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Computer Science Department

Rutgers University
New Brunswick, NJ, USA 08903
szemered@cs.rutgers.edu

Abstract

In this paper we investigate how the use of the Regularity Lemma and the Blow-
up Lemma can be avoided in certain extremal problems of dense graphs. We present
the ideas for the following well-known Pósa conjecture on the square of a Hamiltonian
cycle. In 1962 Pósa conjectured that any graph G of order n and minimum degree at
least 2

3n contains the square of a Hamiltonian cycle. In an earlier paper we proved this
conjecture with the use of the Regularity Lemma-Blow-up Lemma method for n ≥ n0

where n0 is very large. Here we present another proof (and a general method) that
avoids the use of the Regularity Lemma and thus the resulting n0 is much smaller.

1 Introduction

1.1 Notations and definitions

V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A,B,E) denotes
a bipartite graph G = (V, E), where V = A + B, and E ⊂ A × B. For a graph G and
a subset U of its vertices, G|U is the restriction of G to U . N(v) is the set of neighbors
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of v ∈ V , and NS(v) is the set of neghbors of v ∈ V ∩ S. Hence the size of N(v) is
|N(v)| = deg(v) = degG(v), the degree of v. δ(G) stands for the minimum, ∆(G) for the
maximum and d(G) = 1

|V (G)|
∑

v∈V (G) deg(v) for the average degree in G. Kr(t) is the balanced

complete r-partite graph with color classes of size t. We write N(p1, p2, . . .) = ∩iN(pi),
the set of common neighbors. When A,B are subsets of V (G), we denote by e(A,B) the
number of edges of G with one endpoint in A and the other in B. In particular, we write
deg(v, U) = e({v}, U) for the number of edges from v to U . For non-empty A and B,

d(A,B) =
e(A,B)

|A||B|
is the density of the graph between A and B. In particular, we write d(A) = d(A,A) =
2|E(G|A)|/|A|2.

1.2 Powers of cycles

The kth power of C is the graph obtained from C by joining every pair of vertices at a
distance at most k in C. Let G be a graph on n ≥ 3 vertices. A classical result of Dirac [4]
asserts that if δ(G) ≥ n/2, then G contains a Hamiltonian cycle. As a natural generalization
of Dirac’s theorem, in 1962 Pósa (see Erdős [5]) conjectured the following:

Conjecture 1 (Pósa). Let G be a graph on n vertices. If δ(G) ≥ 2
3
n, then G contains the

square of a Hamiltonian cycle.

Later in 1974 Seymour [24] generalized this conjecture:

Conjecture 2 (Seymour). Let G be a graph on n vertices. If δ(G) ≥ k
k+1

n, then G

contains the kth power of a Hamiltonian cycle.

Seymour indicated the difficulty of the conjecture by observing that the truth of this con-
jecture would imply the remarkably difficult Hajnal-Szemerédi Theorem [14], namely that if
∆(G) < r, then G is r colorable such that the sizes of the color classes are all bn

r
c or dn

r
e.

These problems received significant attention. In the direction of Conjecture 1, first
Jacobson (unpublished) showed that if δ(G) ≥ 5n/6, then the conclusion of the conjecture
holds. Faudree, Gould, Jacobson and Schelp [12] confirmed the conclusion with δ(G) ≥
(3/4 + ε)n + C(ε). Later the same authors improved this to δ(G) ≥ 3n/4. By using a result
in [13], Häggkvist (unpublished) gave a very simple proof in the case δ(G) ≥ 1 + 3n/4 and
n ≡ 0 (mod 4). Fan and Häggkvist in [6] lowered the bound to δ(G) ≥ 5n/7. Fan and
Kierstead improved this further to δ(G) ≥ (17n + 9)/24 in [7], and Faudree, Gould and
Jacobson [11] to δ(G) ≥ 7n/10. Then Fan and Kierstead [8] improved the condition to the

almost optimal δ(G) ≥
(

2
3

+ ε
)
n+C(ε). They also proved [9] that already δ(G) ≥ (2n−1)/3

is sufficient for the existence of the square of a Hamiltonian path. Furthermore, they also
proved [10] that if δ(G) ≥ 2n/3 and G contains the square of a cycle with length greater than
2n/3, then G contains the square of a Hamiltonian cycle. Finally, Kierstead and Quintana
[16] proved that if δ(G) ≥ 2n/3 and G contains a maximal 4-clique, then G contains the
square of a Hamiltonian cycle.
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For Conjecture 2, in the above mentioned paper of Faudree et al in [12], it is proved that
for any ε > 0 and positive integer k there is a C such that if an n-graph G satisfies

δ(G) ≥
(

2k − 1

2k
+ ε

)
n + C,

then G contains the kth power of a Hamiltonian cycle.
Using the Regularity Lemma-Blow-up Lemma method first in [19] we proved Conjecture

2 in asymptotic form, then in [17] and [20] we proved both conjectures for n ≥ n0. The proofs
used the Regularity Lemma [25], the Blow-up Lemma [18], [21] and the Hajnal-Szemerédi
Theorem [14]. Since the proofs used the Regularity Lemma the resulting n0 is very large
(it involves a tower function). The purpose of this paper is to present another proof (and a
general proof technique) for k = 2 that avoids the use of the Regularity Lemma.

Theorem 1. There exists a natural number n0 such that if a graph G has order n with
n ≥ n0 and δ(G) ≥ 2

3
n, then G contains the square of a Hamiltonian cycle.

2 Outline of the proof

We will follow the same rough outline (connecting-absorbing-reservoir) as in [23]; however,
the main ingredient there, the Regularity Lemma, will be replaced with more elementary
arguments here.

We will use the following main parameter

α =
1

10
. (1)

We assume throughout the paper that n is sufficiently large.
Let us consider a graph G of order n with

δ(G) ≥ 2

3
n. (2)

We must show that G contains the square of a Hamiltonian cycle.
In [17] our proof was divided into two main cases, the extremal case when G satisfies the

following so-called extremal condition and the non-extremal case when this condition is not
satisfied.

Extremal Condition (EC) with parameter α: There exist (not necessarily disjoint)
A,B ⊂ V (G) such that

•
(

1
3
− α

)
n ≤ |A|, |B| ≤ 1

3
n, and

• d(A,B) < α.

