Long monochromatic Berge cycles in colored 4-uniform hypergraphs

András Gyárfás*
Computer and Automation Research Institute
Hungarian Academy of Sciences
Budapest, P.O. Box 63
Budapest, Hungary, H-1518
gyarfas@sztaki.hu
Gábor N. Sárközy ${ }^{\dagger}$
Computer Science Department
Worcester Polytechnic Institute
Worcester, MA, USA 01609
gsarkozy@cs.wpi.edu and
Computer and Automation Research Institute Hungarian Academy of Sciences
Budapest, P.O. Box 63
Budapest, Hungary, H-1518
Endre Szemerédi
Computer Science Department
Rutgers University
New Brunswick, NJ, USA 08903
szemered@cs.rutgers.edu

January 21, 2008

[^0]
Abstract

Here we prove that for $n \geq 140$, in every 3 -coloring of the edges of $K_{n}^{(4)}$ there is a monochromatic Berge cycle of length at least $n-10$. This result sharpens an asymptotic result obtained earlier. Another result is that for $n \geq 15$, in every 2 -coloring of the edges of $K_{n}^{(4)}$ there is a 3 -tight Berge cycle of length at least $n-10$.

1 Introduction

Let \mathcal{H} be an r-uniform hypergraph (a family of some r-element subsets of a set). The shadow graph of \mathcal{H} is defined as the graph $\Gamma(\mathcal{H})$ on the same vertex set, where two vertices are adjacent if they are covered by at least one edge of \mathcal{H}. A coloring of the edges of an r-uniform hypergraph $\mathcal{H}, r \geq 2$, induces a multicoloring on the edges of the shadow graph $\Gamma(\mathcal{H})$ in a natural way; every edge e of $\Gamma(\mathcal{H})$ receives the color of all hyperedges containing e. We shall denote by $c(x, y)$ the color set of the edge $x y$ in $\Gamma(\mathcal{H})$. A subgraph of $\Gamma(\mathcal{H})$ is monochromatic if the color sets of its edges have a nonempty intersection. Let $K_{n}^{(r)}$ denote the complete r-uniform hypergraph on n vertices.

In any r-uniform hypergraph \mathcal{H} for $2 \leq t \leq r$ we define an r-uniform t-tight Berge-cycle of length ℓ, denoted by $C_{\ell}^{(r, t)}$, as a sequence of distinct vertices $v_{1}, v_{2}, \ldots, v_{\ell}$, such that for each set $\left(v_{i}, v_{i+1}, \ldots, v_{i+t-1}\right)$ of t consecutive vertices on the cycle, there is an edge e_{i} of \mathcal{H} that contains these t vertices and the edges e_{i} are all distinct for $i, 1 \leq i \leq \ell$ where $\ell+j \equiv j$. This notion was introduced in [5] and for $t=2$ we get ordinary Berge-cycles ([1]) and for $t=r$ we get the tight cycle (see e.g. [11] or [15]). A Berge-cycle of length n in a hypergraph of n vertices is called a Hamiltonian Berge-cycle. It is important to keep in mind that, in contrast to the case $r=t=2$, for $r>t \geq 2$ a Berge-cycle $C_{\ell}^{(r, t)}$, is not determined uniquely, it is considered as an arbitrary choice from many possible cycles with the same triple of parameters.

In this paper, continuing investigations from [5], [6], [8] and [9], we study long Berge-cycles in hypergraphs. In [5] (by generalizing an earlier conjecture from [6]) the following conjecture was formulated.

Conjecture 1.1. For any fixed $2 \leq c, t \leq r$ satisfying $c+t \leq r+1$ and sufficiently large n, if we color the edges of $K_{n}^{(r)}$ with c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle.

In [5] it was proved that if the conjecture is true it is best possible, since for any values of $2 \leq c, t \leq r$ satisfying $c+t>r+1$ the statement is not true. The conjecture was proved for $r=3$ in [6]. The asymptotic form of the conjecture was proved for $r=4$ and $t=2$ in [6] and for every r and $t=2$ in [9] - in both papers the Regularity Lemma was used. In this paper we apply an elementary approach and we study the $r=4$ case. We prove the conjecture in both cases ($c=3, t=2$ and $c=2, t=3$) with a constant error term.
Theorem 1.2. Suppose that an 3-coloring is given on the edges of $K_{n}^{(4)}$, where $n \geq 140$. Then there is a monochromatic Berge-cycle of length at least $n-10$.

