswick, NJ, USA 08903
szemeredQcs.rutgers.edu

January 21, 2008

*Research supported in part by OTKA Grant No. K68322.
TResearch supported in part by the National Science Foundation under Grant No. DMS-
0456401 and by OTKA Grant No. K68322.



Abstract
Here we prove that for n > 140, in every 3-coloring of the edges of
Kﬁfl) there is a monochromatic Berge cycle of length at least n — 10. This
result sharpens an asymptotic result obtained earlier. Another result is
that for n > 15, in every 2-coloring of the edges of KV there is a 3-tight
Berge cycle of length at least n — 10.

1 Introduction

Let H be an r-uniform hypergraph (a family of some r-element subsets of a
set). The shadow graph of H is defined as the graph I'(H) on the same vertex
set, where two vertices are adjacent if they are covered by at least one edge of
‘H. A coloring of the edges of an r-uniform hypergraph H, » > 2, induces a
multicoloring on the edges of the shadow graph T'(H) in a natural way; every
edge e of T'(H) receives the color of all hyperedges containing e. We shall
denote by c(z,y) the color set of the edge zy in I'(H). A subgraph of I'(H) is
monochromatic if the color sets of its edges have a nonempty intersection. Let
Kr(f) denote the complete r-uniform hypergraph on n vertices.

In any r-uniform hypergraph H for 2 <t < r we define an r-uniform ¢-tight
Berge-cycle of length ¢, denoted by C,Er’t), as a sequence of distinct vertices
V1,02, ..., U, such that for each set (v, vit1,...,vi4¢—1) of t consecutive vertices
on the cycle, there is an edge e; of H that contains these ¢ vertices and the edges
e; are all distinct for 4,1 < ¢ < ¢ where ¢ + j = j. This notion was introduced
in [5] and for ¢ = 2 we get ordinary Berge-cycles ([1]) and for ¢t = r we get the
tight cycle (see e.g. [11] or [15]). A Berge-cycle of length n in a hypergraph of
n vertices is called a Hamiltonian Berge-cycle. It is important to keep in mind
that, in contrast to the case r =t = 2, for r > ¢t > 2 a Berge-cycle C’ér’t), is not
determined uniquely, it is considered as an arbitrary choice from many possible
cycles with the same triple of parameters.

In this paper, continuing investigations from [5], [6], [8] and [9], we study
long Berge-cycles in hypergraphs. In [5] (by generalizing an earlier conjecture
from [6]) the following conjecture was formulated.

Conjecture 1.1. For any fized 2 < c¢,t < r satisfying c+t < r+ 1 and
sufficiently large n, if we color the edges of K,ST) with ¢ colors, then there is a
monochromatic Hamiltonian t-tight Berge-cycle.

In [5] it was proved that if the conjecture is true it is best possible, since for
any values of 2 < ¢,t < r satisfying ¢+t > r+ 1 the statement is not true. The
conjecture was proved for r = 3 in [6]. The asymptotic form of the conjecture
was proved for r =4 and ¢t = 2 in [6] and for every r and ¢ = 2 in [9] - in both
papers the Regularity Lemma was used. In this paper we apply an elementary
approach and we study the r = 4 case. We prove the conjecture in both cases
(¢c=3,t=2and ¢ =2, t = 3) with a constant error term.

Theorem 1.2. Suppose that an 3-coloring is given on the edges of Kr(f), where
n > 140. Then there is a monochromatic Berge-cycle of length at least n — 10.



This sharpens the asymptotic result obtained earlier for r = 4 in [6].

Theorem 1.3. Suppose that an 2-coloring is given on the edges of K,(L4), where
n > 15. Then there is a monochromatic 3-tight Berge-cycle of length at least
n — 10.

2 Proofs

Proof of Theorem 1.2. Suppose that ¢ is a 3-coloring on the edges of K =
K, where n > 140. Color i € ¢(z,y) on the edge xy of G = T'(K) is a good
color if at least 3 edges of color ¢ contain {z,y} in K. We consider G with a new
coloring ¢* where ¢*(z,y) C c(z,y) is the set of good colors on zy. Assuming
that (";2) > 6, i.e. n > 6, every edge of I has at least one color in ¢*.