In the extremal case in [17] our proof did not use the Regularity Lemma, thus we can
use that part of the proof here again.
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Lemma 2 (Lemma 12 in [17]). There exists a natural number n1 such that if a graph
G has order n with n ≥ n1, δ(G) ≥ 2

3
n and G satisfies the extremal condition EC with

parameter α, then G contains the square of a Hamiltonian cycle.

Hence we may assume that our graph G does not satisfy the extremal condition EC with
parameter α. In this case our proof technique will follow the same outline (and notation) as
in [23]. First in Section 3 we will prove the auxiliary Connecting Lemma that claims that
any two disjoint ordered pairs of vertices can be connected by a short square-path. Then
using the Connecting Lemma and the probabilistic method in Section 4 we will construct a
“not too long” absorbing square-path PA that will have the remarkable property that every
“not too large” subset of vertices can be absorbed into this square-path. Thus if this PA will
be a part of a square-cycle C that contains “most” of the vertices already, then immediately
PA (and thus C) absorbs the leftover vertices and we have a Hamiltonian square-cycle. This
is a significant simplification of our proof technique from [17], where the corresponding step
in Section 6 was quite complicated.

Thus our goal is to construct a square-cycle C that contains the absorbing path PA

and most of the other vertices. For this purpose we will need another technical lemma in
Section 5, the Reservoir Lemma, which allows us to use the Connecting Lemma (through
the reservoir) even if some of the vertices are already occupied by the square-cycle we are
building. Finally in the main part of the proof in Section 6 we will show that unless C
contains most of the vertices already, we can extend it by using leftover vertices that are
not from the reservoir or the absorbing path. This is where, in contrary to the proof in [23],
we are able to achieve this goal without the use of the Regularity Lemma, but using more
elementary arguments. Thus the main point of the present paper is that the proof method
of [23] can be adapted into a method that avoids the use of the Regularity Lemma. We
believe that this new approach (although some of the arguments are problem-specific) could
be successful for other well-known extremal problems where the Regularity Lemma-Blow-up
Lemma method has been used (e.g. Conjecture 2 for k > 2 or the main Dirac-type result of
[23] itself).

3 Connecting

A k-square-path (or simply a k-path) in G is a sequence of vertices {v1, v2, . . . , vk} such that
{vi, vi+1} ∈ E(G) for each 1 ≤ i ≤ k − 1 and {vi, vi+2} ∈ E(G) for each 1 ≤ i ≤ k − 2.
We say that P connects the ordered pairs (v1, v2) and (vk, vk−1) and these will be called the
endpairs of P . Thus an endpair (a, b) is an ordered pair, a is the first (or the last) vertex on
the path, and b is the second (or the second-to-last) vertex on the path. We will often call
a square-path simply a path.

For two paths P and Q, let (a, b) be an endpair of P and (b, a) be an endpair of Q, and
assume that V (P ) ∩ V (Q) = {a, b}. By P ◦ Q we denote the path obtained (in a unique
way) as a concatenation of P and Q. We can extend this definition to more than two paths.
The Connecting Lemma claims that two disjoint ordered pairs can be connected by a short
path.
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Lemma 3 (Connecting Lemma). For every two disjoint ordered edges of G, (a, b) and
(c, d), there is a k-path, k ≤ 10

α4 , which connects (a, b) and (c, d). Furthermore, this statement
remains true even if at most α9n vertices are forbidden to be used on this connecting path.

Proof: We will build a similar cascade structure as in the proof of the Connecting
Lemma in [23]. We construct sets A0, A1, A2, . . . and bipartite graphs G1, G2, . . ., where
V (Gi) = Ai−1 ∪ Ai, as follows. Let A0 = {b} and A1 = {x | (a, x), (b, x) ∈ E(G)} and let
G1 be the star with b as the center and A1 as the set of its leaves. Note that |A1| ≥ n/3.
Further, let

A′
2 = {y | ∃x ∈ A1 such that (b, y), (x, y) ∈ E(G)}

and
G′

2 = {(x, y) | x ∈ A1, y ∈ A′
2, (b, y), (x, y) ∈ E(G)}.

Then for every edge (x, y) ∈ G′
2 that is disjoint from (a, b) the vertices (a, b, x, y) form a

4-path in G. Furthermore, for each x ∈ A1, we have degG′2(x) ≥ n/3. Let

A0
2 = {y ∈ A′

2 | degG′2(y) < α4n}, A2 = A′
2 \ A0

2 and G2 = G′
2[A1 ∪ A2].

Assume that we have constructed A0, A1, . . . , Aj and G1, . . . , Gj, j ≥ 2 already. To
construct Aj+1 and Gj+1 we do the following. First for every y ∈ Aj we consider the
auxiliary bipartite graph Bj

y between NGj
(y) and V (G), where a pair (x, z) ∈ E(Bj

y) for
x ∈ NGj

(y), z ∈ V (G) if (x, z), (y, z) ∈ E(G). Define

A′
j+1 = {z | ∃y ∈ Aj such that degBj

y
(z, NGj

(y)) ≥ α8n}

and
G′

j+1 = {(y, z) | y ∈ Aj, degBj
y
(z, NGj

(y)) ≥ α8n}.
Finally, let

A0
j+1 = {z ∈ A′

j+1 | degG′j+1
(z) < α4n},

Aj+1 = A′
j+1 \ A0

j+1 and Gj+1 = G′
j+1[Aj ∪ Aj+1].

We call the entire structure A0, A1, A2, . . . along with the bipartite graphs G1, G2, . . . an
(a, b)-cascade. Notice that some of the sets Aj may intersect. For the sake of the construction
we treat them as disjoint. Note also that we had to change the construction slightly for j ≥ 3
and require degBj

y
(z) ≥ α8n to make sure that we can always return from any edge of Gj

back to (a, b) by a legitimate square-path on which all the vertices are distinct, even if at
most α9n vertices are forbidden.

A vertex y ∈ Aj is called heavy if degGj
(y) ≥ (1/3 + α4)n.

Claim 4. There exists an index j ≤ j0 = d 4
α4 e+ 2 such that Aj contains at least α4n heavy

vertices.

