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Gábor N. Sárközy∗
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Abstract

In any r-uniform hypergraph H for 2 ≤ t ≤ r we define an r-uniform
t-tight Berge-cycle of length `, denoted by C

(r,t)
` , as a sequence of distinct

vertices v1, v2, . . . , v`, such that for each set (vi, vi+1, . . . , vi+t−1) of t con-
secutive vertices on the cycle, there is an edge Ei of H that contains these
t vertices and the edges Ei are all distinct for i, 1 ≤ i ≤ ` where `+ j ≡ j.
For t = 2 we get the classical Berge-cycle and for t = r we get the so-called
tight cycle. In this note we formulate the following conjecture. For any
fixed 2 ≤ c, t ≤ r satisfying c+t ≤ r+1 and sufficiently large n, if we color
the edges of K

(r)
n , the complete r-uniform hypergraph on n vertices, with

c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle.
We prove some partial results about this conjecture and we show that if
true the conjecture is best possible.

1 Introduction

The investigations of Turán type problems for paths and cycles of graphs were
started by Erdős and Gallai in [3]. The corresponding Ramsey problems have

∗Research supported in part by the National Science Foundation under Grant No. DMS-
0456401.
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been looked at some years later first in [6] and then later in [4], [5], [8], [12] and
[14].

There are several possibilities to define paths and cycles in hypergraphs. In
this paper we address the case of the Berge-cycle; probably it is the earliest
definition of a cycle in hypergraphs in the book of Berge [1]. Turán type prob-
lems for Berge-paths and Berge-cycles of hypergraphs appeared perhaps first
in [2]. Other types of hypergraph cycles, loose and tight, have been studied
in [11], [13] and [15]. The investigations of the corresponding Ramsey prob-
lems started quite recently with [9] and [10] where Ramsey numbers of loose
and tight cycles have been determined asymptotically for two colors and for
3-uniform hypergraphs.

Let H be an r-uniform hypergraph (some r-element subsets of a set). Let
K

(r)
n denote the complete r-uniform hypergraph on n vertices. In any r-uniform

hypergraph H for 2 ≤ t ≤ r we define an r-uniform t-tight Berge-cycle of length
`, denoted by C

(r,t)
` , as a sequence of distinct vertices v1, v2, . . . , v`, such that for

each set (vi, vi+1, . . . , vi+t−1) of t consecutive vertices on the cycle, there is an
edge Ei of H that contains these t vertices and the edges Ei are all distinct for
i, 1 ≤ i ≤ ` where `+j ≡ j. We will denote by E(C(r,t)

` ) the set of these edges Ei

used on the cycle. For t = 2 we get Berge-cycles and for t = r we get the tight
cycle. When the uniformity is clearly understood we may simply write C

(t)
` for

C
(r,t)
` or just C`. Rc(C

(r,t)
` ) will denote the Ramsey number of the r-uniform

t-tight ` cycle using c colors. A Berge-cycle of length n in a hypergraph of n
vertices is called a Hamiltonian Berge-cycle. It is important to keep in mind
that, in contrast to the case r = t = 2, for r > t ≥ 2 a Berge-cycle C

(r,t)
` , is not

determined uniquely, it is considered as an arbitrary choice from many possible
cycles with the same triple of parameters.

In this note, continuing the investigations from [7], we study Hamiltonian
Berge-cycles in hypergraphs. Thinking in terms of graphs, such an attempt
seems strange, since in many 2-coloring of Kn there are no monochromatic
Hamiltonian cycles. For example, if each edge incident to a fixed vertex is red
and the other edges are blue, there is no monochromatic Hamiltonian cycle.
However, from the nature of Berge-cycles, this example does not carry over to
hypergraphs, if K

(3)
n is colored this way, there is a red Hamiltonian Berge-cycle

(for n ≥ 5).
In [7] monochromatic Hamiltonian (2-tight) Berge-cycles were studied and

the following conjecture was formulated. Assume that r > 1 is fixed and n is
sufficiently large. Then every (r−1)-coloring of K

(r)
n contains a monochromatic

Hamiltonian (2-tight) Berge-cycle. The conjecture was proved for r = 3. For
general r, the statement was proved for sufficiently large n with b r−1

2 c colors
instead of r − 1 colors. In this note we look at monochromatic Hamiltonian t-
tight Berge-cycles and we generalize the above conjecture in the following way.