This sharpens the asymptotic result obtained earlier for $r=4$ in [6].
Theorem 1.3. Suppose that an 2-coloring is given on the edges of $K_{n}^{(4)}$, where $n \geq 15$. Then there is a monochromatic 3-tight Berge-cycle of length at least $n-10$.

2 Proofs

Proof of Theorem 1.2. Suppose that c is a 3 -coloring on the edges of $\mathcal{K}=$ $K_{n}^{(4)}$, where $n \geq 140$. Color $i \in c(x, y)$ on the edge $x y$ of $G=\Gamma(\mathcal{K})$ is a good color if at least 3 edges of color i contain $\{x, y\}$ in \mathcal{K}. We consider G with a new coloring c^{*} where $c^{*}(x, y) \subseteq c(x, y)$ is the set of good colors on $x y$. Assuming that $\binom{n-2}{2}>6$, i.e. $n>6$, every edge of \mathcal{K} has at least one color in c^{*}.

Suppose first that some edge $x y$ of $G=\Gamma(\mathcal{K})$ is colored (under c^{*}) with a single color, say with color 1. We claim that there is a Hamiltonian Berge cycle in \mathcal{K} in color 1. Indeed, the definition of $x y$ implies that under c^{*} at most four edges of $H=G \backslash\{x, y\}$ are not colored with 1 . Since for $n>10$ we have $n-6>$ $(n-2) / 2$, the color 1 subgraph of H satisfies Dirac's condition (see [13]), and thus one can easily find a Hamiltonian path $P=\left\{y_{1}, \ldots y_{n-2}\right\}$ of color 1 in H such that there are two extra edges $y_{1} y_{p}$ and $y_{n-2} y_{k}$ of color 1 from the endpoints of P with $2<p, k<n-3$. Now the cyclic ordering $x, y_{1}, y_{2}, \ldots, y_{n-2}, y$ defines a Hamiltonian Berge-cycle in color 1 with the following edge assignments. For x, y_{1} assign $e_{n}=\left\{x, y_{1}, y_{p}, y\right\}$. For $y_{j}, y_{j+1}(1 \leq j \leq n-3)$ assign $e_{j}=$ $\left\{x, y, y_{j}, y_{j+1}\right\}$, for y_{n-2}, y assign $e_{n-2}=\left\{y_{n-2}, y, y_{k}, x\right\}$, and finally for x, y we can assign e_{n-1} as any edge of color 1 containing x, y and different from all other e_{i}-s.

Now we may assume that c^{*} colors all edges of G with one of the four color sets: $12,13,23,123$.

Lemma 2.1. Assume that there is a monochromatic Hamiltonian cycle C in G under coloring c*. Then there is a Hamiltonian Berge-cycle in \mathcal{K} under coloring c.

Proof. Assume that $C=x_{1}, x_{2}, \ldots, x_{n}$ is a Hamiltonian cycle of G in color 1 (under c^{*}). Then, following the cyclic order of vertices on C, let A_{j} be the set of edges of \mathcal{K} in color 1 containing x_{j}, x_{j+1}. Since each A_{j} has at least three elements and no element of A_{j} covers more than three consecutive pairs of C, Hall's theorem ensures a one-to one correspondence from the consecutive pairs to the sets A_{j}. This clearly defines the required Hamiltonian Berge-cycle.

We need some observations on the structure of the coloring c^{*}. Let x be an arbitrary vertex, define $U_{12}(x), U_{13}(x), U_{23}(x), U_{123}(x)$ as the sets to which x is connected in color sets $12,13,23,123$ respectively. Define

$$
B_{i}=\left\{x \in V(G) \mid U_{i j}=U_{i k}=\emptyset, U_{j k} \neq \emptyset\right\},
$$

where i, j, k are the elements of $\{1,2,3\}$ in some order. Observe that the $B_{i^{-}}$ s are pairwise disjoint, within the B_{i}-s every edge of G has color set $\{j, k\}$
or 123 , and for $j \neq i$, an edge of G from B_{i} to B_{j} has color set 123 . Set $B_{4}=\left\{x \in V(G)| | U_{123}(x) \mid \geq n / 2\right\}$.
Lemma 2.2. Suppose that $\cup_{i=1}^{4} B_{i}=V(G)$. Then there is a Hamiltonian cycle G in the coloring c^{*}.

