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Abstract

Abstraction in programming uses the facilities of a given programming lan-
guage to customize the abstract machine of the language, effectively construct-
ing a new programming language, so that each program may be expressed in a
language natural to its intended problem domain. Abstraction is a major ele-
ment of software engineering strategy. This paper suggests a formal notion of
abstraction, on the basis of which the relative power of support for abstraction
can be investigated objectively. The theory is applied to a suite of trivial toy
languages, confirming that the suggested theory orders them correctly.
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1 Introduction

Abstraction in programming uses the facilities of a given programming language to
customize the abstract machine of the language, effectively constructing a new pro-
gramming language ([Sh99]). It has been advocated since the 1970s (e.g., [DaHo72])
as a way to allow each program to be expressed in a way natural to its intended prob-
lem domain. Various language features have been touted as “powerful abstractions”;
in this paper, we suggest a theory by which to objectify such claims.

To validate the theory, we apply it to a suite of trivial toy languages, whose relative
ordering by abstractive power is intuitively clear. The theory correctly orders this
suite. We also discuss why several related formal devices for comparing programming
languages, proposed over the past two decades ([Fe91, Mi93, KrFe98]), are not suitable
for our purpose.

Section 2 develops the formal notion of programming language on which the re-
mainder of the work is founded. Section 3 describes the test suite of toy languages.
Sections 4–5 develop the formal notion of abstractive power, and show how it handles
the example from §3. Section 6 compares and contrasts the formal notion of abstrac-
tive power here with some related formal devices in the literature. Section 7 discusses
possible future applications of the theory.

2 Programming languages

To see what we will need from a formal definition of programming language, consider
an arbitrary abstraction. A starting language L is altered by means of a source text
a, resulting in an incrementally different language L′. Diagrammatically,

L L′ .
a

(1)

Our basic understanding of abstraction in programming (§1) says that a is source
text in language L. Moreover, we can only speak of the abstractive power “of L”
if L regulates the entire transaction: what texts a are permissible, and for each a,
what altered language L′ will result. Each possible L′ then determines what further
abstraction-inducing texts are possible, and what languages result from them; and so
on.

We can also identify two expected characteristics of the text a.

First, a is not an arbitrary prefix of a valid program: it is understood as a coherent,
self-contained account of an alteration to L. By allowing L′ to be reached via a single
abstractive step, we imply that L and L′ are at the same level of syntactic structure,
and invite our abstractive-power comparison device, whatever form it might take,
to assess their relationship on that basis. So a is a natural unit of modularity in
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the language, and the formal presentation of modularity will heavily influence any
judgment of abstractive power.

To illustrate the point, consider a simple Java class definition,

public class Pair {

public Object car;

public Object cdr;

} .

(2)

This is readily understood to specify a change to the entire Java language, consisting
of the addition of a certain class Pair ; but a fragmentary prefix of it, say

public class Pair {

public Object car; ,
(3)

isn’t naturally thought of as a modification to Java as a whole: what must follow
isn’t what we would have expected if we were told only that it would be code written
in Java; rather, it must be a completion of the fragment, after which we will be back
to something very close to standard Java (with an added class Pair). It would be
plausible to think of the single line

public Object car; (4)

as modifying the local language of declarations within the body of the class declara-
tion; but that language is related to Java in roughly the same way as two different
nonterminals of a CFG when one nonterminal occurs as a descendant of the other in
syntax trees (as, in a CFG for English, 〈noun-phrase〉 might occur as a descendant of
〈sentence〉). For the current work —having no prior reason to suppose that a more
elaborate approach is required— we choose to consider abstractive power directly at
just one level of syntactic structure at a time, disregarding abstractions whose effect
is localized within a single text a.

We thus conceive of the abstraction process as traversing a directed graph whose
vertices are languages and whose edges are labeled by source texts. This is also a
sufficient conception of computation. The more conventional approach to computa-
tion by language, in which syntax is mapped to internal state and observables (e.g.,
[Mi93]), can be readily modeled by our directed graph, using the vertices for internal
state, and a selected subset of the edge-labeling texts for observables. (This modeling
technique will be demonstrated, in principle, in §3.)

A second expected characteristic of a is that it has internal syntactic structure,
that impinges on our study of abstraction at a higher syntactic level (so that we still
care about internal syntax, even though we’ve already decided to disregard internal
abstraction). The purpose of abstraction is to affect how programs are expressed,
not merely whether they can be expressed. In assessing the expressive significance
of a programming language feature, the usual approach is to ask, if the feature were
omitted from the language, first, could programs using the feature be rewritten to
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do without it, but then, assuming that they could be rewritten, how much would the
rewriting necessarily disrupt the syntactic structure of those programs. Most basi-
cally, Landin’s notion of syntactic sugar is a feature whose omission would require
only local transformations to the context-free structure of programs. Landin’s notion
was directly formalized in [Fe91]; and structurally well-behaved transformations are
also basic to the study of abstraction-preserving reductions in [Mi93]. For a general
study of abstractive power, it will be convenient to consider various classes of struc-
tural transformations of programs (§4, below); but to define any class of structural
transformations of text a, the structure of a must have been provided to begin with.

To capture these expected characteristics, in concept we want a modified form
of state machine. The states of the machine are languages; the transition-labeling
“symbols” are texts; and the behavior of the machine is anchored by a set of observable
texts rather than a set of final states. However, if we set up our formal definition of
programming language this way, it would eventually become evident, in our treatment
of abstractive power, that the states themselves are an unwanted distraction. We will
prefer to concern ourselves only with the set of text-sequences on paths from a state,
and the set of observable texts. We therefore greatly streamline our formal definition
by including only these elements, omitting the machinery of the states themselves.