Conjecture 1. For any fixed 2 ≤ c, t ≤ r satisfying c+t ≤ r+1 and sufficiently
large n, if we color the edges of K

(r)
n with c colors, then there is a monochromatic

Hamiltonian t-tight Berge-cycle.
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We will prove that if the conjecture is true it is best possible, since for any
values of 2 ≤ c, t ≤ r satisfying c + t > r + 1 the statement is not true.

Theorem 2. For any fixed 2 ≤ c, t ≤ r satisfying c + t > r + 1 and sufficiently
large n, there is a coloring of the edges of K

(r)
n with c colors, such that the

longest monochromatic t-tight Berge-cycle has length at most d t(c−1)n
t(c−1)+1e.

We know that Conjecture 1 is true for c = t = 2 and r = 3, see [7]. It has
also been proved in [7] that Conjecture 1 is asymptotically true for c = 3, t = 2
and r = 4. For the symmetrical case, c = 2, t = 3, we were able to prove only
the following weaker but sharp result.

Theorem 3. For any n ≥ 7, if the edges of K
(5)
n are colored with two colors,

then there exists a monochromatic Hamiltonian 3-tight Berge-cycle.

Note that Conjecture 1 would imply the same statement with r = 4 instead
of r = 5, however, at this point we were unable to prove the statement for r = 4.

Similarly as in [7], for general r we were able to obtain only the following
weaker result, where essentially we replace the sum c + t with the product ct.

Theorem 4. For any fixed 2 ≤ c, t ≤ r satisfying ct + 1 ≤ r and n ≥ 2(t +
1)rc2, if we color the edges of K

(r)
n with c colors, then there is a monochromatic

Hamiltonian t-tight Berge-cycle.

In Section 2 we give the simple construction for Theorem 2. In Sections 3
and 4 we present the proofs of Theorems 3 and 4.

2 The construction

Proof. (of Theorem 2)
Let A1, . . . , Ac−1 be disjoint vertex sets of size b n

t(c−1)+1c. The r-edges not
containing a vertex from A1 are colored with color 1. The r-edges that are not
colored yet and do not contain a vertex from A2 are colored with color 2. We
continue in this fashion. Finally the r-edges that are not colored yet with colors
1, . . . , c− 2 and do not contain a vertex from Ac−1 are colored with color c− 1.
The r-edges that contain a vertex from all c−1 sets A1, . . . , Ac−1 (if such r-edges
exist) get color c. We claim that in this c-coloring of the edges of K

(r)
n the longest

monochromatic t-tight Berge-cycle has length ≤ d t(c−1)n
t(c−1)+1e. This is certainly

true for Berge-cycles in color i for 1 ≤ i ≤ c − 1, since the subhypergraph
induced by the edges in color i leaves out Ai (a set of size b n

t(c−1)+1c) completely.
Finally, note that in a t-tight Berge-cycle in color c (if such a cycle exists) from
t (> r − c + 1) consecutive vertices on the cycle at least one has to come from
A1 ∪ . . . ∪Ac−1 and thus the cycle has length at most

t(c− 1)b n

t(c− 1) + 1
c ≤ t(c− 1)n

t(c− 1) + 1
≤ d t(c− 1)n

t(c− 1) + 1
e.

¤
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3 3-tight 5-uniform Berge-cycles

Lemma 5. If the edges of K
(5)
7 are colored with 2 colors, there exists a monochro-

matic Hamiltonian 3-tight Berge-cycle.

Proof. We first remark that the hypergraph K
(5)
7 contains 21 edges, that each

pair is contained in exactly 10 edges, and each triple is contained in exactly 6
edges.