For the proof of this claim, first we prove that for every j ≥ 2 and for every y ∈ Aj we
have

degG′j+1
(y) ≥ (1/3− α4)n. (3)
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Indeed, let s be the number of vertices z ∈ V (G) with degBj
y
(z) < α8n. Then

sα8n + (n− s)|NGj
(y)| ≥ |E(Bj

y)| ≥ |NGj
(y)|n/3.

From this using |NGj
(y)| = degGj

(y) ≥ α4n and s ≤ n, we get

n− s ≥ n/3− sα8n

|NGj
(y)| ≥ n/3− α4n,

proving (3). Note also that the total number of edges of G′
j+1 incident to the exceptional

vertices in A0
j+1 is smaller than α4n2.

Let us look at the sequence of sets A1, A2, . . ., where we have |A1| ≥ n/3. Clearly we
must have a j ≤ d 4

α4 e for which

|Aj+1|, |Aj+2| ≤ (1 + α4)|Aj|. (4)

Indeed, if j = 1 does not satisfy (4), then either A2 or A3 (say A3) has size at least (1 +
α4)|A1| ≥ (1 + α4)n/3. If j = 3 does not satisfy (4), then either A4 or A5 (say A5) has size
at least (1 + α4)|A3| ≥ (1 + α4)n/3. Continuing in this fashion, in each step we add at least

α4n/3 new vertices to A1, so in at most d 2n/3
α4n/3

e = d 2
α4 e steps we get a set Aj with more than

n vertices, a contradiction.
Furthermore, we may assume that for this j in addition to (4) the following holds as well

|Aj+1| ≥ (1− α3)|Aj|. (5)

Otherwise Aj+1 would contain at least α4n heavy vertices and we would be finished with the
proof of Claim 4. Indeed, suppose not. On one hand from the above we have

|E(Gj+1)| ≥ |Aj|n/3− 2α4n2, (6)

but on the other hand using (5) we would get

|E(Gj+1)| ≤ α4n|Aj|+ |Aj+1|(1/3 + α4)n ≤

≤ α4n|Aj|+ (1− α3)(1/3 + α4)|Aj|n ≤ |Aj|n/3− α3|Aj|n/3 + 2α4|Aj|n,

a contradiction (using (1)).
Thus we may assume that there is a j ≤ d 4

α4 e for which both (4) and (5) hold. We fix
this j. We will show that Aj+2 contains at least α4n heavy vertices as desired in the claim.
For this purpose first we show that Aj+1 contains at least αn/2 vertices z for which

degGj+1
(z) ≥ (1/3− α)n. (7)

Otherwise, similarly as above using (4) we would get

|E(Gj+1)| ≤ αn|Aj|/2 + |Aj+1|(1/3− α)n ≤

≤ αn|Aj|/2 + (1 + α4)(1/3− α)|Aj|n ≤ |Aj|n/3− α|Aj|n/2 + α4|Aj|n/3,
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a contradiction with (6) (using (1)).
Consider a vertex z ∈ Aj+1 satisfying (7). Next we show that

degG′j+2
(z) ≥ (1/3 + α)n. (8)

Indeed, otherwise let A ⊂ NGj+1
(z), B ⊂ NG(z) \ NG′j+2

(z) be arbitrary subsets with sizes

(1/3−α)n ≤ |A|, |B| ≤ n/3 (this is possible as both of these sets have size at least (1/3−α)n).
Since G does not satisfy EC with parameter α, we have d(A,B) ≥ α. In particular, we can
pick a vertex w ∈ B with degG(w,A) ≥ α|A| À α8n, a contradiction, since in this case w
would belong to NG′j+2

(z) by definition.

Thus we get from (3) and (8)

|E(Gj+2)| ≥ |Aj+1|n/3 + α2n2/2− 2α4n2. (9)

However, this implies that in Aj+2 we must have at least α4n heavy vertices, and thus proving
the claim. Indeed, otherwise using (1), (4) and (5) we would get

|E(Gj+2)| ≤ α4n|Aj+1|+ |Aj+2|(1/3 + α4)n ≤

≤ α4n|Aj+1|+ (1 + 2α3)(1 + α4)(1/3 + α4)|Aj+1|n ≤ |Aj+1|n/3 + α3|Aj+1|n,

a contradiction with (9).
Now to finish the proof of the Connecting Lemma, given two disjoint ordered edges of G,

(a, b) and (c, d), we consider the (a, b)-cascade (A
(1)
j , G

(1)
j ) and the (c, d)-cascade (A

(2)
j , G

(2)
j ).

For i = 1, 2, let A
(i)
j(i) be the set that contains many (≥ α4n) heavy vertices as guaranteed

by Claim 4. An easy averaging argument shows that there must be many (≥ αn) vertices

u ∈ V (G) such that u has many (≥ α5n) heavy neighbors in both A
(i)
j(i), i = 1, 2. Consider

one such a u, a heavy neighbor h(1) of u in A
(1)
j(1) and a heavy neighbor h(2) of u in A

(2)
j(2). It

is easy to see from the definition that we have

degG′
j(1)+1

(h(1)), degG′
j(2)+1

(h(2)) ≥ 2n/3,

since h(1) and h(2) are heavy vertices.
Let A ⊂ NG(u)∩NG′

j(1)+1
(h(1)), B ⊂ NG(u)∩NG′

j(2)+1
(h(2)) be arbitrary subsets with sizes

bn/3c (this is possible as both of these sets have size at least n/3). Since G does not satisfy
EC with parameter α, we have d(A,B) ≥ α. In particular, we can pick an edge (v(1), v(2))
with v(1) ∈ A and v(2) ∈ B. By the definition of the (a, b)-cascade, there is a (j(1) + 3)-path
P (1) connecting (a, b) and (v(1), h(1)) and by the definition of the (c, d)-cascade, there is a
(j(2) + 3)-path P (2) connecting (c, d) and (v(2), h(2)). By putting together P (1) and P (2) and
including u in the middle we get a k-path connecting (a, b) and (c, d) with

k = (j(1) + 3) + (j(2) + 3) + 2 ≤ 2(j0 + 4) ≤ 10

α4
.