Definition 2.1 Suppose T is the set of syntax trees freely generated over some
context-free grammar.

A programming language over texts T (briefly, language over T ) is a set L ⊆ T ∗

such that for all y ∈ L and x a prefix of y (that is, ∃z with y = xz), x ∈ L. Elements
of T are called texts; elements of L are called text sequences (briefly, sequences).
The empty sequence is denoted ε.

Suppose A, B are sets of strings, and f : A → B. f respects prefixes if, for all
x, y ∈ A, if x is a prefix of y then f(x) is a prefix of f(y).

Intuitively, L is the set of possible sequences of texts from some machine state q; and
if sequence y is possible from q, and x is a prefix of y, then x is also possible from q;
hence the requirement that languages be closed under prefixing.

The set of texts T will usually be understood from context, and we will simply
say “L is a language”, etc. The set of texts will be explicitly mentioned primarily in
certain definitions, to flag out concepts that are relative to T (as Definition 4.1).

When the CFG G that freely generates T is unambiguous —and this is the usual
case— we may elide the distinction between a sentence s over G, and the unique
syntax tree t freely generated over G whose fringe is s.

Example 2.2 Suppose T is freely generated over the context-free grammar with
start symbol S, terminal alphabet {a, b}, and production rules {S → a, S → b}.
Since the CFG is unambiguous, we treat sentences as if they were trees, writing
T = {a, b}, abaa ∈ T ∗, etc. Regular set R1 = a∗ is a language, since it is closed
under prefixes. Regular set R2 = (ab)∗ is not a language, since abab ∈ R2 but
aba 6∈ R2. The closure of R2 under prefixing, R3 = (ab)∗ ∪ (ab)∗a, is a language.
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R3 R4

a

b

Figure 1: NFA for language (ab)∗ ∪ (ab)∗a.

Function f : T ∗ → T ∗ defined by f(w) = aabbw respects prefixes, since for every
xy ∈ T ∗, f(xy) = aabbxy = (f(x))y.

Function g: T ∗ → T ∗ defined by g(w) = ww does not respect prefixes, since
g(a) = aa is not a prefix of g(ab) = abab.

Definition 2.3 Suppose S is a set of strings, and x is a string. Then S reduced by
x is S〈〈x〉〉 = {y | xy ∈ S}. (That is, S〈〈x〉〉 is the set of suffixes of x in S.)

Suppose A, B are sets of strings, x ∈ A, f : A → B, and f respects prefixes.
Then f reduced by x is f〈〈x〉〉: A〈〈x〉〉 → B〈〈f(x)〉〉 such that ∀y ∈ A〈〈x〉〉, f(xy) =
f(x)f〈〈x〉〉(y). (That is, f〈〈x〉〉(y) is the suffix of f(x) in f(xy).)

The property of respecting prefixes is exactly what is needed to guarantee the exis-
tence of f〈〈x〉〉 for all x ∈ A; it means that f corresponds to a conceptual homomor-
phism of state machines.1

Example 2.4 Recall, from Example 2.2, languages R1 = a∗ and R3 = (ab)∗ ∪
(ab)∗a, and prefix-respecting function f(w) = aabbw.

For every sequence w ∈ R1, R1〈〈w〉〉 = R1.
For every sequence w ∈ R3, if w has even length then R3〈〈w〉〉 = R3. Let

R4 = (ba)∗ ∪ (ba)∗b. If w ∈ R3 has odd length, then R3〈〈w〉〉 = R4. Similarly, if
w ∈ R4 has even length, then R4〈〈w〉〉 = R4; while if w ∈ R4 has odd length, then
R4〈〈w〉〉 = R3. In particular, R3〈〈a〉〉 = R4 and R4〈〈b〉〉 = R3; thus, R3 and R4 are
effectively the two states of an NFA (nondeterministic finite automaton), as shown
in Figure 1. The set of sentences accepted by the NFA is R3; if state R4 were the
start state, the set of sentences accepted would be R4.

For every x ∈ T ∗, f(xy) = (f(x))y, therefore f〈〈x〉〉(y) = y. In particular,
f〈〈ε〉〉(y) = y (highlighting that f〈〈ε〉〉 6= f).

A language A models the semantics of a sequence x ∈ A as A〈〈x〉〉. Observables
only come into play when one needs to articulate to what extent behavior is preserved
by a function from one language to another.

1That is, f maps states q of machine A to states f(q) of machine B, and transitions δA(q, t) = q′

of A to extended transitions δ̂B(f(q), f〈〈q〉〉(t)) = f(q′) of B.
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x1 = (λx.(λy.x))uv
x2 = (λx.(λy.x))uv � (λy.u)v
x3 = (λx.(λy.x))uv � (λy.u)v � u

x4 = (λx.xx)(λx.xx)
x5 = (λx.xx)(λx.xx) � (λx.xx)(λx.xx)
x6 = (λx.xx)(λx.xx) � (λx.xx)(λx.xx) � (λx.xx)(λx.xx)

x7 = (λx.y)((λx.xx)(λx.xx))
x8 = (λx.y)((λx.xx)(λx.xx)) � (λx.y)((λx.xx)(λx.xx))
x9 = (λx.y)((λx.xx)(λx.xx)) � (λx.y)((λx.xx)(λx.xx)) � y

Figure 2: Some sequences in Lλn.