Let us consider a coloring of the edges of K
(5)
7 in two colors, blue and red.

We will first consider two favorable cases, when the edges containing a pair or
a triple of vertices are mostly colored with the same color.

Case 1: Suppose that there exists a pair of vertices (for instance {0, 4})
contained in less than 3 edges of a color (for instance blue); that is it is contained
in at least 8 red edges. Without loss of generality, we can assume that if there
are blue edges containing {0, 4}, one is (0, 1, 2, 3, 4) and possibly a second one
is either (0, 1, 4, 5, 6) or (0, 1, 2, 4, 5).

Let us consider the cycle (0, 6, 2, 3, 4, 5, 1). In Table 1, we give a choice of a
red edge for each triple of consecutive vertices of this cycle, all distinct.

Table 1: Choice of a red edge for each triple for Lemma 5 Case 1.

{0, 6, 2}: (0, 2, 4,5,6)
{6, 2, 3}: (0, 2,3,4, 6)
{2, 3, 4}: (0, 2,3,4, 5 )
{3, 4, 5}: (0, 3,4,5,6)
{4, 5, 1}: (0,1, 3,4, 5 )
{5, 1, 0}: (0,1,2, 4, 5 ) or (0,1, 4,5,6)
{1, 0, 6}: (0,1, 3,4, 6)

Case 2: Suppose now that every pair of vertices is contained in at least 3
edges of each color. Suppose that for some triple of vertices, say {0, 1, 2}, all
the 6 edges containing it are of the same color, for instance red.

Consider the pair {3, 6}, at least three red edges contains it. One of them is
(0, 1, 2, 3, 6), let (3, 6, α, β, γ) be another one. Necessarily, {α, β, γ}∩ {0, 1, 2} 6=
∅, so we can suppose without loss of generality γ = 2.

We give in Table 2 a choice of a red edge for each triple of consecutive
vertices for the cycle (0, 3, 6, 2, 4, 1, 5). All these edges are obviously distinct,
except perhaps for (2, 3, 6, α, β). Yet this edge may be equal only to (0, 1, 2, 3, 6),
and we chose them to be different. So this cycle with this choice of edges forms
a red Hamiltonian 3-tight Berge-cycle in K

(5)
7 .
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Table 2: Choice of a red edge for each triple for Lemma 5 Case 2.

{0, 3, 6}: (0,1,2,3, 6)
{3, 6, 2}: ( 2,3, 6,α,β)
{6, 2, 4}: (0,1,2, 4, 6)
{2, 4, 1}: (0,1,2,3,4 )
{4, 1, 5}: (0,1,2, 4,5 )
{1, 5, 0}: (0,1,2, 5,6)
{5, 0, 3}: (0,1,2,3, 5 )

Case 3: Finally, we can assume that every pair of vertices is contained in 3
edges of each color and that every triple of vertices is contained in an edge of
each color.

The hypergraph K
(5)
7 contains 21 edges, so there must be 11 edges of the

same color, suppose red. By the pigeonhole principle, we will prove that there
must exist a triple that is contained in at least 4 red edges. Each red edge
contains exactly

(
5
3

)
= 10 distinct triples, this makes at least 110 pairs {e, f}

such that e is a red edge and f is a triple with f ⊂ e. There are exactly
(
7
3

)
= 35

triples, now 110
35 > 3, so there exists a triple that is contained in at least 4 red

edges.
Let the triple {0, 1, 2} be contained in at least 4 red edges. It is also contained

in a blue edge, suppose (0, 1, 2, 4, 5). If there is a second blue edge containing
{0, 1, 2}, we assume without loss of generality that it is either (0, 1, 2, 3, 6) or
(0, 1, 2, 4, 6). Consider the pair {4, 5}; it is contained in at least 3 red edges: e1,
e2 and e3. Since none are equal to (0, 1, 2, 4, 5), they all contain the vertex 3 or
6, maybe both. Moreover, since both triples {3, 4, 5} and {4, 5, 6} are contained
in a red edge, then at least one contains 3 and one contains 6. Suppose e1

contains 3 and e3 contains 6, e2 contains either 3 or 6. We consider 3 subcases:

1. If (0, 1, 2, 4, 6) is red:
In this case, since the edge (0, 1, 2, 3, 4) is also red, we may assume without
loss of generality that e2 contains 6. The edge e3 contains either 0, 1, or
2; by symmetry, suppose it is 0. We form the cycle (0, 1, 2, 3, 4, 5, 6) with
the choice of edges given in table 3, first column.