Furthermore, the condition degBj
y
(z) ≥ α8n guarantees that the proof goes through (and we

can find a connecting path) even if we have a set of at most α9n forbidden vertices. 2
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4 Absorbing

Again we follow the method of [23], we just have to adapt the ideas to square-cycles in graphs
instead of tight cycles in hypergraphs. For the sake of completeness we give the details here
again. As we sketched above the Absorbing Lemma claims that we can construct a “not too
long” absorbing path A that absorbs every “not too large” subset of vertices.

Lemma 5 (Absorbing Lemma). There is an l-path PA in G with l ≤ α9n, such that
for every subset U ⊂ V (G) \ V (PA) of size at most α20n there is a path PAU

in G with
V (PAU

) = V (PA) ∪ U and such that PAU
has the same endpairs as PA.

Proof: Given a vertex v ∈ V (G) we say that an (ordered) 5-tuple of vertices (x, a, b, c, d)
absorbs v if these 5 vertices are all neighbors of v, the vertices {a, b, c, d} are all neighbors of
x and (a, b, c, d) is a (simple) path in G. Indeed, in this case the (square-)path (a, b, x, c, d)
may absorb v to get the extended path (a, b, v, x, c, d). Note that both paths have the same
endpairs. First we show that for every v ∈ V (G) there are many 5-tuples absorbing v.

Claim 6. For every v ∈ V (G) there are at least 1
2(64)

α4n5 5-tuples absorbing v.

Indeed, let us consider an arbitrary v ∈ V (G). We can choose x as an arbitrary neighbor
of v. Since G satisfies (2) we can choose x in at least 2

3
n different ways. Consider the

common neighbors of v and x, N(v, x). We know from (2) that |N(v, x)| ≥ n
3
. Keep a

subset N ⊆ N(v, x) with |N | = bn
3
c. Since G does not satisfy the extremal condition EC

with parameter α, we know that d(N) = d(N,N) ≥ α. Then we have d(G|N) ≥ α|N |,
and so we can choose a subgraph H of G|N with δ(H) > α

2
|N |. In particular, we also have

|V (H)| ≥ α
2
|N |. Let a be an arbitrary vertex of H (at least α

2
|N | different choices), let b

be an arbitrary neighbor of a in H (at least α
2
|N | different choices), let c be an arbitrary

neighbor of b in H that is different from a (at least α
2
|N | − 1 different choices), and finally

let d be an arbitrary neighbor of c in H that is different from a and b (at least α
2
|N | − 2

different choices). Then (x, a, b, c, d) is a good 5-tuple that absorbs v. The number of ways
we can select (x, a, b, c, d) from the above is at least

2

3
n

α

2
|N |α

2
|N |

(
α

2
|N | − 1

) (
α

2
N − 2

)
≥ 1

2(64)
α4n5

(for sufficiently large n), finishing the proof of the claim.
For each v ∈ V (G), let Av be the family of all 5-tuples absorbing v. The next claim can

be proved by an application of the probabilistic method.

Claim 7. There exists a family F of at most 2α14n disjoint, absorbing 5-tuples of vertices
of G such that for every v ∈ V (G) we have |Av ∩ F| > α20n.

For this purpose we first select a family F ′ of 5-tuples at random by including each of
n(n − 1)(n − 2)(n − 3)(n − 4) ∼ n5 of them independently with probability α14n−4 (some
of the selected 5-tuples may not be absorbing at all). Using Chernoff’s inequality (see, e.g.
[15]) with probability 1− o(1), as n →∞, we have
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• |F ′| < 2α14n,

• for each v ∈ V (G), |Av ∩ F ′| ≥ 1
3(64)

α18n.

Furthermore, the expected number of intersecting pairs of 5-tuples in F ′ is at most

n5 × 5× 5× n4 × (α14n−4)2 = 25α28n,

and thus, by Markov’s inequality, with probability at least 1/26,

• there are at most 26α28n pairs of intersecting 5-tuples in F ′.

Thus with positive probability, a random family F ′ satisfies all the three properties above.
Thus there exists one such a family, for simplicity, we also denote this family by F ′. From
F ′ we delete all 5-tuples that intersect other 5-tuples and all 5-tuples that are not absorbing
at all. Let us denote by F the remaining subfamily. Then F consists of disjoint, absorbing
5-tuples such that for each v ∈ V (G) we have using (1)

|Av ∩ F| ≥ 1

3(64)
α18n− 52α28n >

1

4(64)
α18n > α20n,

proving Claim 7.
Let f = |F|, let F1, . . . , Ff be the 5-tuples in F and let F = ∪f

i=1Fi. Since for each
i = 1, . . . , f , Fi is absorbing for at least one vertex v ∈ V (G), Fi spans a 5-path. Our
next task is to connect all these 5-paths into one, not too long absorbing path PA. For
this purpose, we will apply the Connecting Lemma (Lemma 3) repeatedly, and for each
i = 1, . . . , f − 1 we will connect the endpairs of Fi and Fi+1 by a short path. Thus we get
the following claim.

Claim 8. There exists a path PA in G of the form

PA = F1 ◦ C1 ◦ . . . ◦ Ff−1 ◦ Cf−1 ◦ Ff ,

where the paths C1, . . . , Cf−1 each have at most 10
α4 vertices.

Indeed, we apply Lemma 3 to connect F1 and F2, we apply Lemma 3 again to connect
F2 and F3, etc. finally we apply Lemma 3 to connect Ff−1 and Ff . Note that Lemma 3
can always be applied as the set of forbidden vertices (vertices on the part of PA that is
constructed already and vertices in F ) has size at most

f(
10

α4
+ 5) ≤ 2α14 11

α4
n ≤ α9n.

Thus we connected all paths in F into one path of length at most α9n. It remains to
show that PA has the absorbing property. Let U ⊂ V \ V (PA) of size at most α20n. Since
for every v ∈ U we have |Av ∩F| > α20n, we can insert all vertices of U into PA one by one,
each time using a new absorbing 5-tuple.

9



5 The reservoir

In the Reservoir Lemma we will set aside some vertices that we can always use for connecting
even if the other vertices are occupied already.

