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Computer Science Department
Worcester Polytechnic Institute

Worcester, MA, USA 01609
gsarkozy@cs.wpi.edu

and
Computer and Automation Research Institute

Hungarian Academy of Sciences
Budapest, P.O. Box 63

Budapest, Hungary, H-1518

Endre Szemerédi
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Abstract

Here we prove that for n ≥ 140, in every 3-coloring of the edges of
K

(4)
n there is a monochromatic Berge cycle of length at least n− 10. This

result sharpens an asymptotic result obtained earlier. Another result is
that for n ≥ 15, in every 2-coloring of the edges of K

(4)
n there is a 3-tight

Berge cycle of length at least n− 10.

1 Introduction

Let H be an r-uniform hypergraph (a family of some r-element subsets of a
set). The shadow graph of H is defined as the graph Γ(H) on the same vertex
set, where two vertices are adjacent if they are covered by at least one edge of
H. A coloring of the edges of an r-uniform hypergraph H, r ≥ 2, induces a
multicoloring on the edges of the shadow graph Γ(H) in a natural way; every
edge e of Γ(H) receives the color of all hyperedges containing e. We shall
denote by c(x, y) the color set of the edge xy in Γ(H). A subgraph of Γ(H) is
monochromatic if the color sets of its edges have a nonempty intersection. Let
K

(r)
n denote the complete r-uniform hypergraph on n vertices.
In any r-uniform hypergraph H for 2 ≤ t ≤ r we define an r-uniform t-tight

Berge-cycle of length `, denoted by C
(r,t)
` , as a sequence of distinct vertices

v1, v2, . . . , v`, such that for each set (vi, vi+1, . . . , vi+t−1) of t consecutive vertices
on the cycle, there is an edge ei of H that contains these t vertices and the edges
ei are all distinct for i, 1 ≤ i ≤ ` where ` + j ≡ j. This notion was introduced
in [5] and for t = 2 we get ordinary Berge-cycles ([1]) and for t = r we get the
tight cycle (see e.g. [11] or [15]). A Berge-cycle of length n in a hypergraph of
n vertices is called a Hamiltonian Berge-cycle. It is important to keep in mind
that, in contrast to the case r = t = 2, for r > t ≥ 2 a Berge-cycle C

(r,t)
` , is not

determined uniquely, it is considered as an arbitrary choice from many possible
cycles with the same triple of parameters.

In this paper, continuing investigations from [5], [6], [8] and [9], we study
long Berge-cycles in hypergraphs. In [5] (by generalizing an earlier conjecture
from [6]) the following conjecture was formulated.

Conjecture 1.1. For any fixed 2 ≤ c, t ≤ r satisfying c + t ≤ r + 1 and
sufficiently large n, if we color the edges of K

(r)
n with c colors, then there is a

monochromatic Hamiltonian t-tight Berge-cycle.

In [5] it was proved that if the conjecture is true it is best possible, since for
any values of 2 ≤ c, t ≤ r satisfying c + t > r + 1 the statement is not true. The
conjecture was proved for r = 3 in [6]. The asymptotic form of the conjecture
was proved for r = 4 and t = 2 in [6] and for every r and t = 2 in [9] - in both
papers the Regularity Lemma was used. In this paper we apply an elementary
approach and we study the r = 4 case. We prove the conjecture in both cases
(c = 3, t = 2 and c = 2, t = 3) with a constant error term.

Theorem 1.2. Suppose that an 3-coloring is given on the edges of K
(4)
n , where

n ≥ 140. Then there is a monochromatic Berge-cycle of length at least n− 10.
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This sharpens the asymptotic result obtained earlier for r = 4 in [6].

Theorem 1.3. Suppose that an 2-coloring is given on the edges of K
(4)
n , where

n ≥ 15. Then there is a monochromatic 3-tight Berge-cycle of length at least
n− 10.

2 Proofs

Proof of Theorem 1.2. Suppose that c is a 3-coloring on the edges of K =
K

(4)
n , where n ≥ 140. Color i ∈ c(x, y) on the edge xy of G = Γ(K) is a good

color if at least 3 edges of color i contain {x, y} in K. We consider G with a new
coloring c∗ where c∗(x, y) ⊆ c(x, y) is the set of good colors on xy. Assuming
that

(
n−2

2

)
> 6, i.e. n > 6, every edge of K has at least one color in c∗.

Suppose first that some edge xy of G = Γ(K) is colored (under c∗) with a
single color, say with color 1. We claim that there is a Hamiltonian Berge cycle
in K in color 1. Indeed, the definition of xy implies that under c∗ at most four
edges of H = G\{x, y} are not colored with 1. Since for n > 10 we have n−6 >
(n − 2)/2, the color 1 subgraph of H satisfies Dirac’s condition (see [13]), and
thus one can easily find a Hamiltonian path P = {y1, . . . yn−2} of color 1 in H
such that there are two extra edges y1yp and yn−2yk of color 1 from the endpoints
of P with 2 < p, k < n− 3. Now the cyclic ordering x, y1, y2, . . . , yn−2, y defines
a Hamiltonian Berge-cycle in color 1 with the following edge assignments. For
x, y1 assign en = {x, y1, yp, y}. For yj , yj+1 (1 ≤ j ≤ n − 3) assign ej =
{x, y, yj , yj+1}, for yn−2, y assign en−2 = {yn−2, y, yk, x}, and finally for x, y we
can assign en−1 as any edge of color 1 containing x, y and different from all
other ei-s.

