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Abstract

Suppose 0 < η < 1 is given. We call a graph, G, on n vertices an η-Chvatal graph
if its degree sequence d1 ≤ d2 ≤ . . . ≤ dn satisfies: for k < n/2, dk ≤ min{k + ηn, n/2}
implies dn−k−ηn ≥ n− k. (Thus for η = 0 we get the well-known Chvatal graphs.) An
NC4-algorithm is presented which accepts as input an η-Chvatal graph and produces
a Hamiltonian cycle in G as an output. This is a significant improvement on the
previous best NC-algorithm for the problem, which finds a Hamiltonian cycle only in
Dirac graphs ( δ(G) ≥ n/2 where δ(G) is the minimum degree in G ).

1 Introduction

1.1 Notations and definitions

For basic graph concepts see the monograph of Bollobás [4].
V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A,B,E) denotes

∗Research supported in part by the National Science Foundation under Grant No. DMS-0456401.

1



a bipartite graph G = (V,E), where V = A ∪ B, and E ⊂ A × B. For a graph G and a
subset U of its vertices, G|U is the restriction to U of G. If A ⊆ V (G) and B ⊆ V (G) then
NA(B) denotes the set of the neighbors of vertices of B in A. The size of NA(v) is called
the degree of v in A, degA(v). deg(v) = degG(v). δ(G) stands for the minimum, and ∆(G)
for the maximum degree in G. Pl (Cl) denotes the path (cycle) of length l (counting edges).
When A,B are subsets of V (G), we denote by e(A,B) the number of edges of G with one
endpoint in A and the other in B. In particular, we write deg(v, U) = e({v}, U) for the
number of edges from v to U . For non-empty A and B,

d(A,B) =
e(A,B)

|A||B|
is the density of the graph between A and B. In particular, we write d(A) = d(A,A) =
2|E(G|A)|/|A|2.
Definition 1. The bipartite graph G = (A, B, E) is ε-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B| imply |d(X, Y )− d(A,B)| < ε,

otherwise it is ε-irregular.

We will often say simply that “the pair (A, B) is ε-regular” with the graph G implicit.

Definition 2. (A,B) is (ε, δ)-super-regular if it is ε-regular and

deg(a) > δ|B| ∀ a ∈ A, deg(b) > δ|A| ∀ b ∈ B.

As the model of computation we choose the weakest possible version of a PRAM, in
which concurrent reads or writes of the same location are not allowed (EREW, see [10]
for a discussion of the various PRAM models.) When researchers investigate the parallel
complexity of a problem, the main question is whether a polylogarithmic running time is
achievable on a PRAM containing a polynomial number of processors. If the answer is
positive than the problem and the corresponding algorithm are said to belong to class NC
introduced in [22]. When the running time is O((log n)i), the algorithm is in NC i.

1.2 Fast parallel algorithms for finding subgraphs in dense graphs

Let G be a graph on n ≥ 3 vertices. A Hamiltonian cycle (path) of G is a cycle (path)
containing every vertex of G. A Hamiltonian graph is a graph containing a Hamiltonian
cycle.
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In a series of papers we developed a method based on the Regularity Lemma and the
Blow-up Lemma for finding certain spanning subgraphs in dense graphs (see [12]-[18], [26]).
Typical examples are spanning trees (Bollobás-conjecture, see [12]), Hamiltonian cycles or
powers of Hamiltonian cycles (Pósa-Seymour conjecture, see [16, 17]) or H-factors for a
fixed graph H (Alon-Yuster conjecture, see [18]). Since both the Regularity Lemma and the
Blow-up Lemma have now fast parallel algorithmic implementations (see [2] and [15]), the
above existential results have fast parallel algorithmic versions.

In this paper, by using the above method, we study the problem of finding a Hamiltonian
cycle in a graph G. As this is one of the most famous NP -complete problems, to solve the
problem for general graphs in NC is hopeless. However, in some subclasses of graphs we
have a chance. For instance, there are known classes of graphs where all the members are
Hamiltonian. One class is the tournaments (see [27]). Another class is the Dirac graphs
where call a graph G = (V,E) a Dirac-graph, if δ(G) ≥ n

2
. Dirac’s classical theorem ([3], [4],

[7]) guarantees the existence of a Hamiltonian cycle in a Dirac graph. Goldberg proposed
the problem at STOC’87, whether we can construct one such a cycle in NC. [6] answered
the question affirmatively. In [6], they also posed the problem, whether their result can be
extended to wider classes of graphs, known to be Hamiltonian (see [3], [4]). They indicated
the difficulty of the problem, by showing that solving the Hamiltonian cycle problem for
graphs with δ(G) ≥ αn (where 0 < α < 1