2. If (0, 1, 2, 4, 6) is blue and e2 contains 6:
The edge e3 necessarily contains a vertex among 0, 1 and 2, suppose it is
0. Then, we form the cycle (0, 1, 2, 3, 4, 5, 6) with the choice of edges given
in table 3, second column.

3. If (0, 1, 2, 4, 6) is blue and e2 contains 3: The edge e1 necessarily contains
a vertex among 0, 1 and 2, suppose it is 2. Then, we form the cycle
(0, 1, 2, 3, 4, 5, 6) with the choice of edges given in table 3, third column.

Thus in every case, we managed to build a monochromatic Hamiltonian 3-tight
Berge-cycle in K

(5)
7 . ¤
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Table 3: Choice of a red edge for each triple for Lemma 5 Case 3.

triple : Subcase 1 Subcase 2 Subcase 3
{0, 1, 2}: (0,1,2, 5,6) (0,1,2, 5,6) (0,1,2,3, 5 )
{1, 2, 3}: (0,1,2,3, 5 ) (0,1,2,3, 5 ) (0,1,2,3,4 )
{2, 3, 4}: (0,1,2,3,4 ) (0,1,2,3,4 ) e1

{3, 4, 5}: e1 e1 e2

{4, 5, 6}: e2 e2 e3

{5, 6, 0}: e3 e3 (0,1,2, 5,6)
{6, 0, 1}: (0,1,2, 4, 6) (0,1,2,3, 6) (0,1,2,3, 6)

Proof. (of Theorem 3)
Consider the complete hypergraph H = K

(5)
n whose edges are 2-colored. We

will proceed by induction on n, its number of vertices. Lemma 5 establishes the
base case for n = 7. Let n ≥ 8. Suppose the result is true for n− 1.

Let a be a vertex of H. By the induction hypothesis, the induced subgraph
of H on all its vertices except a has a monochromatic Hamiltonian 5-uniform
3-tight Berge-cycle C. Say its color is carmine, the other color being azure. Let
us name its vertices {1, 2, . . . , n− 1} in the order they appear in the cycle.

In the following, we will give a color to any pair {x, y} of vertices of V \ {a},
depending on the color of the edges containing x, y and a. We will say a pair
{x, y} is red if all the edges containing x, y and a are carmine, except perhaps
one. We will say a pair {x, y} is blue if all the edges containing x, y and a are
azure, except perhaps one. Otherwise, we will say a pair is green, meaning at
least 2 edges containing x, y and a are carmine and at least 2 are azure.

Remark that if a pair containing x is red, then no pairs containing x can
be blue, and vice versa. To prove it, suppose a pair {x, y} is red while a pair
{x, z} is blue. Take three vertices u, v, w /∈ {a, x, y, z}. Consider the three edges
(a, x, y, z, u), (a, x, y, z, v), and (a, x, y, z, w). Two of them have the same color,
say carmine, then {x, z} cannot be blue, and if the color is azure, {x, y} cannot
be red.

Suppose first that there exists a 1 ≤ i ≤ n− 1 such that the pairs {i, i + 1},
{i + 1, i + 2}, and {i + 2, i + 3} (with n − 1 + j ≡ j) are green or red. For
notation convenience, suppose i = 1. We claim that there is a choice of edges
such that (1, 2, a, 3, 4, . . . n−1) is a 3-tight monochromatic carmine Hamiltonian
cycle. Let us define such a choice of edges. For any 3 ≤ j ≤ n − 1, choose for
the set {j, j + 1, j + 2} the corresponding edge in C. Three edges still have to
be found, corresponding to the sets {1, 2, a}, {2, a, 3} and {a, 3, 4}. For these
three sets, we will choose edges containing a, that are therefore different from
the edges we took before.