Proof. Suppose w.l.o.g that $\left|B_{1}\right| \leq\left|B_{2}\right| \leq\left|B_{3}\right|$. We show that there is a Hamiltonian cycle in color 1. Denoting the degree of a vertex v in color i by $d_{i}(v)$, we have that $d_{1}(v) \geq\left|B_{2}\right|+\left|B_{3}\right| \geq\left|B_{2}\right|+\left|B_{1}\right|$ if $v \in B_{1}, d_{1}(v)=n-1$ if $v \in B_{2} \cup B_{3}$ and $d_{1}(v) \geq \frac{n}{2}$ if $v \notin \cup_{i=1}^{3} B_{i}$ (since in the latter case $v \in B_{4}$). These conditions immediately imply - through either Pósa's or Chvátal's condition (see [13]) that there is a Hamiltonian cycle.

Thus we may assume that there exists $x \in V(G) \backslash \cup_{i=1}^{4} B_{i}$ (otherwise Lemmas 2.1 and 2.2 would finish the proof). Set $U=V(G) \backslash\left(\{x\} \cup U_{123}\right)$ and assume w.l.o.g. $\left|U_{23}\right| \leq\left|U_{12}\right| \leq\left|U_{13}\right|$. Since $x \notin B_{2}$ we have $U_{12} \neq \emptyset$ and $x \notin B_{4}$ implies that $|U| \geq\lfloor n / 2\rfloor$.

We show that $\left|U_{23}\right| \leq 1$. Indeed, otherwise we may select two two-element sets $A_{23} \subseteq U_{23}, A_{12} \subseteq U_{12}$ and a five-element set $A_{13} \subseteq U_{13}$. (The condition $|U| \geq\lfloor n / 2\rfloor$ implies that $\left|U_{13}\right| \geq \frac{\lfloor n / 2\rfloor}{3} \geq 5$ so A_{13} can be defined.) For every fixed $u_{23} \in A_{23}$ there are at most two edges of color 1 among the edges of \mathcal{K} in the form $\left\{x, u_{23}, x_{12}, x_{13}\right\}$ where $x_{12} \in A_{12}, x_{13} \in A_{13}$ are arbitrary. Repeating this argument for fixed u_{12}, u_{13} we get that there are at most $4+4+10=18$ edges of \mathcal{K} in the form $\left\{x, x_{23}, x_{12}, x_{13}\right\}$. However, there are $2 \times 2 \times 5=20$ such edges giving a contradiction.

Now we fix $y \in U_{12}, z \in U_{13}$ and define a graph H on the vertices of $V(G) \backslash$ $\left(U_{23} \cup\{x, y, z\}\right)$ as follows. Let $u v \in E(H)$ be an edge of H in the following cases: (i) $u \in U_{13}, c(\{x, y, u, v\})=1$, in this case the edge is called an $x y$-edge; (ii) $u \in U_{12}, c(\{x, z, u, v\})=1$, now the edge is called an $x z$-edge. Set $|V(H)|=N$ and note that $N \geq n-4$.

Lemma 2.3. The graph H has a cycle C of length at least $N-6$ in color 1.
Proof. Set

$$
T_{12}=U_{12} \cap V(H), T_{13}=U_{13} \cap V(H), T=U \cap V(H), T_{123}=U_{123}
$$

Consider an arbitrary vertex $u \in T_{12} \cup T_{13}$. Set $w=z$ if $u \in T_{12}$ otherwise set $w=y$. Apart from at most four choices of $v \in V(H)$ the edge $\{x, u, w, v\}$ of \mathcal{K} is of color 1 . Thus every vertex of $T \subseteq V(H)$ has degree at least $N-5$ in H. Consider the set $S \subseteq T_{123}$ of vertices whose degrees are at most 11 in the bipartite subgraph $\left[T, T_{123}\right.$] of H. Observe that

$$
|T|\left(\left|T_{123}\right|-5\right) \leq\left|E\left[T, T_{123}\right]\right| \leq\left(\left|T_{123}\right|-|S|\right)|T|+11|S|
$$

