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Abstract

The 2-color Ramsey number R(C3
n, C3

n) of a 3-uniform loose cycle Cn

is asymptotic to 5n/4 as have been recently proved by Haxell, ÃLuczak,
Peng, Rödl, Rucin̂ski, Simonovits and Skokan. Here we extend their re-
sult to the r-uniform case by showing that the corresponding Ramsey
number is asymptotic to (2r−1)n

2r−2
. Partly as a tool, partly as a subject

of its own, we also prove that for r ≥ 2, R(kDr, kDr) = k(2r − 1) − 1
and R(kDr, kDr, kDr) = 2kr − 2 where kDr is the hypergraph having k
disjoint copies of two r-element hyperedges intersecting in two vertices.

∗Research supported in part by the National Science Foundation under Grant No. DMS-
0456401.

1



1 Introduction

The r-uniform loose cycle Cr
n, is the hypergraph with vertex set [n] = [m(r−1)]

and with the set of m edges ei = {1, 2, . . . , r}+i(r−1), i = 0, 1, . . . ,m−1 where
we use mod n arithmetic. Notice that Cr

n has n vertices and n
r−1 edges and

for r = 2 we get the usual definition of a cycle in graphs. The Ramsey number
R(Cr

n, Cr
n) is the smallest integer N for which there is a monochromatic Cr

n in
every 2-coloring of the edges of the complete r-uniform hypergraph Kr

n. It was
proved in [16] that R(C3

n, C3
n) is asymptotic to 5n/4. In this paper we extend

that result by showing that for r ≥ 3, R(Cr
n, Cr

n) is asymptotic to (2r−1)n
2r−2 . In

the proof we follow the argument of [16]. It uses an important tool established
by ÃLuczak in [19] that have been successfully applied in recent results [7], [12],
[13], [14], [15]. Vaguely, the method reduces the problem of finding the Ramsey
number of a path or a cycle to finding the Ramsey number of a connected
matching. An additional - usually technical - difficulty is that the coloring is
not on the edges of a complete hypergraph but on an almost complete one,
where ε

(
n
r

)
edges may be missing.

The key element in [16] was to search for a monochromatic connected struc-
ture with many diamonds, where the diamond D3 is two triples intersecting in
two vertices. More precisely, it was proved that in any 2-coloring of the edges of
an almost complete 3-uniform hypergraph with n vertices, there is a color, say
red, such that there are vertex disjoint red diamonds covering approximately
4n
5 vertices and all of them are in the same component of the hypergraph deter-

mined by the red edges. In this paper we extend this result for the r-uniform
diamond Dr, defined as two r-element edges intersecting in two vertices. (In
fact, one may consider also D2 as an edge of a graph.) The two vertices are
called the central vertices of the diamond. A diamond matching is the union of
vertex disjoint diamonds. A diamond matching is connected if all of its vertices
are in the same component of the hypergraph.

Our main result is the following.

Theorem 1. Suppose that r is fixed and the edges of an almost complete r-
uniform hypergraph H with n vertices are 2-colored. Then there is a monochro-
matic connected diamond matching kDr such that |V (kDr)| ∼ (2r−2)n

2r−1 .

The method of [16] can be used to derive from Theorem 1 the following.

Theorem 2. R(Cr
n, Cr

n) ∼ (2r−1)n
2r−2 .

Partly as a tool, partly as a subject interesting in its own, we determine ex-
actly the 2- and 3-color Ramsey numbers of a diamond-matching: R(kDr, kDr)=
k(2r − 1)− 1 (Theorem 4), R(kDr, kDr, kDr) = 2kr − 2 (Theorem 5).

1.1 Ramsey numbers for multiple copies

If H0 is a fixed r-uniform hypergraph, a multiple copy of H0 is meant to be a
hypergraph H = kH0, the union of k vertex disjoint copies of H0. When H0
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is a single edge Er, a multiple copy is usually called a matching . The Ramsey
number of multiple copies of graphs have been thoroughly studied, the first
such results were perhaps [3] and [5] - both in 1975. The Ramsey number of a
hypergraph matching is known exactly. The most general case is due to Alon,
Frankl and Lovász (1986, [2]):

Theorem 3. Assume that N = kr+(t−1)(k−1) and the edges of the complete
r-uniform hypergraph Kr

N are colored with t colors. Then there is a monochro-
matic matching of size k.