2
) is just as hard as the original Hamiltonian cycle

problem; it is NP -complete. The algorithm we present is the first such extension, it brakes
the 1

2
-density barrier for a class of graphs and it is close to being best possible. We call a

graph G = (V,E) a Chvatal graph if its degree sequence d1 ≤ d2 ≤ . . . ≤ dn satisfies the
following:

for k <
n

2
, dk ≤ k implies dn−k ≥ n− k. (1)

Chvatal proved (see e.g. [4]) that this generalization of the Dirac condition still guarantees
the existence of a Hamiltonian cycle, and further this is the weakest possible such condition.
More precisely, if the degree sequence does not satisfy (1), then we can construct a graph
with a degree sequence majorizing this degree sequence and without a Hamiltonian cycle.
Furthermore, Bondy and Chvatal ([5]) designed a sequential, polynomial time algorithm
which finds a Hamiltonian cycle in Chvatal graphs, but the algorithm seems inherently
sequential. The obvious question is whether there is an NC algorithm for the same task.
In this paper we come quite close to this ultimate goal. Let 0 < η < 1 be fixed. We call a
graph G = (V, E) an η-Chvatal graph if its degree sequence satisfies:

for k <
n

2
, dk ≤ min{k + ηn,

n

2
} implies dn−k−ηn ≥ n− k. (2)
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Thus for η = 0 we get back the Chvatal condition. From the definition we can also see that
this is a much wider class of graphs than the Dirac graphs. In this paper we show how to
construct the Hamiltonian cycle in NC in η-Chvatal graphs.

Theorem 1. Let 0 < η < 1 be fixed. We can construct in NC4 a Hamiltonian cycle in an
η-Chvatal graph.

We note that there is also a randomized parallel algorithm for the problem [8]. However,
Theorem 1 is the first deterministic algorithm in NC that goes beyond the Dirac condition.

We also note that an earlier, weaker version of this paper has appeared in [25] (see also
[19] and [20]).

2 The main tools

In the proof the Regularity Lemma [28] plays a central role. Here we will use the following
variation of the lemma. For a proof, see [2] and [20].

Lemma 2 (Regularity Lemma – Algorithmic degree form). For every ε > 0 there is
an M = M(ε) such that if G = (V, E) is any graph and δ ∈ [0, 1] is any real number, then
there is an NC1-algorithm that finds a partition of the vertex-set V into l + 1 sets (so-called
clusters) V0, V1, ..., Vl, and there is a subgraph G′ = (V, E ′) with the following properties:

• l ≤ M ,

• |V0| ≤ ε|V |,
• all clusters Vi, i ≥ 1, are of the same size L ≤ dε|V |e.
• degG′(v) > degG(v)− (δ + ε)|V | for all v ∈ V ,

• G′|Vi
= ∅ (Vi are independent in G′),

• all pairs G′|Vi×Vj
, 1 ≤ i < j ≤ l, are ε-regular, each with a density 0 or exceeding δ.

This form can easily be obtained by applying the original Regularity Lemma (with a smaller
value of ε), adding to the exceptional set V0 all clusters incident to many irregular pairs,
and then deleting all edges between any other clusters where the edges either do not form a
regular pair or they do but with a density at most δ.
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As we mentioned in the introduction, an application of the Regularity Lemma in graph
theory is now often coupled with an application of the Blow-up Lemma (see [14] for the
original, [15] for an algorithmic version and [23] and [24] for two alternate proofs). Here we
use a very special case of the algorithmic Blow-up Lemma. This asserts that if (A, B) is a
super-regular pair with |A| = |B| and x ∈ A, y ∈ B, then there is an NC4-algorithm that
finds a Hamiltonian path starting with x and ending with y (see [15]). More precisely.

Lemma 3. For every δ > 0 there are ε0, n0 > 0 such that if ε ≤ ε0 and n ≥ n0, G = (A,B)
is an (ε, δ) super-regular pair with |A| = |B| = n and x ∈ A, y ∈ B, then there is an
NC4-algorithm that finds a Hamiltonian path in G starting with x and ending with y.

We will also use the NC4 algorithm for the maximal independent set problem. Recall
that a subset I of the vertices of a graph G is independent if there are no edges between
any two vertices in I. An independent set I is maximal if it is not a proper subset of any
other independent set. Karp and Wigderson ([11]) were the first to give an NC4-algorithm
for this problem.

Lemma 4. It is possible to construct a maximal independent set in a graph in NC4.

Better algorithms were later described in [1], [9] and in [21]. We call this the MIS
algorithm.