Definition 2.5 Suppose A, B are languages over T , O ⊆ T , and f : A → B respects
prefixes.

f weakly respects observables O (briefly, weakly respects O) if

(a) for all x ∈ A, y ∈ A〈〈x〉〉, and o ∈ O, o is a prefix of y iff o is a prefix of
f〈〈x〉〉(y).

f respects observables O (briefly, respects O) if f weakly respects observables O and

(b) for all x ∈ A, O ∩ B〈〈f(x)〉〉 ⊆ A〈〈x〉〉.

The intent of both properties, 2.5(a) and 2.5(b), is to treat elements of O not only
as observables, but as halting behaviors. Under this interpretation, weak Prop-
erty 2.5(a) says that each halting behavior in A〈〈x〉〉 maps to the same halting be-
havior in B〈〈f(x)〉〉, and non-halting behavior in A〈〈x〉〉 maps to non-halting behavior
in B〈〈f(x)〉〉. Strong Property 2.5(b) says that every halting behavior in B〈〈f(x)〉〉
occurs in A〈〈x〉〉.

Given f : A → B weakly respecting O, Property 2.5(a) already implies O∩A〈〈x〉〉 ⊆
B〈〈f(x)〉〉, so that Property 2.5(b) is interchangeable with the more symmetric prop-
erty

(b′) for all x ∈ A, O ∩ B〈〈f(x)〉〉 = O ∩ A〈〈x〉〉.

Example 2.6 Suppose the texts are just the terms of λ-calculus, T = Λ ([Bare84]).
Let language Lλn consist of sequences in which every consecutive pair of λ-terms
in the sequence is related by the compatible reduction relation of λ-calculus, −→β.
To distinguish notationally, in this case, between concatenation of successive texts
in a sequence, and concatenation of successive subterms within a single λ-term, we
denote the former by infix “�”; thus, (λx.y)z is a single text with subterms (λx.y)
and z, while (λx.y)�z is a sequence of two texts (though not belonging to Lλn, since
(λx.y) 6−→β z). Figure 2 shows some sequences of Lλn. Sequences x3 and x9 have no
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proper suffixes in Lλn, because the final terms of these sequences are normal forms;
that is, Lλn〈〈x3〉〉 = Lλn〈〈x9〉〉 = {ε}. Sequences x4, x5, x6, x7, x8 each have infinitely
many proper suffixes in Lλn, since (λx.xx)(λx.xx) −→β (λx.xx)(λx.xx).

Let language Lλv be as Lλn except that consecutive texts are related by the
compatible reduction relation of the call-by-value λv-calculus, −→v ([Plo75]). −→v

differs from −→β (and, correspondingly, λv-calculus differs from λ-calculus) in that
a combination (λx.M)N is a redex only if the operand N is not a combination;
thus, −→v ⊂−→β, and Lλv ⊂ Lλn. Of the sequences in Figure 2, all except x9

belong to Lλv; but (λx.y)((λx.xx)(λx.xx)) 6−→v y, because operand (λx.xx)(λx.xx)
is a combination.

Consider the identity function fid: Lλv → Lλn, fid(w) = w. This is well-defined
since Lλv ⊂ Lλn, and evidently respects prefixes. For every choice of observables
O ⊆ T , fid weakly respects O (i.e., satisfies Property 2.5(a)). However, fid respects
O (i.e., satisfies Property 2.5(b)) only if O = {}. To see this, suppose some λ-
term M ∈ O. Let x be some variable that doesn’t occur free in M , and let w =
(λx.M)((λx.xx)(λx.xx)). Then w −→β M , but w 6−→v M ; therefore, M ∈ Lλn〈〈w〉〉
but M 6∈ Lλv〈〈w〉〉.

Theorem 2.7 Suppose texts T , functions f, g between languages over T , and
observables O, O′ ⊆ T .

If f respects O, then f weakly respects O.

If f weakly respects O, and f is surjective, then f respects O.

If f, g respect prefixes, and g ◦f is defined, then g ◦f respects prefixes.

If f, g weakly respect O, and g ◦f is defined, then g ◦f weakly respects O.

If f, g respect O, and g ◦f is defined, then g ◦f respects O.

If f weakly respects O, and O′ ⊆ O, then f weakly respects O′.

If f respects O, and O′ ⊆ O, then f respects O′.

All of these results follow immediately from the definitions.

Theorem 2.8 Suppose texts T , functions f, g between languages over T , observ-
ables O ⊆ T , and f, g respect prefixes.

If g weakly respects O and g ◦f weakly respects O, then f weakly respects O.

If g weakly respects O and g ◦f respects O, then f respects O.

If f is surjective and respects O, and g ◦f weakly respects O, then g weakly
respects O.

If f is surjective and respects O, and g ◦f respects O, then g respects O.
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Proof. Suppose f : A1 → A2 respects prefixes, g: A2 → A3 weakly respects O, and
g ◦f weakly respects O. Suppose x ∈ A1, y ∈ A1〈〈x〉〉, and o ∈ O. We must show that
o is a prefix of y iff o is a prefix of f〈〈x〉〉(y).

Since g ◦f weakly respects O, o is a prefix of y iff o is a prefix of (g ◦f)〈〈x〉〉(y).
Since f, g respect prefixes, (g ◦f)〈〈x〉〉(y) = g〈〈f(x)〉〉(f〈〈x〉〉(y)). Since g weakly respects
O, o is a prefix of f〈〈x〉〉(y) iff o is a prefix of g〈〈f(x)〉〉(f〈〈x〉〉(y)). Therefore, o is a
prefix of y iff o is a prefix of f〈〈x〉〉(y).

Suppose f : A1 → A2 respects prefixes, g: A2 → A3 weakly respects O, and g ◦f
respects O. By the above reasoning, f weakly respects O. We must show that for all
x ∈ A1, O ∩ A2〈〈f(x)〉〉 ⊆ A1〈〈x〉〉.

