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Abstract

Edge colorings of r-uniform hypergraphs naturally define a multicolor-
ing on the 2-shadow, i.e. on the pairs that are covered by hyperedges. We
show that in any (r− 1)-coloring of the edges of an r-uniform hypergraph
with n vertices and at least (1−ε)

(
n
r

)
edges, the 2-shadow has a monochro-

matic matching covering all but at most o(n) vertices. This result implies
that for any fixed r and sufficiently large n, there is a monochromatic
Berge-cycle of length (1− o(1))n in every (r − 1)-coloring of the edges of

K
(r)
n , the complete r-uniform hypergraph on n vertices.

1 Introduction

Let H be an r-uniform hypergraph (a family of some r-element subsets of a set).
The shadow graph of H is defined as the graph Γ(H) on the same vertex set,
where two vertices are adjacent if they are covered by at least one edge of H.
A coloring of the edges of an r-uniform hypergraph H, r ≥ 2, induces a multi-
coloring on the edges of the shadow graph Γ(H) in a natural way; every edge e
of Γ(H) receives the color of all hyperedges containing e. A subgraph of Γ(H)
is monochromatic if the color sets of its edges have a nonempty intersection.

A set of pairwise disjoint edges of the shadow graph covering n−o(n) vertices
is called an almost perfect matching of Γ(H). Let K

(r)
n denote the complete r-

uniform hypergraph on n vertices. An r-uniform hypergraph is almost complete,
if it has at least (1− o(1))

(
n
r

)
edges. We call an r-uniform hypergraph (1− ε)-

complete if it has at least (1− ε)nr/r! edges.
In this paper we prove the following conjecture from [3].

Theorem 1.1. Assume that r ≥ 2 is fixed, H is an almost complete r-uniform
hypergraph with n vertices, and its edges are colored with r − 1 colors. Then
the induced multicoloring on Γ(H) contains a monochromatic almost perfect
matching.

It is worth noting that Theorem 1.1 does not hold if we color with r colors
instead of r − 1. An example in [3] gives an r-coloring of K

(r)
n such that the

largest number of vertices covered by any monochromatic matching is not larger
than (2r−2)n

2r−1 . In fact that is conjectured to be the best result ([3]) and proved
for r = 3 ([5]).

It was proved in [3] that Theorem 1.1 implies a stronger result, namely that
the almost perfect monochromatic matching M guaranteed can be connected
as well which means that the edges of M are in the same component of the
hypergraph defined by the edges of the color of M . Moreover, it was shown
in [3] how to combine this strengthening of Theorem 1.1 and a ”weak version”
of the hypergraph Regularity lemma to get a Ramsey-type result for Berge-
cycles. An r-uniform Berge-cycle ([1]) of length ` is a sequence of distinct
vertices v1, v2, . . . , v` together with a set of distinct edges e1, . . . , e` such that ei

contains vi, vi+1 ( v`+1 ≡ v1).
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Corollary 1.2. In every (r−1)-coloring of the edges of K
(r)
n there is a monochro-

matic Berge-cycle of length at least (1− o(1))n.

Note that in [3] it was conjectured that for sufficiently large n this statement
is true with a monochromatic Berge-cycle of length n, i.e. there is a monochro-
matic Hamiltonian Berge-cycle. However, at the moment we are unable to prove
this stronger statement.

The way to obtain the above corollary from Theorem 1.1 illustrates a prin-
ciple due to ÃLuczak (suggested in [8]): in many cases the task of finding a
monochromatic path or cycle can be reduced to the easier task of finding a
monochromatic matching via the Regularity lemma. This principle is applied
in many recent Ramsey-type results such as [2], [3], [4], [5], [6], [7].

2 Proof of Theorem 1.1

For 0 < δ < 1 fixed, we say that a sequence L ⊂ V (H) of k distinct vertices was
obtained by a δ-bounded selection (or sometimes we just say shortly that L is a
δ-bounded selection) if its elements are chosen in k consecutive steps so that in
each step there are at most δn forbidden vertices that cannot be included as the
next element. These sets of δn forbidden vertices may depend on the choices of
the vertices chosen in the previous steps. Observe that a δ-bounded selection
L is also a δ′-bounded selection for any δ′ > δ. The following lemma from [3]
proved to be a convenient tool to handle almost complete hypergraphs.

Lemma 2.1. Assume that H is a (1 − ε)-complete r-uniform hypergraph and
set δ = ε2

−r

. There are forbidden sets such that for every δ-bounded selection
L ⊂ V (H) of length at most r, at least (1− δ) nr−|L|

(r−|L|)! edges of H contain L.