One can easily see that Theorem 3 is sharp. Partition a set S of N − 1
elements into t parts, A1, A2, . . . , At so that |Ai| = k − 1 for 1 ≤ i < t. For
T ⊂ S, |T | = r, color T with the smallest i such that T ∩ Ai 6= ∅. Therefore -
using the notation of Ramsey theory - it follows that

Rt(kEr) = R(kEr, kEr, . . . , kEr) = kr + (t− 1)(k − 1),

where the dots stand for t arguments. It is worth noting that Theorem 3 was
conjectured by Erdős in 1973, [6] (rediscovered in [11]). Its special cases include
earlier results: r = 2 (1975, Cockayne - Lorrimer, [5]), k = 2 (this is another
form of Kneser’s conjecture proved in 1978 by Lovász and Bárány) and t = 2
(Alon and Frankl [1] and Gyárfás [11]).

Next we state and prove the Ramsey-type form of our main result, it deter-
mines the exact value of the Ramsey number of a diamond-matching.

Theorem 4. For every k ≥ 1, r ≥ 2 R(kDr, kDr) = k(2r − 1)− 1.

Proof. To see that the stated value is a lower bound, consider a coloring of the
edges of Kr

k(2r−1)−2 where all edges intersecting a fixed (k − 1)-element subset
are red and all other edges are blue.

To see that m = k(2r−1)−1 is an upper bound for R(kDr, kDr), consider a
2-coloring c of E(Kr

m). For every set T ⊂ V (Kr
m) with |T | = 2r−2 consider the

2-coloring c∗ on the (r− 2)-element subsets of T by coloring S ⊂ T , |S| = r− 2,
with c(T \ S). By Theorem 3, R(2Er−2, 2Er−2) = 2(r − 2) + 1 = 2r − 3,
so there are two disjoint sets colored with the same color under c∗ and this
implies that there is a monochromatic Dr ⊂ T under c. The color of this
monochromatic Dr can be used to color T . Applying Theorem 3 again to this
coloring, R(kE2r−2, kE2r−2) = k(2r− 2) + k− 1 = k(2r− 1)− 1, so we get that
there is a monochromatic k-matching and this gives a monochromatic kDr,
finishing the proof. ¤

In fact, the proof method of Theorem 4 can be copied to determine the
3-colored Ramsey number of the diamond-matching as well.

Theorem 5. For every k ≥ 1, r ≥ 2 R(kDr, kDr, kDr) = 2kr − 2.

Proof. To see that the claimed value is a lower bound, partition a (2kr − 3)-
element set V into A1, A2, A3 with |A1| = |A2| = k − 1, |A3| = k(2r − 2) − 1.
Let S ⊂ V , |S| = r, and color S with the minimum i for which S ∩Ai 6= ∅.
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To prove the upper bound, let c be a 3-coloring of the edges of Kr
m with

m = 2kr − 2.
For every set T ⊂ V (Kr

m) with |T | = 2r − 2 consider the 3-coloring c∗

on the (r − 2)-element subsets of T by coloring S ⊂ T , |S| = r − 2, with
c(T \ S). By Theorem 3, R(2Er−2, 2Er−2, 2Er−2) = 2(r − 2) + 2 = 2r −
2 so there are two disjoint sets colored with the same color under c∗. This
implies that there is a monochromatic Dr ⊂ T under c. The color of this
monochromatic Dr can be used to color T . Applying Theorem 3 again to this
coloring, R(kE2r−2, kE2r−2, kE2r−2) = k(2r − 2) + 2(k − 1) = 2kr − 2, so we
get that there is a monochromatic k-matching and this gives a monochromatic
kDr, finishing the proof. ¤

For our purposes we need a proof of Theorem 4 that carries over to almost
complete hypergraphs. We use a compression principle that occurred first per-
haps in [5] and in [3]. For example, a red and a blue triangle with a common
vertex was called a bow tie (see [10]), it drives the inductive argument of [3]
to prove that R(kK3, kK3) = 5k (for k ≥ 2). Similar compression - a red and
a blue Er intersecting in r − 1 elements - makes the proof of Theorem 3 easy
when t = 2 (it seems that for t > 2 the Borsuk - Ulam theorem is essential).
In fact, the first author suggested the case t = 2, k = r as a problem for the
2007 USA Mathematical Olympiad (Problem 3 on the first day). For our case,
the diamond matching, the compressed structure is a red and a blue diamond
within 2r − 1 vertices. We note here that for r = 3 this structure played a role
also in [16], (it was called a diadem there).