Since g weakly respects O, O∩A2〈〈f(x)〉〉 ⊆ O∩A3〈〈(g ◦f)(x)〉〉. Since g ◦f respects
O, O ∩ A3〈〈(g ◦f)(x))〉〉 = O ∩ A1〈〈x〉〉; so O ∩ A2〈〈f(x)〉〉 ⊆ O ∩ A1〈〈x〉〉.

Suppose f : A1 → A2 is surjective and respects O, g: A2 → A3 respects prefixes,
and g ◦f weakly respects O. Suppose x ∈ A2, y ∈ A2〈〈x〉〉, and o ∈ O. We must show
that o is a prefix of y iff o is a prefix of g〈〈x〉〉(y).

Since f is surjective and respects prefixes, let x′ ∈ A1 such that f(x′) = x, and
y′ ∈ A1〈〈x

′〉〉 such that f〈〈x′〉〉(y′) = y. Since f weakly respects O, o is a prefix
of y′ iff o is a prefix of y. Since g ◦f weakly respects O, o is a prefix of y′ iff
o is a prefix of (g ◦f)〈〈x′〉〉(y′), iff o is a prefix of y. But f, g respect prefixes, so
(g ◦f)〈〈x′〉〉(y′) = g〈〈f(x′)〉〉(f〈〈x′〉〉(y′)) = g〈〈x〉〉(y), and o is a prefix of g〈〈x〉〉(y) iff o is a
prefix of y.

Suppose f : A1 → A2 is surjective and respects O, g: A2 → A3 respects prefixes,
and g ◦f respects O. By the above reasoning, g weakly respects O. We must show
that for all x ∈ A2, O ∩ A3〈〈g(x)〉〉 ⊆ A2〈〈x〉〉.

Since f is surjective, let x′ ∈ A1 such that f(x′) = x. Since f and g ◦f respect O,
O ∩ A2〈〈x〉〉 = O ∩ A1〈〈x

′〉〉 = O ∩ A3〈〈(g ◦f)(x′)〉〉 = O ∩ A3〈〈g(x)〉〉.

3 Test suite

Two of the simplest and most common techniques for abstraction are (1) give a name
to something, so that it can be referred to thereafter by that name without having
to know and repeat its entire definition; and (2) hide some local name from being
globally visible.

To exemplify these two techniques in a simple, controlled setting, we describe here
three toy programming languages, which we call L0, Lpriv , and Lpub . L0 embodies
the ability to name things, and also sets the stage for modular hiding by providing
suitable modular structure: it has modules which can contain integer-valued fields,
and interactive sessions that allow field values to be observed. Lpriv adds to L0 the
ability to make module fields private, so they can’t be accessed from outside the
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〈text〉 −→ 〈module〉 | 〈query〉 | 〈result〉

〈module〉 −→ module 〈name〉 { 〈field〉∗ }

〈field〉 −→ 〈name〉 = 〈expr〉 ;

〈expr〉 −→ 〈qualified name〉 | 〈integer〉
〈qualified name〉 −→ 〈name〉 . 〈name〉

〈query〉 −→ query 〈expr〉

〈result〉 −→ result 〈integer〉

Figure 3: CFG for L0.

module. Lpub is like Lpriv except that the privacy designations aren’t enforced.
The context-free grammar for texts of L0 is given in Figure 3. A text sequence is

any string of texts that satisfies all of the following.

• The sequence does not contain more than one module with the same name.

• No one module in the sequence contains more than one field with the same
name.

• Each qualified name consists of the name of a module and the name of a field
within that module, where either the module occurs earlier in the sequence, or
the module is currently being declared and the field occurs earlier in the module.

• When a result occurs in the sequence, it is immediately preceded by a query.

• When a query in the sequence is not the last text in the sequence, the text
immediately following the query must be a result whose integer is the value of
the expression in the query.

When we consider program transformations between these languages, we will choose
as observables exactly the results.

Language Lpriv is similar to L0, except that there is an additional syntax rule

〈field〉 −→ private 〈name〉 = 〈expr〉 ; (5)

and the following additional constraint.

• A qualified name can only refer to a private field if the qualified name is inside
the same module as the private field.

Language Lpub is similar to Lpriv , but without the prohibition against non-local ref-
erences to private fields.

We immediately observe some straightforward properties of these languages.
L0 ⊂ Lpriv ⊂ Lpub .

10



Every query in L0, Lpriv , or Lpub has a unique result. That is, if w ∈ Lk and w

ends with a query, then there is exactly one result r such that wr ∈ Lk. (Note that
this statement is possible only because a query and its result are separate texts.)

Removing a private keyword from an Lpriv -program only expands its meaning,
that is, allows additional successor sequences without invalidating any previously
allowed successor sequence. Likewise, removing a private keyword from an Lpub-
program. (In fact, we made sure of this by insisting that references to a field must
always be qualified by module-name.) Let U : Lpub → L0 be the syntactic transforma-
tion “remove all private keywords”; then for all wx ∈ Lpub , (U(w))x ∈ Lpub ; and
for all wx ∈ Lpriv , (U(w))x ∈ Lpriv .

Intuitively, L0 and Lpub are about equal in abstractive power, since the private

keywords in Lpub are at best documentation of intent; while Lpriv has more abstractive
powerful, since it allows all L0-programs to be written and also grants the additional
ability to hide local fields.