Suppose first that some edge xy of G = T'(K) is colored (under ¢*) with a
single color, say with color 1. We claim that there is a Hamiltonian Berge cycle
in I in color 1. Indeed, the definition of xy implies that under ¢* at most four
edges of H = G\ {z,y} are not colored with 1. Since for n > 10 we have n—6 >
(n —2)/2, the color 1 subgraph of H satisfies Dirac’s condition (see [13]), and
thus one can easily find a Hamiltonian path P = {y1,...yn—2} of color 1 in H
such that there are two extra edges 91y, and y,—2yy, of color 1 from the endpoints
of P with 2 < p,k < n—3. Now the cyclic ordering =, y1,ys, - - ., Yn—2,y defines
a Hamiltonian Berge-cycle in color 1 with the following edge assignments. For
z,y1 assign e, = {%,y1,Yp,y}. For yj,yj41 (1 < j < n — 3) assign e; =
{z,y,y;,yj41}, for yn_o,y assign e,_o = {Yn—2, Y, yr, ¢}, and finally for z,y we
can assign e,_7 as any edge of color 1 containing x,y and different from all
other e;-s.

Now we may assume that ¢* colors all edges of G with one of the four color
sets: 12,13, 23, 123.

Lemma 2.1. Assume that there is a monochromatic Hamiltonian cycle C' in G
under coloring c*. Then there is a Hamiltonian Berge-cycle in IC under coloring
c.

Proof. Assume that C' = z1,x9,...,2, is a Hamiltonian cycle of G in color 1
(under ¢*). Then, following the cyclic order of vertices on C, let A; be the set
of edges of K in color 1 containing x;,x;11. Since each A; has at least three
elements and no element of A; covers more than three consecutive pairs of C,
Hall’s theorem ensures a one-to one correspondence from the consecutive pairs
to the sets A;. This clearly defines the required Hamiltonian Berge-cycle. [

We need some observations on the structure of the coloring ¢*. Let x be an
arbitrary vertex, define Uyo(z), Uis(x), Uss(x), Uraz(x) as the sets to which x is
connected in color sets 12, 13,23, 123 respectively. Define

By ={x € V(G)|Usj = U = 0, Ujr # 0},

where i, j, k are the elements of {1,2,3} in some order. Observe that the B;-
s are pairwise disjoint, within the B;-s every edge of G has color set {j,k}



or 123, and for j # ¢, an edge of G from B; to B; has color set 123. Set
By = {z € V(G)||Ur23(x)| = n/2}.

Lemma 2.2. Suppose that U}_; B; = V(G). Then there is a Hamiltonian cycle
G in the coloring c*.

Proof. Suppose w.l.o.g that |B;| < |Bz| < |Bs|. We show that there is a Hamil-
tonian cycle in color 1. Denoting the degree of a vertex v in color ¢ by d;(v), we
have that dy (v) > |Bz|+|Bs| > |Bz|+|B1|if v € By, di(v) =n—1ifv € BsUBj3
and dq(v) > % if v ¢ U2_| B; (since in the latter case v € By). These conditions
immediately imply - through either Pésa’s or Chvétal’s condition (see [13]) that
there is a Hamiltonian cycle. [

Thus we may assume that there exists x € V(G)\U}_ B; (otherwise Lemmas
2.1 and 2.2 would finish the proof). Set U = V(G) \ ({«} U Uj23) and assume
w.l.o.g. |Uss| < |Ua| < |Uis|. Since z ¢ Ba we have Uyo # 0 and = ¢ By implies
that |U| > |n/2].

We show that |Uss| < 1. Indeed, otherwise we may select two two-element
sets Aas C Usg, A1 C Ujo and a five-element set A3 C Uys. (The condition
|U| > |n/2] implies that |Uys| > % > 5 so Ajz can be defined.) For every
fixed us3 € Asgz there are at most two edges of color 1 among the edges of K in
the form {x, us3, 12,213} where x15 € Ao, 213 € A1 are arbitrary. Repeating
this argument for fixed w12, u13 we get that there are at most 4 +4 + 10 = 18
edges of K in the form {z, z23, 212, z13}. However, there are 2 x 2 x 5 = 20 such
edges giving a contradiction.

Now we fix y € Uiz, z € Uy and define a graph H on the vertices of V(G) \
(UasU{z,y, z}) as follows. Let uv € E(H) be an edge of H in the following cases:
(i) w € Uzs,c({z,y,u,v}) = 1, in this case the edge is called an zy-edge; (ii)
u € Uya, c({x, z,u,v}) = 1, now the edge is called an zz-edge. Set |V (H)| = N
and note that N > n — 4.

Lemma 2.3. The graph H has a cycle C of length at least N — 6 in color 1.
Proof. Set

Ty = U NV (H),Tys = Uys NV (H), T =UNV(H), Tias = Usas.