1.2 Almost complete graphs, selection lemma

Throughout this section r ≥ 2 is a fixed integer, 0 < ε < 1 is arbitrary small but
fixed, n approaches infinity (thus arbitrarily large). Greek letters δ, ρ, etc. will
be used to denote numbers that tend to zero when ε tends to zero (r is fixed).
Hypergraph H is a (1− ε)-complete r-uniform hypergraph on n vertices, i.e. is
obtained from K

(r)
n by deleting at most ε

(
n
r

)
edges. For easier computation we

shall assume that |E(H)| ≥ (1− ε)nr/r!.
Different technical lemmas have been used earlier to handle almost complete

graphs and 3-uniform hypergraphs (see [13], [16]). Here we use the concept
of δ-bounded selection, a tool introduced and used in [12] and in [15]. It is
convenient for almost complete hypergraphs when one needs to show that there
exists at least one edge at a prescribed spot or there are many edges where they
need to be.

For 0 < δ < 1 fixed, we say that a sequence L ⊂ V (H) of k distinct vertices
was obtained by a δ-bounded selection if its elements are chosen in k consecutive
steps so that in each step there are at most δn forbidden vertices that cannot
be included as the next element. For simplicity, sometimes we will call shortly
the sequence itself a δ-bounded selection. Observe that a δ-bounded selection
L is also a δ′-bounded selection for any δ′ > δ.

In the subsequent applications when specifying a δ-bounded selection of
k vertices in an (1 − ε)-dense hypergraph, we would like to guarantee that
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for every subset S of the selected vertices such that 0 ≤ |S| ≤ r, at least
(1 − ρ)nr−|S|/(r − |S|)! edges of H contain S (where ρ tends to zero with ε,
r, k are fixed). Notice that - if 1 − ρ > 0 and k ≥ r - we require in particular
that the selected vertices form a complete r-uniform subhypergraph. Observe
that for k = 0 we need that H has at least (1− ρ)nr/r! edges, which is obvious
with ρ = ε. For larger k our argument will be based on the following recurrence
lemma (from [12]).

Lemma 6. Let S0 ⊂ V (H) be contained in at least (1 − ρ0) nr−|S0|
(r−|S0|)! edges of

H. If |S0| < r and ρ =
√

ρ0, then there exists F0 ⊂ V (H), |F0| ≤ ρn, such
that for every x ∈ V (H) \ (S0 ∪ F0) at least (1 − ρ) nr−|S|

(r−|S|)! edges of H contain
S = S0 ∪ {x}.
Proof. Let |S0| = i < r. By the assumption, there are β ≤ ρ0n

r−i/(r − i)! dis-
tinct (r−i)-element “bad” subsets B ⊆ V (H)\S0 with S0∪B /∈ E(H). Let F0 ⊆
V (H) \S0 be the set of all vertices contained in more than ρnr−i−1/(r − i− 1)!
distinct (r − i)-element bad sets. We clearly have β ≥ |F0|ρnr−i−1/(r − i)!.

By comparing these two bounds on β, we obtain that |F0| ≤ ρ0
ρ n = ρn and

the lemma follows. ¤

We shall use Lemma 6 to prove the following selection Lemma (its special
case k = r is from [12]).

Lemma 7. Assume that H is a (1− ε)-complete r-uniform hypergraph (r ≥ 2)
and set ρ = ε2

−r

, δ = 2kρ. There are forbidden sets such that for every L ⊂
V (H) of k vertices that was obtained by a δ-bounded selection (with respect to
the forbidden sets), the following holds: for every S ⊆ L such that 0 ≤ |S| ≤ r,
at least (1− ρ) nr−|S|

(r−|S|)! edges of H contain S.