4 Expressive power

As noted in §2, for language comparison we will be concerned both with whether
programs of language A can be rewritten as programs of language B and, if so, with
how difficult the rewriting is, i.e., how much the rewriting disrupts program structure.
Macro (a.k.a. polynomial) transformations are notably of interest, as they correspond
to Landin’s notion of syntactic sugar; but abstraction also sometimes involves more
sophisticated transformations (see, e.g., [SteSu76]), so we will parameterize our theory
by the kind of transformations permitted.

Definition 4.1 A morphism from language A to language B is a function f : A → B

that respects prefixes.
For any language A, the identity morphism is denoted idA: A → A. (That is,

idA(x) = x.)
A category over T is a family of morphisms between languages over T that is

closed under composition and includes the identity morphism of each language over
T .

Here are some simple and significant categories (relative to T ):

Definition 4.2

Category AnyT consists of all morphisms between languages over T .
Category MapT consists of all morphisms f ∈ AnyT such that f performs

some transformation τf : T → T ∗ uniformly on each text of the sequence. (That is,
f(t1t2 . . . tn) = τf (t1)τf(t2) . . . τf (tn).)

Category IncT consists of all morphisms f ∈ AnyT such that, for all x ∈
dom(f), f(x) = x. Elements of IncT are called inclusion morphisms (briefly,
inclusions).
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Category ObsT,O consists of all morphisms f ∈ AnyT such that f respects
observables O.

Category WObsT,O consists of all morphisms f ∈ AnyT such that f weakly
respects observables O.

These five sets of morphisms are indeed categories over T , since every identity mor-
phism over T satisfies all five criteria, and each of the five criteria is composable (i.e.,
P (f) ∧ P (g) ⇒ P (g ◦f)). Composability was noted in Theorem 2.7 for three of the
five criteria: respects prefixes (AnyT ), respects O (ObsT,O), and weakly respects O

(WObsT,O).
Having duly acknowledged the dependence of categories on the universe of texts

T , we omit subscript T from category names hereafter.
Since respects O implies weakly respects O, ObsO ⊆ WObsO. Inclusion mor-

phisms satisfy the criteria for three out of four of the other categories: Inc ⊆ Any

(trivially, since every category has to be a subset of Any by definition), Inc ⊆ Map,
and Inc ⊆ WObsO. Inc 6⊆ ObsO in general, since the codomain of an inclusion mor-
phism is a superset of its domain and might therefore contain additional sequences
that defeat Property 2.5(b).

The intersection of any two categories is a category; so, in particular, for any
category C and any observables O one has categories C ∩ ObsO and C ∩ WObsO.

Felleisen’s notion of expressiveness ([Fe91]) was that language B “expresses” lan-
guage A if every program of A can be rewritten as a program of B with the same
semantics by means of a suitably well-behaved transformation φ: A → B. He consid-
ered two different classes of transformations (as well as two different degrees of se-
mantic same-ness, corresponding to our distinction between “respects O” and “weakly
respects O”). We are now positioned to formulate criteria analogous to Felleisen’s ex-
pressiveness and weak expressiveness, relative to an arbitrary category of morphisms
(rather than to just the two kinds of morphisms in [Fe91]).

Definition 4.3 Suppose category C, observables O, languages A, B.
B C-expresses A for observables O (or, B is as C, O expressive as A), denoted

A vC
O B, if there exists a morphism f : A → B in C ∩ ObsO.
B weakly C-expresses A for observables O (or, B is weakly as C, O expressive

as A), denoted A vC
wk O B, if there exists a morphism f : A → B in C ∩ WObsO.

Theorem 4.4

If A1 v
C
O A2 and A2 v

C
O A3 then A1 v

C
O A3.

If A1 v
C
wk O A2 and A2 v

C
wk O A3 then A1 v

C
wk O A3.

If A vC
O B, C ⊆ C ′, and O′ ⊆ O, then A vC′

O′ B.

If A vC
wk O B, C ⊆ C ′, and O′ ⊆ O, then A vC′

wk O′ B.

If A vC
O B, then A vC

wk O B.
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Proof. Transitivity follows from the fact that the intersection of categories is
closed under composition; monotonicity in the category, from (C ⊆ C ′) ⇒ (C ∩X ⊆
C ′ ∩ X). Monotonicity in the observables follows from monotonicity of observa-
tion (Theorem 2.7), and strong expressiveness implies weak expressiveness because
ObsO ⊆ WObsO (also ultimately from Theorem 2.7).

When showing that B cannot C-express A, we will want to use a large category C

since this makes non-existence a strong result; while, in showing that B can C-express
A, we will want to use a small category C for a strong result.

Category Map is a particularly interesting large category on which one might
hope to prove inexpressibility of abstraction facilities, because its morphisms perform
arbitrary transformations on individual texts, but are prohibited from the signature
property of abstraction: dependence of the later texts in a sequence on the preceding
texts.

On the other hand, category Inc seems to be the smallest category on which
expressibility is at all interesting.

Theorem 4.5 For all languages A, B over texts T , A ⊆ B iff A vInc
wk T B.

From Theorems 4.5 and 4.4, A ⊆ B implies A vInc
wk O B for every choice of observables

O.
For the current work, we identify just one category intermediate in size between

Map and Inc, that of macro transformations, which were of particular interest to
Landin and Felleisen.

Definition 4.6 Category Macro consists of all morphisms f ∈ Map such that
the corresponding text transformation τf is polynomial; that is, in term-algebraic
notation (where a CFG rule with n nonterminals on its right-hand side appears as
an n-ary operator), for each n-ary operator σ that occurs in dom(f), there exists a
polynomial σf such that τf (σ(t1, . . . , tn)) = σf (τf(t1), . . . , τf(tn)).