3 Outline of the proof

We will assume throughout the paper that n is sufficiently large (otherwise clearly we can
find a Hamiltonian cycle in NC4). We will use the following main parameters

0 < ε ¿ δ ¿ α ¿ η ¿ 1, (3)

where α depends on η, δ depends on α and η and ε depends on δ, α and η, and a ¿ b means
that a is sufficiently small compared to b. For simplicity we do not compute the actual
dependencies, although it could be done.

Let us consider an η-Chvatal graph G of order n. Then its degree sequence d1 ≤ d2 ≤
. . . ≤ dn satisfies (2). Note that in particular (2) implies

δ(G) = d1 ≥ ηn. (4)

We must show that we can find in NC4 a Hamiltonian cycle in G. First in the next
section, in the non-extremal part of the proof, we show this assuming that the following
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extremal condition does not hold for our graph G. We show later in Section 5 that Theorem
1 is true in the extremal case as well.

Extremal Condition (EC): There exist (not necessarily disjoint) A,B ⊂ V (G) such
that

• |A| = |B| = bn
2
c, and

• d(A,B) < α.

In the non-extremal case the high level description of our algorithm is the following.

Program Find-Hamiltonian-cycle
Given: A η-Chvatal graph G on n vertices.
Compute: A Hamiltonian cycle of G.

• Step 1: We apply Lemma 2 for G, with ε and δ as in (3). We get a partition of
V (G′) = ∪0≤i≤lVi. We define the following reduced graph Gr: The vertices of Gr are
the clusters Vi, 1 ≤ i ≤ l, and we have an edge between two clusters if they form an
ε-regular pair in G′ with density exceeding δ.

• Step 2: Find a perfect matching M in Gr (we will show that one must exist). Put
|M | = m = b l

2
c. Denote the i-th pair in M by (V i

1 , V i
2 ) for 1 ≤ i ≤ m.

• Step 3: Put the cluster of Gr that is not covered by M (in case l is odd) and some ad-
ditional exceptional vertices (to achieve super-regularity) into V0, denote the resulting
set still by V0 for simplicity.

• Step 4: Redistribute the vertices in V0 among the clusters in M in such a way, that
we preserve super-regularity, and we add only a “few” vertices to each cluster.

• Step 5: Find short connecting paths Pi between the consecutive edges in the matching
M (for i = m the next edge is i = 1). These paths will be parts of the final Hamiltonian
cycle.

• Step 6: Make some adjustments to achieve that we have the same number of vertices
left in V 1

i and in V 2
i for each 1 ≤ i ≤ m.

• Step 7: Apply Lemma 3 in each (V 1
i , V 2

i ), 1 ≤ i ≤ m to close the Hamiltonian cycle.

In the next section, in the non-extremal case, we will discuss the above steps one-by-one.
Finally in Section 5 we show that Theorem 1 is true in the extremal case as well.
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4 The non-extremal case

Throughout this section we assume that the extremal case EC does not hold.

4.1 Step 1

Using the fact that
degG′(v) > degG(v)− (δ + ε))n, (5)

we will show that Gr satisfies a similar degree condition as the original graph G. In fact, let
us denote the degree sequence of Gr by dr

1, d
r
2, . . . , d

r
l . We will show that dr

1 ≥ (η − 2δ)l and
that

k <
l

2
, dr

k ≤ min
{
k + (η − 2δ) l,

(
1

2
− 2δ

)
l
}

implies

dr
l−k−(η−ε)l ≥ l − k − 2δl. (6)

We know that in G′ the neighbors of u ∈ Vi can only be in V0 and in the clusters which
are neighbors of Vi in Gr. Then dr

1 ≥ (η−2δ)l is immediate from (4) and (5). For the second
half of the statement let us assume that for a 1 ≤ k < l/2 we have

dr
1 ≤ . . . ≤ dr

k ≤ min
{
k + (η − 2δ) l,

(
1

2
− 2δ

)
l
}

. (7)

We must show that for this k (6) holds. (5) and (7) imply that we have at least kL vertices
u ∈ V (G) for which

degG(u) < degG′(u) + (δ + ε)n ≤ εn + dr
kL + (δ + ε)n ≤ dr

kL + 2δn ≤ min{kL + ηn,
n

2
}.

Hence in G
dkL ≤ min{kL + ηn,

n

2
}.

But then (2) implies that
dn−kL−ηn ≥ n− kL.