Since the pairs {1, 2}, {2, 3} and {3, 4} are green or red, there are at least
two carmine edges containing each of the sets {a, 1, 2}, {a, 2, 3} and {a, 3, 4}.
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If the edge (1, 2, 3, 4, a) is carmine, take it for the set {2, a, 3}. Now choose
any other carmine edge for {1, 2, a} and {a, 3, 4}. There exist such edges since
{1, 2} and {3, 4} are green or red, and they are distinct since different from
(1, 2, 3, 4, a). Otherwise, take any suiting carmine edge for {2, a, 3}, and different
carmine edges for {1, 2, a} and {a, 3, 4}. All these edges exist since {1, 2}, {2, 3}
and {3, 4} are green or red, and the edge for {1, 2, a} and {a, 3, 4} are different
or it would be (1, 2, 3, 4, a), which is azure.

Now we can suppose that for any 1 ≤ i ≤ n− 1, {i, i + 1}, {i + 1, i + 2}, or
{i + 2, i + 3} is blue. Since most edges are now blue, we are tempted to try to
form a cycle of color azure. We will still form a carmine cycle in the following
case.

Suppose there exists a vertex 1 ≤ i ≤ n − 1, such that the edges (a, i, i +
1, i + 2, i + 3), (a, i, i + 1, i + 2, i + 4) and (a, i, i + 1, i + 2, i + 5) are carmine.
Then to form a carmine cycle, we insert a between i + 1 and i + 2. We get the
cycle (1, 2, . . . , i, i + 1, a, i + 2, i + 3, . . . , n− 1). For {i, i + 1, a}, we use the edge
(a, i, i + 1, i + 2, i + 5), for {i + 1, a, i + 2}, the edge (a, i, i + 1, i + 2, i + 4), for
{a, i + 2, i + 3}, the edge (a, i, i + 1, i + 2, i + 3), and for all the other triples, we
use the corresponding edge of C.

We finally can assume otherwise that for any 1 ≤ i ≤ n− 1, one of the edges
(a, i, i+1, i+2, i+3), (a, i, i+1, i+2, i+4) and (a, i, i+1, i+2, i+5) is azure.
Then using this edge for the set {i, i + 1, i + 2}, we form an azure cycle C ′

{1, 2, . . . n} not containing a. All the edges we used are distinct since n− 1 > 6.
Let us choose a blue pair of consecutive vertices in the cycle. Without loss of
generality, suppose the pair is {2, 3}. We will insert the vertex a between 2 and 3
in the cycle C ′. Most edges may remain unchanged. For the set {1, 2, a}, we can
use the edge of C ′ formerly used for {1, 2, 3} which contains a by construction of
C ′. Likewise, we can use for {a, 3, 4} the edge of C ′ formerly used for {2, 3, 4}.
We only have to find an edge for {2, a, 3}. Since {2, 3} is blue, either (2, a, 3, 5, 6)
or (2, a, 3, 5, 7) is azure, and they both are distinct from any edge of C ′. So we
can find among these two an edge for {2, a, 3}, and we get a monochromatic
Hamiltonian 3-tight Berge-cycle. ¤

4 Proof of Theorem 4

Proof. (of Theorem 4)
We follow the method of [7]. For the sake of completeness we give the details.

We first prove the following lemma.

Lemma 6. Let k and t ≥ 2 be fixed positive integers and let n > 2(t + 1)tk.
Then a (t + 1)-uniform hypergraph H of order n with at least

(
n

t+1

)− kn edges
has a Hamiltonian t-tight Berge-cycle.