(Our Macro is a larger class of morphisms than Felleisen described, because he
imposed the further constraint that if σ is present in both languages then σf = σ. The
larger class supports stronger non-existence results; and, moreover, when comparing
realistic programming languages we will want measures that transcend superficial
differences of notation.)

Recall toy languages L0, Lpriv , Lpub from §3. From Theorem 4.5, L0 @
Inc
wk O Lpriv

@
Inc
wk O Lpub (where observables O are the results). Since queries always get results in

all three languages, so that there is no discrepancy in “halting behavior”, L0 @
Inc
O

Lpriv @
Inc
O Lpub . We can’t get very strong inexpressiveness results on these languages,

because it really isn’t very difficult to rewrite Lpriv -programs and Lpub-programs so
that they will work in all three languages; one only needs the “remove all private
keywords” function U . Thus, for any category C that admits inclusion morphisms and
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U (in its manifestations as a morphism Lpriv → L0 and as a morphism Lpub → Lpriv ),
L0 ≡

C
O Lpriv ≡C

O Lpub . In particular, L0 ≡
Macro
O Lpriv ≡Macro

O Lpub .
Yet, our intuitive ordering of these languages by abstractive power is L0 = Lpub <

Lpriv ; so apparently C, O expressiveness doesn’t match our understanding of abstrac-
tive power.

5 Abstractive power

To correct this difficulty, we generalize an additional strategem from a different treat-
ment of “expressiveness”, by John C. Mitchell ([Mi93]). Mitchell was concerned
with whether a transformation between programming languages would preserve the
information-hiding properties of program contexts; in terms of our framework, he
required of f : A → B that if there is no observable difference between xy ∈ A and
xy′ ∈ A (that is, x hides the distinction between y and y′), then there is no observable
difference between f(xy) ∈ B and f(xy′) ∈ B, and vice versa.

We take from Mitchell’s treatment the idea that f should preserve observable
relationships between programs. However, our treatment is literally deeper than
Mitchell’s. He modeled a programming language as a mapping from syntactic terms
to semantic results: his analog of prefix x was a context (a polynomial of arity one
with exactly one occurrence of the variable); of suffix y, a subterm to substitute into
the context; and of A〈〈xy〉〉, an element of an arbitrary semantic domain. By requiring
that f preserve observational equivalence of subterms y, he was able to define an
‘abstractive’ ordering of programming languages, in the merely information-hiding
sense of abstraction — but he could not address any other abstractive techniques
than simple information hiding, because his model of programming language wouldn’t
support them. Abstractive power in our general sense concerns what can be expressed
in languages A〈〈xy〉〉 and A〈〈xy′〉〉, hence we are concerned with their general linguistic
properties, such as their ordering by expressive power; but under Mitchell’s model,
semantic values A〈〈xy〉〉 and A〈〈xy′〉〉 are ends of computation, not further programming
languages, and so they have no linguistic properties to compare. Since our semantic
values are programming languages, we can and do require that f preserve expressive
ordering of behaviors.

Definition 5.1 A programming language with expressive structure (briefly, an ex-
pressive language) is a tuple L = 〈S, C〉 where S is a language and C is a category.
For expressive language L, its language component is denoted seq(L), and its cate-
gory component, cat(L); that is, L = 〈seq(L), cat(L)〉.

For expressive language L = 〈S, C〉 and category D, notation L ∩ D signifies
expressive language 〈S, (C ∩ D)〉.

For expressive language L = 〈S, C〉 and sequence x, L reduced by x is L〈〈x〉〉 =
〈S〈〈x〉〉, C〉.
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seq(A) seq(B)

seq(A)〈〈x〉〉 seq(B)〈〈f(x)〉〉

seq(A)〈〈y〉〉 seq(B)〈〈f(y)〉〉

x

y

f(x)

f(y)

f

f〈〈x〉〉

f〈〈y〉〉

g h

Figure 4: Elements of the criteria for an expressive morphism.

Definition 5.2 Suppose expressive languages A, B.
A morphism f : seq(A) → seq(B) is a morphism from A to B, denoted f : A → B,

if both of the following conditions hold.

(a) For all x, y ∈ seq(A) and g ∈ cat(A) with g: seq(A)〈〈x〉〉 → seq(A)〈〈y〉〉, there
exists h ∈ cat(B) with h: seq(B)〈〈f(x)〉〉 → seq(B)〈〈f(y)〉〉 such that f〈〈y〉〉 ◦ g =
h ◦ f〈〈x〉〉.

(b) For all x, y ∈ seq(A), if there is no g ∈ cat(A) with g: seq(A)〈〈x〉〉 →
seq(A)〈〈y〉〉, then there is no h ∈ cat(B) with h: seq(B)〈〈f(x)〉〉 → seq(B)〈〈f(y)〉〉.

The elements of Conditions 5.2(a) and 5.2(b) are illustrated in Figure 4.
Definition 5.2 is designed so that specific properties of the expressive structure

of A are mapped into B. This is why, in Condition 5.2(a), we require not only
that for each g there is an h, but that there is an h that makes the diagram in
Figure 4 commute. Without the commutative diagram, we couldn’t deduce properties
of h (beyond the identity of its domain and codomain) from properties of g, or vice
versa; cf. Theorem 5.4, below. We also need Condition 5.2(b), to prevent f from
collapsing the expressive structure of A: if A allows us to create two languages that
are distinct from each other, seq(A)〈〈x〉〉 and seq(A)〈〈y〉〉 such that the latter can’t
express the former, then f should map these into distinct languages of B, which
is just what Condition 5.2(b) guarantees. We do not ask for the strictly stronger
property, symmetric to Condition 5.2(a), that for every h there is a g that makes
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the diagram commute, because that would impose detailed structure of all cat(B)
morphisms seq(B)〈〈f(x)〉〉 → seq(B)〈〈f(y)〉〉 onto cat(A), subverting our intent that B

can have more expressive structure than A.