Now we may assume that c∗ colors all edges of G with one of the four color
sets: 12, 13, 23, 123.

Lemma 2.1. Assume that there is a monochromatic Hamiltonian cycle C in G
under coloring c∗. Then there is a Hamiltonian Berge-cycle in K under coloring
c.

Proof. Assume that C = x1, x2, . . . , xn is a Hamiltonian cycle of G in color 1
(under c∗). Then, following the cyclic order of vertices on C, let Aj be the set
of edges of K in color 1 containing xj , xj+1. Since each Aj has at least three
elements and no element of Aj covers more than three consecutive pairs of C,
Hall’s theorem ensures a one-to one correspondence from the consecutive pairs
to the sets Aj . This clearly defines the required Hamiltonian Berge-cycle. ¤

We need some observations on the structure of the coloring c∗. Let x be an
arbitrary vertex, define U12(x), U13(x), U23(x), U123(x) as the sets to which x is
connected in color sets 12, 13, 23, 123 respectively. Define

Bi = {x ∈ V (G)|Uij = Uik = ∅, Ujk 6= ∅},
where i, j, k are the elements of {1, 2, 3} in some order. Observe that the Bi-
s are pairwise disjoint, within the Bi-s every edge of G has color set {j, k}
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or 123, and for j 6= i, an edge of G from Bi to Bj has color set 123. Set
B4 = {x ∈ V (G)||U123(x)| ≥ n/2}.
Lemma 2.2. Suppose that ∪4

i=1Bi = V (G). Then there is a Hamiltonian cycle
G in the coloring c∗.

Proof. Suppose w.l.o.g that |B1| ≤ |B2| ≤ |B3|. We show that there is a Hamil-
tonian cycle in color 1. Denoting the degree of a vertex v in color i by di(v), we
have that d1(v) ≥ |B2|+|B3| ≥ |B2|+|B1| if v ∈ B1, d1(v) = n−1 if v ∈ B2∪B3

and d1(v) ≥ n
2 if v /∈ ∪3

i=1Bi (since in the latter case v ∈ B4). These conditions
immediately imply - through either Pósa’s or Chvátal’s condition (see [13]) that
there is a Hamiltonian cycle. ¤

Thus we may assume that there exists x ∈ V (G)\∪4
i=1Bi (otherwise Lemmas

2.1 and 2.2 would finish the proof). Set U = V (G) \ ({x} ∪ U123) and assume
w.l.o.g. |U23| ≤ |U12| ≤ |U13|. Since x /∈ B2 we have U12 6= ∅ and x /∈ B4 implies
that |U | ≥ bn/2c.

We show that |U23| ≤ 1. Indeed, otherwise we may select two two-element
sets A23 ⊆ U23, A12 ⊆ U12 and a five-element set A13 ⊆ U13. (The condition
|U | ≥ bn/2c implies that |U13| ≥ bn/2c

3 ≥ 5 so A13 can be defined.) For every
fixed u23 ∈ A23 there are at most two edges of color 1 among the edges of K in
the form {x, u23, x12, x13} where x12 ∈ A12, x13 ∈ A13 are arbitrary. Repeating
this argument for fixed u12, u13 we get that there are at most 4 + 4 + 10 = 18
edges of K in the form {x, x23, x12, x13}. However, there are 2× 2× 5 = 20 such
edges giving a contradiction.

Now we fix y ∈ U12, z ∈ U13 and define a graph H on the vertices of V (G) \
(U23∪{x, y, z}) as follows. Let uv ∈ E(H) be an edge of H in the following cases:
(i) u ∈ U13, c({x, y, u, v}) = 1, in this case the edge is called an xy-edge; (ii)
u ∈ U12, c({x, z, u, v}) = 1, now the edge is called an xz-edge. Set |V (H)| = N
and note that N ≥ n− 4.

Lemma 2.3. The graph H has a cycle C of length at least N − 6 in color 1.

Proof. Set

T12 = U12 ∩ V (H), T13 = U13 ∩ V (H), T = U ∩ V (H), T123 = U123.