Lemma 9 (Reservoir Lemma). For every subset W ⊂ V (G), |W | ≤ α9n, there exists a
subset R ⊂ V (G) \W (a reservoir) such that |R| = bα20n/2c and

degG(x,R) ≥ (2/3− α10)|R| for every x ∈ V (G). (10)

Proof: Set r = bα20n/2c. We choose R randomly out of all
(

n−|W |
r

)
possibilities and

apply the probabilistic method again. By Chernoff’s bound again, for sufficiently large n,
(10) will be true for R with high probability. Then we can fix a choice of R for which (10)
is true. 2

Then indeed, we can connect through the reservoir.

Lemma 10 (Reservoir-Connecting Lemma). For every two disjoint ordered edges of
G, (a, b) and (c, d), there is a k-path in R ∪ {a, b, c, d}, k ≤ 10

α4 , which connects (a, b) and
(c, d). Furthermore, this statement remains true even if at most α9|R| vertices of R are
forbidden to be used on this connecting path.

Proof: Indeed, since by (10) inside R we have almost the same degree condition as in G,
the proof of the Connecting Lemma goes through inside R, the slight loss in the minimum
degree is not going to create any problems. Note also that we may assume that G|R does
not satisfy the EC with parameter α as this is true with high probability. 2

6 The proof of Theorem 1

We start with the outline of the proof.
Step 1: By applying the Absorbing Lemma (Lemma 5), we find an absorbing path PA

with |PA| ≤ α9n.
Step 2: By applying the Reservoir Lemma (Lemma 9), we set aside a reservoir R ⊂

V (G) \ V (PA) with |R| = bα20n/2c.
Step 3: We find a (square-)cycle C in G that contains PA as a subpath, all but at

most α20n/2 vertices of V (G) \ (V (PA) ∪ R) (denote the set of these missing vertices by
T ) and some vertices of R (denote the set of remaining vertices in R by R′). Note that
|R′ ∪ T | ≤ α20n.

Step 4: Using the absorbing property of PA, insert R′ ∪ T into C, resulting in a Hamil-
tonian cycle of G.

It remains to explain Step 3 in the outline above. The rest of the paper contains the
construction of this C. We start with an arbitrary path P in G that starts with PA as a
subpath. Then we will gradually extend this P (sometimes with the use of the Reservoir-
Connecting Lemma, so using vertices from the reservoir R) until it contains all but at most
α20n/2 vertices of V (G) \ (V (A) ∪ R). We connect the two endpairs of P through the
reservoir by applying the Reservoir-Connecting Lemma one more time to get the cycle C
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that is desired in Step 3. Thus we only have to show how to extend P until it contains all
but at most α20n/2 vertices of V (G) \ (V (PA) ∪R).

Denote by P ′ the square-path without the absorbing path, V (P ′) = V (P ) \ V (PA), and
set m := |V (P ′)|. Throughout the paper, we will represent the neighborhood on P ′ of a
vertex a ∈ T by a bitstring of length |P ′|, indexed by the vertices of P ′ in their order along
the path. For a ∈ T , denote this bitstring by Ia, and write Ia(S) for the substring on the
vertices S ⊂ P , retaining the original order. In the case that S = {v} we will write simply
Ia(v). For v ∈ P ′, Ia(v) is a one iff v ∈ NP ′(a).

A general observation is that for any a ∈ T , there can be no run of ones longer than 3
in Ia, otherwise we could easily extend P by inserting a between the vertices of any run of
length 4. Call a zero followed by a maximal run of ones a 3-, 2-, or 1-block, depending on
the length of the maximal run. Call a zero that is followed by another zero a 0-block. Thus
Ia is comprised of disjoint 3-, 2-, 1-, and 0-blocks. We note that only the 3-blocks have a
density of ones that is greater than 2/3.

For any given a ∈ T , we will often make use of a partition of Ia into substrings (and thus,
a partition of P ′ into subpaths) according to the 3-blocks. We denote the substrings, which
we refer to as intervals, by I0

a , I1
a , I2

a . . . , I l
a. The interval Ij

a is defined to begin after the jth

3-block and end with the (j + 1)th 3-block. Of course, I l
a may not end with a 3-block. Our

first case is when T is large compared to the absorbing path.

6.1 T is larger than α8n

An interval Ij
a comprised of a (possibly empty) run of 2-blocks followed by a 3-block is called

a “heavy” interval. Note that only the heavy intervals have a density of ones greater than
2/3.

We begin by defining an operation, HEAVY SWAP, which exchanges vertices of T with
vertices of P ′ in such a way as to extend P ′. We will identify the conditions necessary for
the operation to take place.

1. There exists a vertex x1 ∈ P ′ such that H = {a ∈ T | a has a heavy interval beginning
at x1} is nonempty

2. The minimum length of the heavy intervals beginning at x1 is less than 3|H| − 2.

With these conditions in place, we define the operation. Let a ∈ H be a vertex whose
heavy interval beginning at x1 is of minimum length, say 3k +1. Define the subpath Q ⊂ P ′

of length 3k + 4 comprised of the 3 vertices preceeding x1 and the vertices along the heavy
interval in Ia,

Q = (o1, o2, o3, x1, o4, o5, x2, o6, o7, . . . , xk−1, o2k, o2k+1, xk, o2k+2, o2k+3, o2k+4).

We have oi ∈ NP ′(a) and xi /∈ NP ′(a), and the substring

Ia(Q) = (1, 1, 1, 0, 1, 1, 0, 1, 1, . . . , 0, 1, 1, 0, 1, 1, 1).

In fact, by the minimality of a, for every b ∈ H,

Ib(Q \ {o2k+4}) = Ia(Q \ {o2k+4}).
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The conditions ensure that |H| ≥ k + 1, and so we can find k vertices b1, b2, . . . , bk from
H \ {a}. The path

Q′ = (o1, o2, b1, o3, o4, b2, o5, o6, b3, o7, . . . , o2k, bk, o2k+1, o2k+2, a, o2k+3, o2k+4)

is a legitimate square path, with which we replace Q in P ′. This defines the operation, which
extends P ′ by one.

Claim 11. If there exists a subset H0 ⊂ T of size n3/4 such that for all a ∈ H0, Ia contains
at least 3n3/4 heavy intervals, then we can extend P .