Proof. We iterate Lemma 6 as we select x1, x2, . . . , xk in k steps, in each step
we consider all subsets of size less than r to extend with a new vertex. At step i
we ensure that for every δi-bounded selection L of i vertices the following holds:
for every S ⊆ L such that 0 ≤ |S| ≤ r, at least (1 − ε2

−|S|
) nr−|S|
(r−|S|)! edges of H

contain S. For k = 0 δ0 = ε obviously works. Assume this is true with δi for
step i, 0 ≤ i < k. At step i + 1 to ensure that xi+1 can be selected, we use
Lemma 6 for all S0 ⊆ {x1, . . . , xi} such that |S0| < r. By Lemma 6, for each
j-element S0 there exists a forbidden set F0 for xi+1 with |F0| ≤ ε2

−(j+1)
n such

that S = S0∪{xi+1} will be in at least (1−ε2
−|S|

) nr−|S|
(r−|S|)! edges of H. There are

∑
j<r

(
i
j

)
< 2i choices for S0 and each j-element S0 forbids ε2

−(j+1)
n choices of

xi+1. Thus altogether the set of forbidden vertices for xi+1 is less than 2iε2
−r

n,
so δi+1 = 2iε2

−r

is a good choice for step i+1. On the other hand, ρ = ε2
−r

is a
good choice for every step since we iterate the square root operation of Lemma
6 at most r times (to extend sets of size less than r).

Since
δi+1 = 2iε2

−r ≤ 2kε2
−r

= 2kρ = δ,
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the statement of the lemma holds with δ = 2kε2
−r

= 2kρ. ¤

2 Proof of Theorem 1

The following proposition is from [12].

Proposition 8. Assume H is an arbitrary hypergraph and 0 < s < 1/3. Then
either there is a connected component H′ of H with at least (1− s)n vertices or
the connected components of H can be partitioned into two groups so that each
group contains more than sn vertices.

Proof. Mark the connected components ofH until the union of them has at most
sn vertices. If one unmarked component remains, it can be H′. Otherwise,
we form two groups from the unmarked components. The larger group has
order at least (n− sn)/2 > sn, and the smaller one together with the marked
components have a union containing more than sn vertices as well. ¤

To prove Theorem 1, consider a 2-coloring c of an (1−ε)-complete r-uniform
hypergraph H. Let HR,HB denote the hypergraphs determined by the red and
blue edges of H. Initially we select δ to satisfy Lemma 7, i.e. δ ≤ 2kρ = 2kε2

−r

and also δ < 1
2r−1 < 1

3 . During the proof we shall use δ-bounded selections of
k < 4r vertices.

We start by applying Proposition 8 with s = δ to HR and to HB .
If the first possibility holds to one of them, say to HR, we find a subhyper-

graph H1 with at least (1 − δ)n vertices that is connected in red. Now apply
Proposition 8 again to the hypergraph determined by the blue edges of H1. If
the first possibility holds then we have a subhypergraph H2 of H1 with at least
(1 − 2δ)n vertices that is connected in blue and also part of the connected red
hypergraph H1. Since we loose at most 2δn = o(n) vertices, for convenience, we
still use the notation H for Hi(case A). To comply with the notation of cases
B1, B2 below, set Y = V in case A.

Assume that the first possibility does not hold for at least one of the steps
above (case B). We may assume that it does not hold in the first step. We look
at two subcases. Apply again Proposition 8 to HR but with s = 1

2r−1 .
If the first possibility holds, the vertex set of H is partitioned into X and

Y so that |X| < n
2r−1 and Y is a connected component of HR (subcase B1).

Notice that δn < |X| is also true since we are in case B.
If the second possibility holds then the components of HR can be partitioned

into X and Y such that n
2r−1 ≤ |X| ≤ |Y |(subcase B2).

Notice that (in both subcases) all edges of H meeting both X and Y are
blue. For the rest of the proof we assume that x1, x2 are the first two vertices of
a δ-bounded selection process on H. Moreover, let H∗ be the (r−2)-uniform hy-
pergraph induced on Z = V \{x1, x2} by H together with the induced 2-coloring
c(x1, x2). Notice that H∗ is an almost complete (r−2)-uniform hypergraph with
parameter ε∗ = ρ = ε2

−r

. Using ε∗ in the role of ε, we can define δ∗, ρ∗ as defined
in Lemma 7. The key in our proof is the following compression lemma.
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Lemma 9. Assume that H is a 2-colored (1−ε)-complete r-uniform hypergraph
on n vertices. Suppose that the pair x1, x2 ∈ V (H) is in at least µ

(
n

r−2

)
edges

in both colors, where µ = 1− (1− ρ− ρ∗)r−2. Then one can find a diamond in
both colors within 2r − 1 vertices.