implying that $|S| \leq 6$ if $66 \leq|T|$ and this is true since $|T|>\lfloor n / 2\rfloor-4>65$. Now consider the subgraph F of H induced by $T \cup\left(T_{123} \backslash S\right)$. In fact, we may assume that $|S|=6$ since deleting $6-|S|$ vertices does not influence the following observation: each vertex $v \in T$ has degree at least $N-11$ in F and each vertex
$v \in T_{123} \backslash S$ has degree more than 11. Now we can apply Chvátal's condition (see [13]) to prove that there is a Hamiltonian cycle in $F \subset H$. Indeed, with $M=|V(F)|$, we have to show that $d_{k} \leq k<\frac{M}{2}$ implies that $d_{M-k} \geq M-k$ where $d_{1} \leq d_{2} \leq \cdots \leq d_{M}$ is the degree sequence of F. This is immediate because the number of vertices with possibly small degrees (i.e. $v \in T_{123} \backslash S$) is at most

$$
\begin{equation*}
\left|U_{123}\right|-6 \leq\left\lfloor\frac{n}{2}\right\rfloor-6 \leq\left\lfloor\frac{N+4}{2}\right\rfloor-6=\left\lfloor\frac{M+10}{2}\right\rfloor-6=\left\lfloor\frac{M}{2}\right\rfloor-1 \tag{1}
\end{equation*}
$$

Indeed, let us take a k for which $d_{k} \leq k<\frac{M}{2} .11<d_{k} \leq k$ implies that $k>11$. But then from (1) we get

$$
d_{M-k} \geq d_{\left\lceil\frac{M}{2}\right\rceil} \geq N-11 \geq M-11>M-k
$$

as desired.
To finish the proof of Theorem 1.2, observe that the cycle C obtained from Lemma 2.3 defines a Berge-cycle if its $x y$-edges and $x z$-edges are extended (with $\{x, y\}$ or with $\{x, z\}$ to edges of \mathcal{K}. Thus we have a Berge-cycle of length $N-6 \geq n-10$ as required.
Proof of Theorem 1.3. Suppose that a 2-coloring c is given on the edges of $\mathcal{K}=K_{n}^{(4)}$. Let V be the vertex set of \mathcal{K} and observe that c defines a 2 multicoloring on the complete 3 -uniform hypergraph \mathcal{T} with vertex set V by coloring a triple T with the colors of the edges of \mathcal{K} containing T. We say that $T \in \mathcal{T}$ is good in color i if T is contained in at least two edges of \mathcal{K} of color i ($i=1,2$).
Lemma 2.4. Every edge $x y \in E(G)$ is in at least $n-4$ good triples of the same color.

Proof. Consider an edge $x y$ in G. Coloring c induces a 2 -coloring c^{\prime} on $W=$ $V \backslash\{x, y\}$. Applying a result of Bollobás and Gyárfás, [2], there exists a subgraph H with at least $|W|-2=n-4$ vertices such that H is 2 -connected and monochromatic under c^{\prime}, say in color 1. In particular, every vertex of H has degree at least two in color 1 . Thus, for every vertex z of $H,\{x, y, z\}$ is a good triple in color 1.

Using Lemma 2.4, we can define a 2 -coloring c^{*} on the shadow graph $G=$ $\Gamma(\mathcal{K})$ by coloring $x y \in E(G)$ with the color of the (at least $n-4)$ good triples containing $x y$. Using a well-known result about the Ramsey number of even cycles ([4], [14]) there is a monochromatic even cycle C of length $2 t$ where $2 t=\left\lceil\frac{2 n}{3}\right\rceil-6$ or $2 t=\left\lceil\frac{2 n}{3}\right\rceil-7$. (In fact there is a bit longer cycle, but that is too long for our purposes.) Assume that C is in color 1. Label the edges of C as $e_{j}=\left\{p_{j}, p_{j+1}\right\}, j=1,2, \ldots, 2 t$. We use here index arithmetic $\bmod 2 t$.