We will demonstrate that the conditions necessary for HEAVY SWAP are satisfied. Call a
heavy interval “short” if it is of length less than n1/4. Then for each a ∈ H0, there are at
least 2n3/4 short heavy intervals in Ia. Indeed, otherwise we get for the size of the union of
the long heavy intervals strictly more than n3/4n1/4 = n vertices, a contradiction. By the
pigeonhole principle, there is a vertex x1 ∈ P ′ where at least

2n3/4n3/4

m
≥ 2n1/2

short heavy intervals begin. Let H ⊂ H0 be those vertices which all have a short heavy
interval beginning at the vertex x1. As |H| ≥ 2n1/2 and for every a ∈ H the length of the
heavy interval of Ia beginning at x1 is less than n1/4 ¿ 2n1/2, we can perform the operation
HEAVY SWAP. 2

A simple calculation shows that if deg(a, P ′) ≥ 2
3
m+n3/4, then Ia contains at least 3n3/4

heavy intervals. Otherwise, with s the size of the union of the heavy intervals, recalling the
observation on the density of the heavy intervials,

deg(a, P ′) <
2

3
(s− 3n3/4) + 3n3/4 +

2

3
(m− s) =

2

3
m + n3/4,

a contradiction. Setting T ′ = {a ∈ T | deg(a, P ′) ≥ 2
3
m + n3/4}, assuming that the premise

of Claim 11 fails, it follows that |T ′| ≤ n3/4. Letting |T | = t, we have in this case that for
every a ∈ T \ T ′,

degT (a) ≥ 1

2
t +

1

2
(αt + n3/4). (11)

Indeed, for a ∈ T \ T ′, using deg(a, P ′) ≤ 2
3
m + n3/4, |R| ≤ α20n, |P | ≤ α9n,

degT (a) ≥ 2

3
n− (

2

3
m + n2/4)− α9n− α20n ≥ 2

3
t− α9n + α20n

3
− n3/4

≥ 1

2
t +

αt + n3/4

2

if t ≥ 1
1−α

(2α9n + 2α20n + 7n3/4), which is true for large enough n when t ≥ α8n.
With degree condition (11), we are guaranteed to find a square-path in T \ T ′ of length

at least αt. Indeed, as any two vertices in T \ T ′ have degree in T of 1
2
t + 1

2
(αt + n3/4), they

have a common neighborhood in T of size at least αt + n3/4. Hence, the greedy algorithm
is guaranteed to be able to extend any square path of length less than αt in T by a vertex
not in T ′ and not on the path being extended. In this case, we can extend P by connecting
a square path of length αt through the reservoir.

Thus, we may assume that T is close to the size of the absorbing path.
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6.2 T is smaller than α8n

The outline of the proof in this case is as follows: assuming that the premise of Claim 11 does
not hold, we find a large matching in P ′ that can be moved out of the path by exchanging
with vertices of T without disturbing P . Then we can either extend P or there is a large set
of disjoint triangles in P ′ that can be moved out without disturbing P . If we still are unable
to extend P then we can find a long square path in P ′ which we move out and then connect
through Lemma 9.

We call an interval Ij
a ”even” if it contains no 0-blocks and exactly one 1-block. Note

that the even intervals have a density of ones exactly 2/3.
As in the case of the heavy intervals, we will define the operation EVEN SWAP that ex-

changes vertices of T with vertices of P ′, taking advantage of a certain alignment of even
intervals. In this case we will not be able to extend P ′, but rather we will identify vertices
of P ′ and vertices of T which can be exchanged for the purpose of guaranteeing a certain
structure in T . We first identify the conditions necessary to perform the operation EVEN

SWAP:

1. There exists a vertex x1 ∈ P ′ such that D = {a ∈ T | a has an even interval whose
1-block begins at x1} is non-empty

2. The minimum length of the even intervals whose 1-blocks begin at x1 is less than 3|D|.
With these conditions in place, we define the operation. Let a ∈ D be a vertex whose

even interval aligned with x1 is of minimum length, say 3k. Define the subpath Q ⊂ P ′ of
length 3k + 2 comprised of the 2 vertices preceding x1 and the vertices of the even interval
of Ia containing the position of x1,

Q = (o1, o2, x1, o3, x2, o4, o5, . . . , xk−1, o2k−2, o2k−1, xk, o2k, o2k+1, o2k+2).

We have oi ∈ NP ′(a) and xi /∈ NP ′(a), and the substring

Ia(Q) = (1, 1, 0, 1, 0, 1, 1, . . . , 0, 1, 1, 0, 1, 1, 1).

As |D| ≥ k we can find distinct vertices b1, b2, . . . , bk−1 from D \ {a}, and the path

Q′ = (o1, o2, b1, o3, o4, b2, o5, . . . , o2k−2, bk−1, o2k−1, o2k, a, o2k+1, o2k+2)

is a legitimate subpath of P ′ of length 3k + 2 with which Q can be replaced. This defines
the operation.

For a ∈ T and Ij
a an even interval for a, referring to the notation defined above, we

consider x1 and x2 to be “swappable” with a via the operation EVEN SWAP. Unfortunately, in
order to bring either x1 or x2 from the path into T , we are forced to swap every xi. For this
reason, we will only consider the zero vertices surrounding the 1-block of an even interval
swappable if the interval is of length less than 1

α2 . We define a “short” even interval to be
one whose length is less than 1

α2 .
There is one other class of vertex which is swappable with a. Let x be any vertex whose

position is a zero in Ia. If the two positions preceding x and the two positions succeeding x
are all ones in Ia, then a and x can be exchanged. More precisely, if the subpath

Q = (o1, o2, x, o3, o4)
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is such that oi ∈ NP ′(a) and x /∈ NP ′(a), then

Q′ = (o1, o2, a, o3, o4)

is a legitimate subpath of P ′.
We are now prepared to define Sa, the set of swappable vertices for a. For a ∈ T , we

define v ∈ Sa iff Ia(v) = 0 and v is either

(a) preceded and succeeded by two ones in Ia, or

(b) the zero of a 1-block in a short even interval for Ia, or

(c) the zero following a 1-block in a short even interval for Ia.