Consider an arbitrary vertex u ∈ T12 ∪ T13. Set w = z if u ∈ T12 otherwise
set w = y. Apart from at most four choices of v ∈ V (H) the edge {x, u, w, v}
of K is of color 1. Thus every vertex of T ⊆ V (H) has degree at least N − 5 in
H. Consider the set S ⊆ T123 of vertices whose degrees are at most 11 in the
bipartite subgraph [T, T123] of H. Observe that

|T |(|T123| − 5) ≤ |E[T, T123]| ≤ (|T123| − |S|)|T |+ 11|S|

implying that |S| ≤ 6 if 66 ≤ |T | and this is true since |T | > bn/2c − 4 > 65.
Now consider the subgraph F of H induced by T ∪ (T123 \ S). In fact, we may
assume that |S| = 6 since deleting 6−|S| vertices does not influence the following
observation: each vertex v ∈ T has degree at least N − 11 in F and each vertex
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v ∈ T123 \ S has degree more than 11. Now we can apply Chvátal’s condition
(see [13]) to prove that there is a Hamiltonian cycle in F ⊂ H. Indeed, with
M = |V (F )|, we have to show that dk ≤ k < M

2 implies that dM−k ≥ M − k
where d1 ≤ d2 ≤ · · · ≤ dM is the degree sequence of F . This is immediate
because the number of vertices with possibly small degrees (i.e. v ∈ T123 \ S) is
at most

|U123| − 6 ≤
⌊n

2

⌋
− 6 ≤

⌊
N + 4

2

⌋
− 6 =

⌊
M + 10

2

⌋
− 6 =

⌊
M

2

⌋
− 1. (1)

Indeed, let us take a k for which dk ≤ k < M
2 . 11 < dk ≤ k implies that k > 11.

But then from (1) we get

dM−k ≥ ddM
2 e ≥ N − 11 ≥ M − 11 > M − k,

as desired. ¤
To finish the proof of Theorem 1.2, observe that the cycle C obtained from

Lemma 2.3 defines a Berge-cycle if its xy-edges and xz-edges are extended (with
{x, y} or with {x, z} to edges of K. Thus we have a Berge-cycle of length
N − 6 ≥ n− 10 as required. ¤
Proof of Theorem 1.3. Suppose that a 2-coloring c is given on the edges
of K = K

(4)
n . Let V be the vertex set of K and observe that c defines a 2-

multicoloring on the complete 3-uniform hypergraph T with vertex set V by
coloring a triple T with the colors of the edges of K containing T . We say that
T ∈ T is good in color i if T is contained in at least two edges of K of color i
(i = 1, 2).

Lemma 2.4. Every edge xy ∈ E(G) is in at least n−4 good triples of the same
color.

Proof. Consider an edge xy in G. Coloring c induces a 2-coloring c′ on W =
V \{x, y}. Applying a result of Bollobás and Gyárfás, [2], there exists a subgraph
H with at least |W | − 2 = n − 4 vertices such that H is 2-connected and
monochromatic under c′, say in color 1. In particular, every vertex of H has
degree at least two in color 1. Thus, for every vertex z of H, {x, y, z} is a good
triple in color 1. ¤

Using Lemma 2.4, we can define a 2-coloring c∗ on the shadow graph G =
Γ(K) by coloring xy ∈ E(G) with the color of the (at least n − 4) good triples
containing xy. Using a well-known result about the Ramsey number of even
cycles ([4], [14]) there is a monochromatic even cycle C of length 2t where
2t = d 2n

3 e − 6 or 2t = d 2n
3 e − 7. (In fact there is a bit longer cycle, but that is

too long for our purposes.) Assume that C is in color 1. Label the edges of C
as ej = {pj , pj+1}, j = 1, 2, . . . , 2t. We use here index arithmetic mod 2t.

We shall find a large Berge-cycle in color 1 with the following greedy proce-
dure. By Lemma 2.4, for each i ∈ [2t] there is a set Ai ⊂ V such that |Ai| ≥ n−4
and the triple Ti = {pi, pi+1, x} is good in color 1 for every x ∈ Ai. We claim
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that we can find a set {vj ∈ A2j−1\V (C)} for j ∈ [t] with the following property:
for every j ∈ [t],

vj ∈ A2j−2 ∩A2j−1 ∩A2j .

Assume that for j ≤ h < t we have this property and there are at least seven
vertices in S = V \ (V (C) ∪ {∪h

j=1vj}). Indeed, if |S| ≥ 7, then - because each
of the three sets intersects S in at least five elements - U = S ∩ A2h ∩ A2h+1 ∩
A2h+2 6= ∅ so we can select vh+1 ∈ U . Now we only have to observe that during
the whole process

|S| ≥ n− 3t ≥ n− 3
2
(d2n

3
e − 6) ≥ 7,

and thus the claim is proved.
Now we finish the proof by claiming that the cyclic permutation P =

p1, v1, p2, p3, v2, p4, . . . , p2t−1, vt, p1 determines a Berge-cycle. Indeed, from the
definition of vj , every triple of three consecutive vertices on P is good in color
1. Therefore at least two edges K of color 1 are available to cover a consecutive
triple. However, no edge of K can cover more than two consecutive triples of P .
Thus, by Hall’s theorem, there is a matching from the consecutive triples of P
to the set of color 1 edges of K containing them. The length of this Berge-cycle
is 3t ≥ 3

2 (d 2n
3 e − 7) ≥ n− 10. ¤
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