Consider an arbitrary vertex u € Ty UT13. Set w = z if u € T15 otherwise
set w = y. Apart from at most four choices of v € V(H) the edge {z,u,w,v}
of K is of color 1. Thus every vertex of T'C V(H) has degree at least N — 5 in
H. Consider the set S C Tjo3 of vertices whose degrees are at most 11 in the
bipartite subgraph [T, T1a3] of H. Observe that

I T|(ITh2s| = 5) < |E[T, Tags]| < (|Tazs| — [SPIT| +11|5]

implying that |S| < 6 if 66 < |T'| and this is true since |T'| > [n/2| — 4 > 65.
Now consider the subgraph F' of H induced by T'U (T123 \ S). In fact, we may
assume that |S| = 6 since deleting 6—|S| vertices does not influence the following
observation: each vertex v € T has degree at least N — 11 in F’ and each vertex



v € T23 \ S has degree more than 11. Now we can apply Chvétal’s condition
(see [13]) to prove that there is a Hamiltonian cycle in F C H. Indeed, with
M = |V(F)|, we have to show that dy, < k < % implies that dp;_p > M — k
where d; < dy < --- < dyy is the degree sequence of F'. This is immediate
because the number of vertices with possibly small degrees (i.e. v € T3\ S) is
at most

Usas| — 6 < L%J—6§ VV;LLJ—(S: {MHOJ—@': {MJ—L (1)

2 2

Indeed, let us take a k for which d < k < % 11 < dy < k implies that k > 11.
But then from (1) we get

dyok > dpwy > N=11> M —11> M — k,

as desired. [

To finish the proof of Theorem 1.2, observe that the cycle C obtained from

Lemma 2.3 defines a Berge-cycle if its xy-edges and xz-edges are extended (with
{z,y} or with {z,z} to edges of K. Thus we have a Berge-cycle of length
N — 6 >n — 10 as required. [
Proof of Theorem 1.3. Suppose that a 2-coloring c is given on the edges
of K = K,(;l). Let V be the vertex set of K and observe that ¢ defines a 2-
multicoloring on the complete 3-uniform hypergraph 7 with vertex set V by
coloring a triple T" with the colors of the edges of K containing T'. We say that
T € T is good in color i if T is contained in at least two edges of K of color 4
(i=1,2).

Lemma 2.4. Every edge vy € E(G) is in at least n —4 good triples of the same
color.

Proof. Consider an edge zy in G. Coloring ¢ induces a 2-coloring ¢ on W =
V\{z,y}. Applying a result of Bollobéds and Gyéarfas, [2], there exists a subgraph
H with at least [W| —2 = n — 4 vertices such that H is 2-connected and
monochromatic under ¢/, say in color 1. In particular, every vertex of H has
degree at least two in color 1. Thus, for every vertex z of H, {z,y, z} is a good
triple in color 1. [

Using Lemma 2.4, we can define a 2-coloring ¢* on the shadow graph G =
I'(K) by coloring xy € E(G) with the color of the (at least n — 4) good triples
containing zy. Using a well-known result about the Ramsey number of even
cycles ([4], [14]) there is a monochromatic even cycle C of length 2¢ where
2t = [2%] — 6 or 2t = [2*] — 7. (In fact there is a bit longer cycle, but that is
too long for our purposes.) Assume that C is in color 1. Label the edges of C'
as e; = {pj,pj+1}, 7 =1,2,...,2t. We use here index arithmetic mod 2t.

We shall find a large Berge-cycle in color 1 with the following greedy proce-
dure. By Lemma 2.4, for each i € [2¢] there is aset A; C V such that |A;| > n—4
and the triple T; = {p;, pit+1,x} is good in color 1 for every x € A;. We claim



that we can find a set {v; € Ay;_1\V(C)} for j € [t] with the following property:
for every j € [t],
Vj € Agj_g N Agj_l n Agj.

Assume that for j < h < t we have this property and there are at least seven
vertices in S = V' \ (V(C) U {Ul_,v;}). Indeed, if [S| > 7, then - because each
of the three sets intersects S in at least five elements - U = .S N Ay, N Agpp1 N
Aspio # (0 so we can select vy 1 € U. Now we only have to observe that during
the whole process

2
\S|2n—3t2n—g([§n1—6)27,

and thus the claim is proved.

Now we finish the proof by claiming that the cyclic permutation P =
P1,V1, P2, D3, V2, P4, - - -, P2t—1, Ut, P1 determines a Berge-cycle. Indeed, from the
definition of v;, every triple of three consecutive vertices on P is good in color
1. Therefore at least two edges K of color 1 are available to cover a consecutive
triple. However, no edge of K can cover more than two consecutive triples of P.
Thus, by Hall’s theorem, there is a matching from the consecutive triples of P
to the set of color 1 edges of K containing them. The length of this Berge-cycle
is3t>2([2]-7)>n—-10. O
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