Proof. Combining the at most (δ + δ∗)n ≤ 2δ∗ forbidden sets of H and H∗
we have that every 2δ∗-bounded selection x1, x2, y1, y2, . . . , yk of vertices of H
(where k = 4(r − 2)) satifies the property ensured by Lemma 7 simultaneously
i.e. x1, x2, y1, y2, . . . , yk is on H and y1, y2, . . . , yk is on H∗. This ensures, in par-
ticular, that the r-uniform subhypergraph of H spanned by x1, x2, y1, y2, . . . , yk

and the (r−2)-uniform subhypergraph of H∗ spanned by y1, y2, . . . , yk are com-
plete subhypergraphs.

Fix an edge e ∈ H∗ with vertex set {y1, . . . , yr−2}, say e is red under
c(x1, x2). Consider the subhypergraph F of H∗ with edges that can be ob-
tained as the next r − 2 vertices, yr−1, . . . y2r−4 in the selection. The choice of
µ and the lower bound on the number of blue edges ensures that at least one
edge f ∈ F is blue (under c(x1, x2)):

|F| > (1− ρ− ρ∗)r−2nr−2

(r − 2)!
=

(1− µ)nr−2

(r − 2)!
> (1− µ)

(
n

r − 2

)
≥ |E(H∗R)|.

Consider the complete r−2-uniform hypergraph F ⊂ H∗ spanned by the vertex
set of e ∪ f . Among all pairs of edges of F with distinct colors (there are
pairs like that: e, f) select a pair R1, B1 with largest intersection. Clearly,
|R1 ∩B1| = r − 3.

Repeat the previous procedure by fixing an edge with vertices y2r−3, . . . y3r−2

in H∗ then find an edge of the other color. By taking a pair with largest
intersection again, we have another red-blue pair of edges R2, B2 such that
|R2 ∩B2| = r− 3. Notice that R1 ∪B1 and R2 ∪B2 are vertex disjoint. Define
r1 = R1 \B1, r2 = R2 \B2, b1 = B1 \R1, b2 = B2 \R2.

Notice that the (complete) subhypergraph of H spanned by {x1, x2} ∪R1 ∪
R2∪B1∪B2 has 2r vertices and contains Dr in both colors. To finish the proof,
we need to find a vertex whose deletion keeps a copy of Dr in both colors.

Consider the r-element set U1 that is the union of B2, one vertex of R1 ∩B1

and the vertex r1. (In case of r = 3 R1 ∩B1 is empty - then we can select x1 as
the third vertex and r2 or b1 can be removed, the argument ends here.) If U1 is
red (under c) then the vertex r2 can be removed and we get both red and blue
diamonds within 2r − 1 vertices. Thus we may assume that U1 is blue. Similar
argument gives that U2, defined as the union of R1, one vertex of R2 ∩B2 and
the vertex b2 is red. Likewise, U3 defined as the union of B1, one vertex of
R2 ∩ B2 and the vertex r2 is blue, finally U4, defined as the union of R2, one
vertex of R1 ∩ B1 and the vertex b1 is red. Now U1 ∪ U3 and U2 ∪ U4 are the
required diamonds (in fact they are within 2r − 2 vertices). ¤

Continuing the proof of Theorem 1, we try to cover as many vertices of Y
as we can with pairwise disjoint sets Si, i = 1, 2, . . . m that contain diamonds
of both colors and |Si| = 2r − 1. Set S = ∪m

i=1Si, T = Y \ S. The hypergraphs
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induced by H on S, T are denoted by S, T . Since we can not find a new Si ⊂ T
with Lemma 9, there is a color for every pair x1, x2 ∈ T such that there are
more than (1 − µ)

( |T |
r−2

)
edges in that color in the coloring c(x1, x2). Assign

that color to the pair x1, x2, to get a 2-coloring C on the graph G whose edges
are the pairs available as the first two vertices on a δ-bounded selection on T .
Notice that G is an (1− 2δ)-complete graph.