We shall find a large Berge-cycle in color 1 with the following greedy procedure. By Lemma 2.4, for each $i \in[2 t]$ there is a set $A_{i} \subset V$ such that $\left|A_{i}\right| \geq n-4$ and the triple $T_{i}=\left\{p_{i}, p_{i+1}, x\right\}$ is good in color 1 for every $x \in A_{i}$. We claim
that we can find a set $\left\{v_{j} \in A_{2 j-1} \backslash V(C)\right\}$ for $j \in[t]$ with the following property: for every $j \in[t]$,

$$
v_{j} \in A_{2 j-2} \cap A_{2 j-1} \cap A_{2 j} .
$$

Assume that for $j \leq h<t$ we have this property and there are at least seven vertices in $S=V \backslash\left(V(C) \cup\left\{\cup_{j=1}^{h} v_{j}\right\}\right)$. Indeed, if $|S| \geq 7$, then - because each of the three sets intersects S in at least five elements - $U=S \cap A_{2 h} \cap A_{2 h+1} \cap$ $A_{2 h+2} \neq \emptyset$ so we can select $v_{h+1} \in U$. Now we only have to observe that during the whole process

$$
|S| \geq n-3 t \geq n-\frac{3}{2}\left(\left\lceil\frac{2 n}{3}\right\rceil-6\right) \geq 7
$$

and thus the claim is proved.
Now we finish the proof by claiming that the cyclic permutation $P=$ $p_{1}, v_{1}, p_{2}, p_{3}, v_{2}, p_{4}, \ldots, p_{2 t-1}, v_{t}, p_{1}$ determines a Berge-cycle. Indeed, from the definition of v_{j}, every triple of three consecutive vertices on P is good in color 1. Therefore at least two edges \mathcal{K} of color 1 are available to cover a consecutive triple. However, no edge of \mathcal{K} can cover more than two consecutive triples of P. Thus, by Hall's theorem, there is a matching from the consecutive triples of P to the set of color 1 edges of \mathcal{K} containing them. The length of this Berge-cycle is $3 t \geq \frac{3}{2}\left(\left\lceil\frac{2 n}{3}\right\rceil-7\right) \geq n-10$.

References

[1] C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam and London, 1973.
[2] B. Bollobás, A. Gyárfás, Highly connected monochromatic subgraphs, to appear in Discrete Mathematics.
[3] A. Figaj, T. Łuczak, The Ramsey number for a triple of long even cycles, Journal of Combinatorial Theory, Ser. B, 97 (2007), pp. 584-596.
[4] R.J. Faudree, R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Mathematics 8 (1974), pp. 313-329.
[5] P. Dorbec, S. Gravier, G.N. Sárközy, Monochromatic Hamiltonian t-tight Berge-cycles in hypergraphs, submitted for publication.
[6] A. Gyárfás, J. Lehel, G.N. Sárközy, R. H. Schelp, Monochromatic Hamiltonian Berge-cycles in colored complete uniform hypergraphs, accepted for publication in the Journal of Combinatorial Theory, Ser. B.
[7] A. Gyárfás, M. Ruszinkó, G.N. Sárközy, E. Szemerédi, Three-color Ramsey numbers for paths, Combinatorica, 27 (2007), pp. 35-69.
[8] A. Gyárfás, G.N. Sárközy, The 3-color Ramsey number of a 3-uniform Berge-cycle, submitted for publication.
[9] A. Gyárfás, G.N. Sárközy, E. Szemerédi, Monochromatic matchings in the shadow graph of almost complete hypergraphs, submitted for publication.
[10] P. Haxell, T. Łuczak, Y. Peng, V. Rödl, A. Rucin̂ski, M. Simonovits, J. Skokan, The Ramsey number for hypergraph cycles I, Journal of Combinatorial Theory, Ser. A 113 (2006), pp. 67-83.
[11] P. Haxell, T. Łuczak, Y. Peng, V. Rödl, A. Rucin̂ski, J. Skokan, The Ramsey number for hypergraph cycles II, manuscript.
[12] T. Luczak, $R\left(C_{n}, C_{n}, C_{n}\right) \leq(4+o(1)) n$, Journal of Combinatorial Theory, Ser. $B 75$ (1999), pp. 174-187.
[13] L. Lovász, Combinatorial Problems and Exercises, 2. edition, NorthHolland, 1979.
[14] V. Rosta, On a Ramsey type problem of Bondy and Erdős, I and II, Journal of Combinatorial Theory B 15 (1973), pp. 94-120.
[15] V. Rödl, A. Rucinski, E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combinatorics, Probability and Computing 15 (2006), pp. 229251.

[^0]: *Research supported in part by OTKA Grant No. K68322.
 ${ }^{\dagger}$ Research supported in part by the National Science Foundation under Grant No. DMS0456401 and by OTKA Grant No. K68322.