We observe that in the case of small T , since |R| ≤ α20n, |P | ≤ α9n, |T | ≤ α8n, for every
a ∈ T ,

deg(a, P ′) ≥ 2

3
m− 2α8n.

Again, define H0 = {a ∈ T | Ia contains at least 3n3/4 heavy intervals}. Claim 11 holds
regardless of the size of T , and so we may assume |H0| ≤ n3/4. It follows by the remark
following Claim 11 that for a ∈ T \H0, deg(a, P ′) ≤ 2

3
m + n3/4.

For a ∈ T \ H0, we provide a lower bound on the size of Sa, the main consequence of
which is that Sa is α-dense for every a ∈ T \H0.

Claim 12. For a ∈ T \H0, |Sa| > (1
3
− 3α2)n

By the last two remarks, as a ∈ T \H0,

2

3
n− 2α8n ≤ deg(a, P ′) ≤ 2

3
m + n3/4. (12)

Define a counting function on bitstrings as follows: to each zero assign a value of −2 and to
each one a +1 and sum the values over the length of the bitstring. Thus a bitstring with a
density of ones exactly 2/3 has a count of 0. By (12) the number of ones in Ia is at least
(2

3
− 2α8)n, and thus the number of zeros is at most m− (2

3
− 2α8)n. Hence, the count for

Ia is at least

2

3
n− 2α8n− 2(m− 2

3
n + 2α8n) = 2n− 2m− 6α8n ≥ −6α8n.

Consider the intervals Ij
a. At most 3n3/4 are heavy, each with a count of +1, and thus the

total contribution to the count from the heavy intervals is at most 3n3/4. The rest of the Ij
a

include at least a 1-block or a 0-block. For each Ij
a containing at least one 1-block, distinguish

an arbitrary 1-block of Ij
a, and denote by bi

1 the number of undistinguished 1-blocks.. For
any Ij

a, denote by bi
0 the number of 0-blocks in Ij

a, if any. If Ij
a contains at least one 1-block,

the count on Ij
a is −bj

1 − 2bj
0. If Ij

a contains only 0-blocks, the count is −2bj
0 + 1 < bj

0.
Let b0 =

∑
j bj

0 and b1 =
∑

j bj
1. Summing over the intervals, the count on Ia is at most

−b1 − b0 + 3n3/4. It follows that b0 + b1 ≤ 6α8n + 3n3/4 ≤ 7α8n.
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As m ≥ n− 2α8n, using (12), the number of zeros in Ia is at least

m− (
2

3
n + n3/4) ≥ 1

3
n− 2α8n− n3/4.

For each 0-block or undistinguished 1-block in the interval Ij
a, the zero belonging to the

block, the zero following the block, and the 2 zeros surrounding the distinguished 1-block
(if it exists), are not in positions corresponding to vertices of Sa. There are at most 2α2n
zeros surrounding the 1-blocks of long even intervals. The rest of the zeros correspond to
positions of vertices in Sa. Thus, the total number of vertices of P ′ in Sa is at least

1

3
n− 2α8n− n3/4 − 4(b0 + b1)− 2α2n ≥ 1

3
n− 3α2n,

proving the claim. 2

Let |T \ H0| = t. From Claim 12, an easy calculation shows that there is a set S ⊂⋃
a Sa ⊂ P ′ such that |S| ≥ (1

3
− 4α2)n and ∀v ∈ S, we have v ∈ Sa for at least α2t vertices

a ∈ T \H0.
Let S ′ ⊂ S be such that

1. |S ′| ≤ α4t, and

2. for any u, v ∈ S ′, the distance from u to v along the path P ′ is at least 1
α2 .

Then we can move S ′ from the path to T by exchanging the vertices of S ′ with vertices of
T \ H0. To see this, let S ′ ⊂ S be as described. For any v ∈ S ′, and for each a for which
v ∈ Sa, it is either of type (a), (b), or (c) by definition of Sa. By the pigeonhole principle
there is a set of at least α2t/3 vertices a ∈ T \H0 for which v is of the same type in Sa. If
this is type (a) then v can be exchanged directly. If it is type (b) or (c), then we have short
even intervals for at least α2t/3 À 1/α2 vertices a ∈ T \H0, all of whose whose 1-blocks are
aligned. The conditions for EVEN SWAP are satisfied and we can exchange v with a vertex
of T \ H0, but we may have to perform as many as 1/3α2 exchanges of other vertices in
the short even interval. The distance condition on u, v ∈ S ′ precludes the possibility that
exchanging vertices within an interval of length 1

α2 in order to move u from P ′ to T destroys
the conditions necessary to move v out–it ensures that exchanging u does not diminish our
ability to exchange v apart from simply using up vertices of T . From these observations,
each exchange from S ′ to T may use up to 1

3α2 vertices of T . When trying to exchange
u ∈ S ′, as long as there are 1

α2 vertices a ∈ T for which u ∈ Sa, we are able to perform the
operation. With fewer than

α2t/3

1/3α2
= α4t

exchanges, this condition is guaranteed.
By the extremal condition, as |S| ≥ (1

3
− 4α2)n, S has density α. We can easily find a

matching M with α4t/2 edges such that every two vertices of V (M) are separated by constant
distance on P ′. By the previous remark, we can exchange these vertices of M without
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disturbing P ′. Therefore, we assume that V (M) ⊂ T . We define H0 as before, and let M ′

be the set of edges of M that are disjoint from H0. Then we have |M ′| ≥ α4t
2
− n3/4 ≥ α4t

3
.

For (a, b) ∈ M ′, define the “overlap” of (a, b) to be Sa,b = Sa ∩Sb. We have the following
claim:

Claim 13. If |Sa,b| > n1/2 for at least 3n1/2 edges (a, b) ∈ M ′, then we can extend P .

For any edge (a, b) ∈ M and x ∈ Sa,b, we classify x as being of one of two types with
respect to (a, b). If the two vertices following x on P ′ are both in NP ′(a) and the two vertices
preceding x are both in NP ′(b), (or vice versa) we say that it is of type (1). Otherwise it is
of type (2).

If the premise of the claim holds, then by the pigeonhole principle there is a vertex x ∈ P ′

such that for at least n1/23n1/2/m > 3 edges (a, b), (c, d), and (e, f), x is in the overlap for
all three edges. We study two cases. In Case 1, x is of type (1) with respect to one of these
three edges. In Case 2, x is of type (2) for all three edges.