We claim that T has an almost perfect monochromatic diamond matching
M (i.e. V (T ) can be partitioned into vertex disjoint diamonds all of the same
color, apart from o(n) vertices.) First we show that almost all edges of G are
colored with the same color (under C). Indeed, otherwise - using that G is
almost complete - we could easily find a red edge uv and a blue edge vw of G.
Define a coloring c∗ by restricting the colorings c(u, v), c(v, w) to the hypergraph
T ∗ whose edges are the (r − 2)-element subsets e ⊂ T for which e ∪ {u, v} and
e∪{v, w} are both in H. Observe that c∗ colors every edge of an (1−2µ−2ε∗)-
complete (r − 2)-uniform hypergraph with both red and blue colors. Then one
can make a δ-selection u, v, w, y1, . . . y2r−4 such that y1, . . . y2r−4 spans a K

2(r−2)
r−2

with all edges colored in both colors. In particular, we have a red and a blue
Dr within 2r − 1 vertices of T , contradicting the choice of m. This proves the
claim.

In case A both colors define a connected hypergraph so the diamonds in
the color of M together with the diamonds of the appropriate color from the
Si-s provide the monochromatic connected diamond matching, covering approx-
imately a portion of 2r−2

2r−1 of the vertex set of H.
In case B2 it easy to cover the required portion of vertices by blue diamonds

since all edges meeting both X and Y are blue and n
2r−1 ≤ |X| ≤ |Y | (connec-

tivity of the blue hypergraph is obvious). In fact, one can cover approximately
(2r−2)n

2r−1 vertices with vertex disjoint blue diamonds using only diamonds of type
(1, 2r − 3) and (2r − 3, 1) where type (a, b) means a diamond intersecting X, Y
in a and b vertices, respectively with its center vertices in X, Y . The reason is
that flipping one blue diamond in a diamond matching from type (1, 2r − 3) to
type (2r − 3, 1) changes the cover ratio of Y and X by at most a quantity that
tends to zero if n tends to infinity (r is fixed). The details are left to the reader.
This argument extends to case B1 as well, if m ≥ n

2r−1 − |X|: in addition to
the blue diamonds meeting both X and Y we can use the blue diamonds of Si.
Thus we may assume that m < n

2r−1 − |X|.
If M is red then the diamonds of M together with the red diamonds of the

Si-s cover all but m + |X| < n
2r−1 − |X| + |X| = n

2r−1 vertices, finishing the
proof. If M is blue we can do the same in blue - here we gain since all diamonds
meeting X and vertices uncovered by the blue diamonds of Si are giving extra
to the covered area. This finishes the proof of Theorem 1. ¤
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3 From connected diamond matchings to loose
cycles

For the sake of completeness here we sketch how the method of [16] with minor
modifications (that are needed since the uniformity is r instead of 3) can be
used to transform our asymptotic result on monochromatic connected diamond
matchings (Theorem 1) to our asymptotic result on monochromatic loose cycles
(Theorem 2). The missing details can be found in [16].

The main tool is the hypergraph version of the Regularity Lemma of Sze-
merédi [21]. We shall assume throughout the rest of the paper that n is suffi-
ciently large and r is fixed.

There are several generalizations of the Regularity Lemma for hypergraphs
due to various authors ([4], [8], for an extensive survey see [18], new develop-
ments are in [9], [20] and [22]). Following [16], the simplest one, due to Chung
[4] can be used. To state it, one needs to define the notion of ε-regularity. Let
ε > 0 and let V1, V2, . . . , Vr be disjoint vertex sets of order m, and let H be
an r-uniform hypergraph such that every edge of H contains exactly one ver-
tex from each Vi for i = 1, 2, . . . , r. The density of H is dH = |E(H)|

mr . The
r-tuple {V1, V2, . . . , Vr} is called an (ε,H)-regular r-tuple of density dH if for
every choice of Xi ⊂ Vi, |Xi| > ε|Vi|, i = 1, 2, . . . , r we have

∣∣∣∣
|E(H[X1, . . . , Xr])|

|X1| . . . |Xr| − dH

∣∣∣∣ < ε.