Definition 5.3 Suppose category C, observables O, expressive languages A, B.
B C-expresses A for observables O (or, B is as C, O abstractive as A), denoted

A ≤C
O B, if there exists a morphism f : A → B in C ∩ ObsO.
B weakly C-expresses A for observables O (or, B is weakly as C, O abstractive

as A), denoted A ≤C
wk O B, if there exists a morphism f : A → B in C ∩ WObsO.

Theorem 5.4 Suppose expressive languages A, B, category C, and observables O.

If A ≤C
wk O B and cat(B) ⊆ WObsO, then cat(A) ⊆ WObsO.

If A ≤C
O B and cat(B) ⊆ ObsO, then cat(A) ⊆ ObsO.

These results follow immediately from Theorem 2.8. One can also use Theorem 2.8
to reason back and forth between particular expressiveness relations in B and in A

(but we won’t formulate any specific theorem to that effect, as it is easier to work
directly from the general theorem).

Theorem 5.5 Suppose expressive languages A, Ak, B, Bk, categories C, C ′, D, Dk,
and observables O, O′.

If A1 ≤
C
O A2 and A2 ≤

C
O A3, then A1 ≤

C
O A3.

If A1 ≤
C
wk O A2 and A2 ≤

C
wk O A3, then A1 ≤

C
wk O A3.

If A ≤C
O B, C ⊆ C ′, and O′ ⊆ O, then A ≤C′

O′ B.

If A ≤C
wk O B, C ⊆ C ′, and O′ ⊆ O, then A ≤C′

wk O′ B.

Suppose D is the compositional closure of D1 ∪ D2.

If A ≤C
O B ∩ D1 and A ≤C

O B ∩ D2, then A ≤C
O B ∩ D.

If A ≤C
wk O B ∩ D1 and A ≤C

wk O B ∩ D2, then A ≤C
wk O B ∩ D.

If A ≤C
O B then A ≤C

wk O B.

All of these results follow immediately from the definitions.
Theorem 5.5 reveals why we introduced expressive languages, instead of defining

abstractiveness as a relation between sets of sequences. Given relation

〈S1, (C ∩ WObsO)〉 ≤C
O 〈S2, (C ∩ WObsO)〉 , (6)

we cannot usually conclude

〈S1, (C
′ ∩ WObsO′)〉 ≤C′

O′ 〈S2, (C
′ ∩ WObsO′)〉 (7)
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for smaller or larger C ′, nor for smaller or larger O′, because these variations work
differently in the three different positions: they can be weakened generally at ≤, and
weakened with some care at S2, and cannot be varied either way at S1 (unless due to
some peculiar convergence of properties of the categories in all three positions).

In practice when investigating A ≤C
O B, our first concern will be the size of cat(A),

regardless of what sizes we need for C and cat(B) to obtain our results — because
the size of cat(A) addresses whether seq(B) can abstractively model particular trans-
formations on seq(A), whereas the sizes of C and cat(B) address merely how readily
it can do so (which is of only subsequent interest).

Theorem 5.6 Suppose observables O are the results for toy languages L0, Lpriv ,

Lpub of §3, and U the syntactic transformation Lpub → L0 of §3.

Then 〈L0, Inc〉 =
Inc ∪ {U}
O 〈Lpub, Inc〉 <Macro

wk O 〈Lpriv , Inc〉 (allowing all meaning-
ful domains and codomains for U in category Inc ∪ {U}).

Proof. Recall that in category Inc, for any languages A, B there is at most one
morphism A → B, and that morphism exists iff A ⊆ B. Thus, 〈A, Inc〉 ≤C

O 〈B, Inc〉
iff there exists f : A → B with f ∈ C ∩ ObsO such that for all x, y ∈ A,

(a) if A〈〈x〉〉 ⊆ A〈〈y〉〉, then B〈〈f(x)〉〉 ⊆ B〈〈f(y)〉〉 and, for all z ∈ A〈〈x〉〉, f〈〈x〉〉(z) =
f〈〈y〉〉(z); and

(b) if A〈〈x〉〉 6⊆ A〈〈y〉〉, then B〈〈f(x)〉〉 6⊆ B〈〈f(y)〉〉.

Suppose A ∈ {L0, Lpub}, B ∈ {L0, Lpriv , Lpub}, and x, y ∈ A. Since A either doesn’t
have private fields or doesn’t enforce them, A〈〈x〉〉 = A〈〈U(x)〉〉 and A〈〈y〉〉 = A〈〈U(y)〉〉.
So, A〈〈x〉〉 ⊆ A〈〈y〉〉 iff A〈〈U(x)〉〉 ⊆ A〈〈U(y)〉〉; and both of these mean that U(y)
declares at least as much as U(x), consistently with U(x), and therefore, regard-
less of whether B has or enforces private fields, B〈〈U(x)〉〉 ⊆ B〈〈U(y)〉〉. If A〈〈x〉〉 6⊆
A〈〈y〉〉, then A〈〈U(x)〉〉 6⊆ A〈〈U(y)〉〉; U(y) either does not declare everything that U(x)
does, or declares it inconsistently with U(x); and therefore, B〈〈U(x)〉〉 6⊆ B〈〈U(y)〉〉.
Also, since U ∈ Map, U〈〈x〉〉(z) = U(z) = U〈〈y〉〉(z). Therefore, since U ∈ ObsO,

〈A, Inc〉 ≤
Inc ∪ {U}
O 〈B, Inc〉.