Proof. By averaging there exists a vertex x ∈ V (H) contained in at least
(
n−1

t

)−
(t+1)k edges of H. Thus apart from at most (t+1)k exceptional sets all subsets
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of size t on the remaining n − 1 vertices form an edge of H together with x.
Let us denote the union of the vertices in the exceptional subsets by U . Thus
|U | ≤ (t + 1)kt. Take a cyclic permutation on the remaining vertices where
two vertices from U are never neighbors. Since n > 2(t + 1)tk, this is possible.
But then this cyclic permutation is actually a t-tight Berge-cycle, i.e. C

(t+1,t)
n−1 .

Indeed, any set of t consecutive vertices on the cycle contains a non-exceptional
vertex and thus it forms an edge with x. Furthermore, since n > 2(t+1)tk, there
must be two non-exceptional vertices, denoted by x1 and y1, that are neighbors
on the cycle. Consider the 2t consecutive vertices along the cycle that include
x1 and y1 in the middle, and denote these vertices by xt, . . . , x1, y1, . . . , yt.
Consider also a vertex z along the cycle that is not among these 2t vertices. We
claim that x can be inserted between x1 and y1 on the cycle and thus giving
a Hamiltonian t-tight Berge-cycle in H. Indeed, for those sets of t consecutive
vertices which do not include x, we can add x to get the required edge Ei. If a
set of t consecutive vertices includes x, then it also must include either x1 or y1

(or maybe both), i.e. a non-exceptional vertex. But then we can add z to get
the required edge. It is easy to check that all the used edges are distinct. ¤

For S ⊆ V (K(g)
n ), |S| < g, let ES = {e|e ∈ E(K(g)

n ) with S ⊆ e}, the set
of edges containing S. Thus |ES | =

(
n−|S|
g−|S|

)
. It is enough to prove Theorem 4

for r = ct + 1. Indeed, for r > ct + 1, one can have a color transfer by any
injection of the (ct + 1)-element subsets of the n vertices into their r-element
supersets (n ≥ 2r is ensured). Then Theorem 4 will easily follow from the
following stronger theorem.

Theorem 7. Let c, t ≥ 2 and let n ≥ 2(t + 1)tc2. Furthermore let S ⊆
V (K(ct+1)

n ) such that S is of order divisible by t (possibly empty) with |S| ≤
(c− 1)t. Set u = c− |S|

t (≥ 1). Color m ≥ f(n, u, S) edges of ES with u colors.
If f(n, u, S) ≥ (

n−|S|
ct+1−|S|

)−(c−u)(n+t) > 0, then ES contains a monochromatic
Hamiltonian t-tight Berge-cycle.

Proof. Let FS ⊆ ES , |FS | = m, be the set of colored edges in ES . Fix t ≥ 2.
The proof will be by induction on u, 1 ≤ u ≤ c. If u = 1, then |S| = (c − 1)t
so that

(
n−|S|

ct+1−|S|
) − (c − 1)(n + t) =

(
n−(c−1)t

t+1

) − (c − 1)(n + t) ≥ (
n−(c−1)t

t+1

) −
c(n − (c − 1)t) when n ≥ tc2. Define the (t + 1)-uniform hypergraph HS with
V (HS) = V (K(ct+1)

n ) \ S and E(HS) = {e \ S | e ∈ FS}. Therefore since
n− (c− 1)t > 2(t + 1)tc by Lemma 6 HS contains a Hamiltonian t-tight Berge-
cycle C

(t+1,t)
n−(c−1)t. Then we get the corresponding t-tight Berge-cycle C

(ct+1,t)
n−(c−1)t

in ES . But each edge of ES contains S and only n − (c − 1)t edges are used
on this C

(ct+1,t)
n−(c−1)t so that it is easy to insert all of S in place of any edge of

C
(ct+1,t)
n−(c−1)t giving the monochromatic C

(ct+1,t)
n . Indeed, insert all the vertices of

S in arbitrary order between two consecutive vertices on the cycle. Consider a
set T of t consecutive vertices on the new cycle. If T does not contain a vertex
from S, then we can use the edge Ei from E(C(ct+1,t)

n−(c−1)t). If T does have at least
one vertex from S, then it has at most (t − 1) vertices outside S, and thus at
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least ct + 1− |S| − (t− 1) = 2 more vertices are “free”, so in ES the number of
edges containing T that we can still use (not missing or not used on the cycle
yet) is at least (

n− |S ∪ T |
2

)
− (c + 1)(n− (c− 1)t) ≥

≥ (n− ct)2

2
− (c + 1)(n− (c− 1)t).