Here we denote by H[X1, . . . , Xr] the subhypergraph of H induced by the vertex
set X1 ∪ . . .∪Xr. Similarly as in [16] for r = 3, we need a 2-color version of the
Hypergraph Regularity Lemma from [4] for general r.

Lemma 10 (2-color Weak Hypergraph Regularity Lemma). For every
positive ε and positive integers t, r there are positive integers M and n0 such
that for n ≥ n0 the following holds. For all r-uniform hypergraphs H1, H2 with
V (H1) = V (H2), |V | = n, there is a partition of V into l + 1 classes (clusters)

V = V0 + V1 + V2 + ... + Vl

such that

• t ≤ l ≤ M

• |V1| = |V2| = ... = |Vl|
• |V0| < εn

• apart from at most ε
(

l
r

)
exceptional r-tuples, the r-tuples {Vi1 , Vi2 , . . . ,

Vir} are (ε,Hs)-regular for s = 1, 2.

Consider a 2-edge coloring (H1,H2) of the r-uniform complete hypergraph
K

(r)
N , where N ∼ (2r−1)n

2r−2 , i.e. H1 is the subhypergraph induced by the first
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color (say red) and H2 is the subhypergraph induced by the second color (say
blue).

We apply the above 2-color Weak Hypergraph Regularity Lemma with t = r

and with a small enough ε to obtain a partition of V (K(r)
N ) = V = ∪0≤i≤lVi,

where |Vi| = N−|V0|
l = m, 1 ≤ i ≤ l. We define the following reduced hyper-

graph HR: The vertices of HR are p1, . . . , pl, and we have an r-edge on vertices
pi1 , pi2 , . . . , pir if the r-tuple {Vi1 , Vi2 , . . . , Vir} is (ε,Hs)-regular for s = 1, 2.
Thus we have a one-to-one correspondence f : pi → Vi between the vertices of
HR and the clusters of the partition. Then,

|E(HR)| ≥ (1− ε)
(

l

r

)
,

and thus HR is a (1 − ε)-complete r-uniform hypergraph on l vertices. De-
fine a 2-edge coloring (HR

1 ,HR
2 ) of HR with the majority color, i.e. the r-

tuple {pi1 , pi2 , . . . , pir
} ∈ E(HR

s ) if s is the more frequent color in the r-tuple
{Vi1 , Vi2 , . . . , Vir} ∈ E(Hs). Note then that the density of this color is ≥ 1/2 in
this r-tuple. Finally we consider the multicolored shadow graph Γ(HR). The
vertices are V (HR) = {p1, . . . , pl} and we join vertices x and y by an edge of
color s, s = 1, 2 if x and y are contained in an edge of HR that is colored with
color s.

Applying Theorem 1 to the 2-colored almost complete reduced graph HR we
get a monochromatic (say red) connected diamond matching D1

r , . . . , Dk
r with

k(2r− 2) ∼ (2r−2)l
2r−1 , i.e. k ∼ l/(2r− 1). Let L be the red component of HR that

contains these diamonds.
Applying the method of [16] to find the red Cr

n we do the following. We first
trace a “route” in L, that visits all the diamonds D1

r , . . . , Dk
r . Then we choose a

collection of short loose paths (of length three or six) in the red subhypergraph
H1, that link together to form a short loose cycle, following the chosen route.
Finally, to obtain the red loose cycle Cr

n we “blow-up” k ∼ l/(2r − 1) short
paths (of length three) corresponding to diamonds by long paths (each of length
∼ (2r−2)m ∼ (2r−2)N/l ∼ (2r−1)n/l). More precisely, for each diamond Di

r

with middle clusters V i
1 and V i

2 , we replace the short path that starts with in
V i

1 and ends in V i
2 by a long path with the same end-vertices, that uses almost

all the vertices in Di
r. Note that these long paths are mutually vertex disjoint

since all diamonds Di
r are vertex disjoint. Therefore, to obtain our cycle, we

just need to make sure that the short paths do not intersect and they do not
interfere with the long paths.

This plan can be achieved via the same sequence of lemmas as in [16]. To
demonstrate what kind of minor modifications are needed in these lemmas for
r-uniform hypergraphs, we present the modified version of perhaps the most im-
portant lemma, Lemma 5.3 in [16], that shows how to find the short connecting
loose paths of length three. First we need the following definition.