For the remainder of the theorem, it suffices to show that 〈Lpriv , Inc〉 6≤Macro
wk O

〈L0, Inc〉. Suppose f : 〈Lpriv , Inc〉 → 〈L0, Inc〉 in Macro, and let τf be the corre-
sponding polynomial text-transformation.

Consider the behavior of τf on Lpriv fields

φpub = “n = e ;”
φpriv = “private n = e ;” .

(8)

When φpub is embedded in an Lpriv sequence, varying e affects what observables may
occur later in the sequence, while varying n affects what non-observables may occur
later in the sequence. The smallest element of L0 syntax with parts that affect later
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observables and parts that don’t is the field; so τf (φpub) must contain one or more
fields. Since there are Lpriv sequences in which φpriv can be substituted for φpub , there
must be L0 sequences in which τf (φpriv) can be substituted for τf (φpub); so τf (φpriv)
and τf (φpub) belong to the same syntactic class in L0, and, since τf (φpriv) can’t be
empty (because it has some consequences), τf (φpriv) must contain one or more fields.

When φpriv is embedded in an Lpriv sequence σ, it affects what other fields may
occur in σ; but it is possible that no other fields in σ depend on it, in which case it
could be deleted from σ with no affect on what sequences may follow σ. However,
in L0 there is no such thing as a field embedded in a sequence whose deletion would
not affect what further sequences could follow it. Therefore, no choice of one or more
fields in τf (φpriv) will satisfy the supposition for f , and by reductio ad absurdum, no
such f exists.

In comparing realistic programming languages, it may plausibly happen that the
abstractive power of language A is not exactly duplicated by language B, but from
B one can abstract to a language B〈〈x〉〉 that does capture the abstractive power of A

(say, A 6≤Map

wk O B but A ≤Map

wk O B〈〈x〉〉). Formally,

Definition 5.7 For any category C, category Pfx(C) consists of all morphisms
f ∈ Any such that there exists b ∈ cod(f) and g ∈ C with, for all a ∈ dom(f),
f(a) = b g(a).

Using this definition, instead of the cumbersome “∃x such that A ≤Map

wk O B〈〈x〉〉”, one

can write “A ≤
Pfx(Map)
wk O B”.

6 Related formal devices

Felleisen’s formal notion of expressiveness of programming languages was discussed
in §4. That device is concerned with ability to express computation, not with ability
to express abstraction.

Mitchell’s formal notion of abstraction-preserving transformations between pro-
gramming languages was discussed at the top of §5. That device is concerned with
information hiding by particular contexts.

Another related formal device is extensibility, proposed by Krishnamurthi and
Felleisen ([KrFe98]). Their device has technical similarities both to Mitchell’s device
and to ours. They divided each program into a prefix and a suffix, mapped each
program into a non-linguistic semantic result, and considered when a given suffix
with two different prefixes would map to the same result. Thus, their treatment views
each prefix as signifying a language, as in our treatment, but views the completed
program as signifying a non-language semantic value, as in Mitchell’s treatment. Like
Mitchell, they are concerned only with a form of information hiding, so no difficulties
arise in their treatment from the absence of linguistic properties of semantic values.
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Moreover, the particular form of information hiding they address, black-box reuse,
applies varying prefixes to a fixed set of suffixes, rather than performing some common
transformation f on both prefix and suffix — so that, even though they view prefixes
as signifying languages, they only consider expressive equivalences of those languages,
not any expressive ordering.

Where both Mitchell’s and Krishnamurthi and Felleisen’s devices reward hiding
of program internals, our device rewards flexibility to selectively hide or not hide
program internals.

7 Directions for future work

It was remarked in §2 that this formal treatment of abstractive power only directly
studies abstraction at a single level of syntax. No exploration of multi-level abstrac-
tion is currently contemplated, since the single-level treatment seems to afford a rich
theory, and also appears already able to engage deeper levels of syntax through struc-
tural constraints on the categories, as via category Macro (cf. Theorem 5.6).

Variant simplified forms of Scheme (as e.g. in [Cl98]) are expected to be partic-
ularly suitable as early subjects for abstractive-power comparison of nontrivial pro-
gramming languages, because trivial syntax and simple, orthogonal semantics should
facilitate study of specific, clear-cut semantic variations. Interesting comparisons
include

• fully encapsulated procedures (as in standard Scheme) versus various procedure
de-encapsulating devices (such as MIT Scheme’s procedure-environment , or,
more subtly, primitive-procedure? ([MitScheme])).

• Scheme without hygienic macros versus Scheme with hygienic macros.

• Scheme with hygienic macros versus Scheme with Kernel-style fexprs ([Sh07]).

In each case, it seems likely that a contrast of abstractive power can be demon-
strated by choosing sufficiently weak categories; consequently, the larger question is
not whether a contrast can be demonstrated, but what categories are required for
the demonstration. A Turing-powerful programming language may, in fact, support
nontrivial results using expressive category Map.

A major class of language features that should be assessed for abstractive power
is strong typing — that is, typing enforced eagerly, at static analysis time, rather
than lazily at run-time. Eager enforcement apparently increases encapsulation while
decreasing flexibility; it may even be possible to separate these two aspects of strong
typing, by factoring the strong typing feature into two (or more) sub-features, with
separate and sometimes-conflicting abstractive properties. Analysis of the abstractive
properties of strong typing is currently viewed as a long-term, rather than short-term,
goal.
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