Thus we can select a distinct edge Ei for each such T if

(n− ct)2

2
− (c + 1)(n− (c− 1)t) ≥ ct,

which is certainly true for n ≥ 2(t + 1)tc2.
Therefore assume the theorem holds for u−1 colors with c ≥ u ≥ 2 and color

the m edges of ES by u colors, m ≥ f(n, u, S) ≥ (
n−|S|

ct+1−|S|
) − (c − u)(n + t) >

0, |S| = (c− u)t. In FS select a maximum length monochromatic t-tight Berge-
cycle. Suppose first that this is C

(ct+1,t)
` = (z1, z2, . . . , z`) in color 1, with

2t− 2 ≤ ` < n. We will handle the case ` < 2t− 2 later. Let z ∈ V (K(ct+1)
n ) \

V (C(ct+1,t)
` ). Consider the vertices {z1, z2, . . . , z2t−2} (using 2t−2 ≤ `) and the

t subsets T1, . . . , Tt consisting of t − 1 consecutive vertices in this interval. If
for each i, 1 ≤ i ≤ t the set Ti ∪ {z} is contained in at least t distinct edges in
ES \E(C(ct+1,t)

` ) in color 1, then clearly we could insert z into the cycle between
zt−1 and zt, a contradiction. Hence we may assume that for some Ti (say T1

without loss of generality) apart from at most (c − u)(n + t) + t exceptional
edges all edges in ES∪T1∪{z} \ E(C(ct+1,t)

` ) are in color 2, 3, . . . , u.
Assume now the second case, ` < 2t − 2. Consider arbitrary vertices

{z1, z2, . . . , z2t} ∈ V (K(ct+1)
n )\S in a cyclic order and the 2t subsets T1, . . . , T2t

consisting of t consecutive vertices in this cyclic order. If for each i, 1 ≤ i ≤ 2t
the set Ti is contained in at least 2t distinct edges in ES in color 1, then we
would have a t-tight Berge-cycle of length 2t in color 1 in FS , a contradiction.
Hence we may assume that for some Ti (say T1 without loss of generality) apart
from at most (c−u)(n+ t)+2t exceptional edges all edges in ES∪T1 are in color
2, 3, . . . , u.

Let S′ be any set of |S|+t = (c−u+1)t vertices containing S∪T1∪{z} in the
first case and S ∪T1 in the second case. Thus in both cases at least |ES′ | − (c−
u+1)(n+t) edges of ES′ are colored by at most u−1 colors. But f(n, u−1, S′) ≥
|ES′ | − (c− u + 1)(n + t) =

(
n−(|S|+t)

ct+1−(|S|+t)

)− (c− (u− 1))(n + t) > 0, 1 ≤ u− 1 =

c − |S′|
t , and |S′| = (c − u + 1)t, so by the induction assumption ES′ contains

a monochromatic Hamiltonian t-tight Berge-cycle, C
(ct+1,t)
n , contradicting the

assumption that ES contains no monochromatic C
(ct+1,t)
n . Therefore for any

u, 1 ≤ u ≤ c, ES contains a monochromatic C
(ct+1,t)
n . ¤

Now the proof of Theorem 4 is concluded by applying Theorem 7 with S = ∅.
¤
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[3] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math.
Acad. Sci. Hungar. 10 (1959), pp. 337-356.

[4] R. Faudree, R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete
Mathematics 8 (1974), pp. 313-329.

[5] A. Figaj, T. Luczak, The Ramsey number for a triple of long even cycles,
to appear in the Journal of Combinatorial Theory, Ser. B.
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