Now we are ready to prove Theorem 1.1 by induction on r. Let ε > 0 be
arbitrary, H is an (1− ε)-complete r-uniform hypergraph with n vertices whose
edges are colored with r−1 colors. We shall prove that there is a monochromatic
matching M in Γ(H) covering all but at most αn vertices, where α tends to 0,
if ε tends to 0.

Set p =
√

εn+1. For r = 2 we have an (1− ε)-complete graph (colored with
one color). Select a maximum matching M in the graph. Observe that the set
of vertices uncovered by M form an independent set. Since

(
p
2

)
> εn2

2 , less than
p = o(n) vertices are uncovered by M .

Assume that Theorem 1.1 is true for every q < r. Consider an (r−1)-coloring
of an (1− ε)-complete r-uniform hypergraph H with r ≥ 3. Set δ = ε2

−r

and let
G be the defined by those edges of the shadow graph Γ(H) that can be obtained
as the first two vertices of the δ-bounded selection guaranteed by Lemma 2.1.
Note that this implies that G has minimum degree (1− δ)n.

For any v ∈ V (G) and 1 ≤ i ≤ r−1, let Ai be the set of vertices w such that
color i is not on the edge vw ∈ E(G). Assume that yi ∈ Ai for 1 ≤ i ≤ r − 1.
Then e = {v, y1, . . . , yr−1} /∈ E(H) because no color can be assigned to any r-
tuple containing e. Assuming w.l.o.g that |A1| ≤ |A2| ≤ · · · ≤ |Ar−1|, it follows

3



that

|A1|r−1 ≤ Πr−1
i=1 |Ai| ≤ δnr−1

(r − 1)!

implying that v is adjacent in color 1 to at least (1 − δ − ρ)n vertices of G

(using the minimum degree condition in G), where ρ =
(

δ
(r−1)!

) 1
r−1

. This

argument shows that V (G) = ∪r−1
i=1 Xi where v ∈ Xi has the property that at

least (1− δ − ρ)n edges of G of color i are incident to v.
Let Mi be a maximum matching in color i in the subgraph of G induced by

V (G) \Xi and set Yi = V (G) \ (V (Mi)∪Xi). Observe that - from the choice of
Mi - no edge of G within Yi is colored with color i.

If
p(i− 1) + |Xi| ≥ |Yi|

holds for some i, 1 ≤ i ≤ r − 1, then we have the required large matching in
color i. Indeed, almost every edge of G incident to Xi has color i thus Mi can
be extended to a matching that misses at most p(i−1)+(δ+ρ)n = o(n) vertices
of G.

Assume that p(i − 1) + |Xi| < |Yi| for every i, 1 ≤ i ≤ r − 1. This implies
that

r−1∑

i=1

|Yi| > p

r−1∑

i=1

(i− 1) +
r−1∑

i=1

|Xi| ≥ p

(
r − 1

2

)
+ n.

We claim that this inequality implies |Yi ∩ Yj | ≥ p for some 1 ≤ i < j ≤ r − 1.
Indeed, otherwise

n ≥ | ∪r−1
i=1 Yi| >

r−1∑

i=1

|Yi| −
(

r − 1
2

)
p

contradicting to the inequality above. This proves the claim.
Select Yi, Yj from the claim, w.l.o.g. |Yr−2 ∩ Yr−1| ≥ p. From the definition

of p,
(
p
2

)
> εn2

2 follows, implying that there is x, y ∈ Yr−2 ∩ Yr−1 such that
xy ∈ E(G). Notice that for r = 3 we have a contradiction on this branch of the
proof: by Lemma 2.1, there are at least (1− δ)n > 0 edges (triples) containing
{x, y} and such an edge cannot have a color.

For r ≥ 4 consider the (r − 2)-uniform hypergraph H∗ with edge set {e \
{x, y} : e ∈ H}. Note that x, y are the first two vertices in a δ-bounded selection
of Lemma 2.1 thus H∗ is an (1 − δ)-complete hypergraph. Moreover, since
x, y ∈ Yr−2 ∩ Yr−1, H∗ is colored with r − 3 colors. Thus - since r − 2 ≥ 2 -
induction applies, H∗ has an almost perfect monochromatic matching M in its
shadow graph. Observing that M is a monochromatic matching in the shadow
graph of H as well, the proof is finished. ¤
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