Let {Vi1 , . . . , Vir} be an (ε,H1)-regular r-tuple with density d > 2ε, and
for j = 1, . . . , r let Uij ⊂ Vij be arbitrary subsets. We say that a vertex
x ∈ Vi1 is good for the r-tuple {Ui1 , . . . , Uir} if for every j = 2, . . . , r there
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are at least d|Uij |/2 vertices y ∈ Uij , such that for each such y, there are at
least d|Ui2 |/2 vertices z1 ∈ Ui2 , such that for each such z1, there are at least
d|Ui3 |/2 vertices z2 ∈ Ui3 , etc. we go through the sets Uij′ , j

′ = 2, . . . , r, j′ 6= j
with this process, finally there at least d|Uir |/2 vertices zr−2 ∈ Uir , such that
{x, y, z1 . . . , zr−2} ∈ E(H1). Thus note that for x ∈ Vi1 , the property of being
good for {Ui1 , . . . , Uir

} is independent of the choice of Ui1 . The set of vertices
in Vi1 ∪ . . . ∪ Vir

that are good for {Vi1 , . . . , Vir
} will simply be called good.

We modify Lemma 5.3 of [16] in the following way for r-uniform hypergraphs.

Lemma 11. Let {Vi1 , . . . , Vir} be an (ε,H1)-regular r-tuple with density d > 2ε.
Then for every pair of good vertices x ∈ Vi1 and y ∈ Vi2 , and for every set
B ⊂ Vi1 ∪ . . . ∪ Vir

\ {x, y} that contains all non-good vertices and satisfies
|B ∩ Vij

| < (d/2 − ε)m for j = 2, . . . , r, there is a path of length three in H1

joining x to y that is disjoint from B (and hence contains only good vertices).
Moreover the path can be chosen so that one vertex of degree two in the path is
in Vi1 , and the other is in Vi2 .

Proof. Since x is good, there exists a set Ux ⊂ Vi2 , |Ux| ≥ dm/2 (using j =
2 from the definition), such that for each w ∈ Ux, there are at least dm/2
vertices z1 ∈ Vi3 , such that for each such z1, there are at least dm/2 vertices
z2 ∈ Vi4 , etc., finally there are at least dm/2 vertices zr−2 ∈ Vir , such that
{x,w, z1 . . . , zr−2} ∈ E(H1). Similarly, since y is good, there exists a set Uy ⊂
Vi1 , |Uy| ≥ dm/2 (using j = 1 from the definition), such that for each v ∈ Uy,
there are at least dm/2 vertices z1 ∈ Vi3 , such that for each such z1, there are
at least dm/2 vertices z2 ∈ Vi4 , etc., finally there are at least dm/2 vertices
zr−2 ∈ Vir , such that {y, v, z1 . . . , zr−2} ∈ E(H1). Writing b = (d/2 − ε), we
have

|Ux \B|, |Uy \B| > (d/2− b)m = εm.

Therefore, since {Vi1 , . . . , Vir} is an (ε,H1)-regular r-tuple with density d, we
know that

|E(H[Ux \B, Uy \B, Vi3 \B, . . . , Vir \B])| ≥ (d− ε)|Ux \B||Uy \B|
r∏

j=3

|Vij \B|.

We may therefore choose distinct vertices w ∈ Ux\{y}, v ∈ Uy \{x}, z1
1 , z2

1 , z3
1 ∈

Vi3 , z1
2 , z2

2 , z3
2 ∈ Vi4 , . . ., z1

r−2, z
2
r−2, z

3
r−2 ∈ Vir such that

{x, w, z1
1 , . . . , z1

r−2}, {y, v, z2
1 , . . . , z2

r−2}, {v, w, z3
1 , . . . , z3

r−2} ∈ E(H1).

This gives us the required loose path of length three joining x to y

x, z1
1 , . . . , z1

r−2, w, z3
1 , . . . , z3

r−2, v, z2
1 , . . . , z2

r−2, y.

¤

The other lemmas and the proof itself can be modified similarly, details can
be found in [16]. This finishes the proof of Theorem 2.
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