The vertices along P ′ around x are relevant. Specifically, we focus on the subpath of
length 10 on P ′,

Q = (u0, u1, u2, u3, u4, u5, u6, x, u7, u8).

When specifying a substring we will let a “∗” denote that the value of the substring in that
position is unrestricted. Of course, the value in position x is a zero for all strings.

Case 1: In this case, x is of type (1) with respect to one of the edges, say (a, b). Without
loss of generality, the substrings on Q for a and b are

Ia(Q) = (∗, ∗, ∗, ∗, ∗, 1, 1, 0, 1, ∗),

and
Ib(Q) = (∗, ∗, ∗, ∗, ∗, ∗, 1, 0, 1, 1).

In this case we define the subpath

Q′ = (u0, u1, u2, u3, u4, u5, u6, a, b, u7, u8).

Replacing Q by Q′ results in a legitimate square path, where we have replaced the subpath
Q of length 10 by Q′ of length 11, and thus extended P .

Case 2: In this case x of type (2) with respect to all three edges. By definition of Sa,
whenever x ∈ Sa either the two vertices which follow x on the path or the two vertices which
precede x on the path are in NP ′(a). It follows without loss of generality that there are two
edges, say (a, b) and (c, d), for which the two vertices following x are in the neighborhoods
of a, b, c, and d. Because x is not of type (1) for any edge, and because x is in an even
interval for every vertex a, b, and c, their substrings on Q are all of the form

Ia(Q) = Ib(Q) = Ic(Q) = (∗, ∗, ∗, 1, 1, 0, 1, 0, 1, 1).

If u2 is not in the neighborhood of a or b, then the substrings on Q for a and b are both
exactly

Ia(Q) = Ib(Q) = (1, 1, 0, 1, 1, 0, 1, 0, 1, 1),
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in which case we are back to Case 1, with u2 taking the place of x. Otherwise u2 is in the
neighborhood of, say, a, and so the substrings of a and b on Q are

Ia(Q) = (∗, 0, 1, 1, 1, 0, 1, 0, 1, 1),

and
Ib(Q) = (∗, ∗, ∗, 1, 1, 0, 1, 0, 1, 1).

In this case, we define the subpath

Q′ = (u0, u1, u2, u3, a, b, u4, u6, c, u7, u8).

Replacing the subpath Q of length 10 by Q′ of length 12 results in a legitimate square path,
extending P ′ by 2. These cases are exhaustive, and thus the claim is established. 2

Thus we may assume that there exists a set M ′′ ⊂ M ′ of at least α4t/3− 3n1/2 ≥ α4t/4
edges such that each edge of M ′′ has an overlap of less than n1/2. From Claim 12 it follows
that for each edge (a, b) ∈ M ′′, we have

|Sa ∪ Sb| ≥ 2(
1

3
− 4α2)n− n1/2 ≥ (

2

3
− 9α2)n.

Again, we conclude that there is a set S ⊂ ⋃
a Sa ⊂ P such that |S| ≥ (2

3
− 10α2)n and

∀v ∈ S we have v ∈ Sa ∪ Sb for at least α2|M ′′| ≥ α6t/4 edges (a, b) of M ′′. The reader may
check that any set S ′ ⊂ S satisfying

1. |S ′| ≤ α8t/4, and

2. ∀u, v,∈ S ′, the distance from u to v along P ′ is less than 1
α2

can be exchanged for vertices from distinct edges of M ′′.
By (2), for any v ∈ S,

NS(v) ≥ 2

3
n−

(
n− (

2

3
− 10α2)n

)
= (

1

3
− 10α2)n.

As G is not extremal, the density of NS(v) is at least α. It follows that every vertex in
S is contained in many triangles within S. Let Z ⊂ S be a set of α8t/12 vertex-disjoint
triangles whose vertex set V (Z) satisfies the above two conditions. By the observation we
can exchange V (Z) with vertices of M ′′ without disturbing P , and so we assume that there
is a set of α8t/12 vertex-disjoint triangles Z ⊂ T . As before, we let Z ′ = Z \H0 be the set
of at least α8t/12− n3/4 ≥ α8t/24 triangles all of whose vertices satisfy (12).

As Claim 13 applies to any set of disjoint edges from Z ′, we can assume that there is
a set Z ′′ containing at least α8t/24 − 3n1/2 ≥ α8t/48 vertex-disjoint triangles such that
any edge (a, b) of any triangle of Z ′′ has |Sa,b| < n1/2. By this bound and Claim 12, it
follows that for every triangle (a, b, c) ∈ Z ′′, |Sa ∪ Sb ∪ Sc| ≥ (1 − α)n. Again, we can find
a set S ⊂ ⋃

a∈V (Z′′) Sa such that |S| ≥ (1 − 2α)n and for every v ∈ S there are at least
α|U ′′| ≥ α9t/48 triangles (a, b, c) ∈ Z ′′ such that v ∈ Sa ∪ Sb ∪ Sc. For any set S ′ ⊂ S of
size α11t/48 all of whose vertices are distance 1

α2 apart on P ′, we can exchange at once each
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vertex of S ′ with vertices of V (Z ′′). With degS(v) ≥ (2/3−2α)n, we can easily find a square
path of length α13t < α11t/48 satisfying the distance condition. Exchanging this path into
T and connecting through the reservoir extends P .

In every case we either extend P directly or find a square path of length at least α13t ≥
α24n which we connect through the reservoir. The allowance for forbidden vertices in Lemma
9 ensures that we can continue to perform connections until T is small enough that R ∪ T
can be absorbed by PA. As in the program outlined at the beginning of the section, at this
point we connect the endpairs of P through the reservoir to form a cycle containing PA, and
finally absorb R ∪ T .

7 Conclusion

In order to solve the Pósa problem for every n in the case of k = 2, we plan to replace the
costly Connecting Lemma with an alternative which we are developing. It is our hope that
we will be able to push down n0 to around 100 at which point we will be able to develop
a computer program, taking advantage of much of the structure identified in this paper to
solve the conjecture for every n. This is a work in progress.
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