In this case using (5) there are at least kL + ηn vertices v ∈ V (G) for which

degG′(v) > degG(v)− (δ + ε)n ≥ n− kL− (δ + ε)n. (8)

This and |V0| ≤ εn imply that there are at least k + (η − ε)l clusters Vi which contain at
least one vertex satisfying (8). But then for these clusters Vi we have

degGr(Vi) ≥ l − k − 2δl,

and thus proving (6).
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4.2 Step 2

We find a maximum matching M in Gr (here we take advantage of the fact that l is a
constant, so we do not have to worry about the running time). We will prove that M is
a perfect matching. Assume indirectly that it is not, and consider two clusters Vi and Vj

from the independent set V (Gr) \ V (M). We will show that there is an alternating path P
with respect to M connecting Vi and Vj. But then we can increase the size of M by one, a
contradiction, by exchanging the matching edges on P with the non-matching edges on P .
The existence of the alternating path P will follow from the following fact (this fact will be
used in Steps 5 and 6 as well).

Fact 5. If Vi, Vj ∈ V (Gr) then there are at least δ2l internally disjoint alternating paths
(with respect to M) of length at most 1/δ connecting Vi and Vj in Gr, where the first and
last edges on the paths are non-matching edges.

Proof of Fact 5: First we will show the following expansion property. For all X ⊂
V (Gr), 1 ≤ |X| < l/2 we have

|NGr(X)| ≥ min
{
|X|+ η

4
l,

(
1

2
− 2δ

)
l
}

. (9)

If 1 ≤ |X| ≤ bη
2
lc, then take an arbitrary cluster V ∈ X, and using (3) we have

|NGr(X)| ≥ degGr(V ) ≥ dr
1 ≥ (η − 2δ)l ≥ bη

2
lc+

η

4
l ≥ |X|+ η

4
l,

proving (9) in this case. Thus we may assume bη
2
lc < |X| < l

2
. Denote k = |X|−bη

2
lc. Then

we have 1 ≤ k < l/2. We have two cases:

Case 1: dr
k ≥ min

{
k + (η − 2δ)l,

(
1
2
− 2δ

)
l
}
.

In this case (9) is obvious.

Case 2: dr
k < min

{
k + (η − 2δ)l,

(
1
2
− 2δ

)
l
}
.

From (6), we get
dr

l−k−(η−ε)l ≥ l − k − 2δl.

Thus in this case the clusters with the

k + (η − ε)l ≥ |X|+ η

4
l

largest degrees have at least η
4
l neighbors in X, and therefore they are in NGr(X), proving

(9) again.
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In order to prove Fact 5 first let Vi, Vj ∈ V (Gr) \ V (M). We will define a sequence of
sets N1, N2, . . . (N ′

1, N
′
2, . . .) in V (Gr) such that the clusters in Ni (N ′

i) are reachable from
Vi (Vj) by an alternating path of length i where the first edge is a non-matching edge. Let
N1 = NGr(Vi), and N2 is the set of neighbors in M of the vertices in N1. Similarly, in general
if N2i is already defined, then N2i+1 = NGr(N2i), and N2(i+1) is the set of neighbors in M of
the vertices in N2i+1. Here we used the fact that the clusters of N2i+1 are always matched
in M , since otherwise we could get a bigger matching, thus a contradiction, just as above.

Then the expansion property (9) implies that with N = N2d 2
η
e we have

|N | ≥
(

1

2
− 2δ

)
l. (10)

Similarly, the sequence N ′
1, N

′
2, . . . can be defined and with N ′ = N ′

2d 2
η
e we have

|N ′| ≥
(

1

2
− 2δ

)
l. (11)

Then (3), (10), (11) and fact that here EC does not hold clearly imply that

d(N,N ′) À δ

and thus we have “many” edges between N and N ′. This gives one alternating path P of
length at most 10/η ¿ 1/δ between Vi and Vj in Gr. We remove the internal vertices of P
from Gr and repeat the above procedure. It is not hard to see that the above procedure goes
through again and by iterating the above procedure δ2l times we get Fact 5. Indeed, the
total number of internal vertices on these paths is only at most δ2l 1

δ
= δl, and subtracting

this much does not change the above procedure. This shows that M is a perfect matching,
and then we get Fact 5 for every Vi, Vj ∈ V (Gr).

4.3 Step 3

We already have an exceptional set V0 of vertices in G. We add the cluster of Gr that is
not covered by M (in case l is odd) and some additional exceptional vertices (to achieve
super-regularity) into V0, denote the resulting set still by V0 for simplicity. From V i

1 (and
similarly from V i

2 ) in parallel we remove all vertices u for which deg(u, V i
2 ) < (δ − ε)|V i

2 |.
ε-regularity guarantees that at most ε|V i

1 | ≤ εL such vertices exist in each cluster V i
1 . Thus

we still have
|V0| ≤ 3εn. (12)
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4.4 Step 4

We will redistribute the vertices in V0 in blocks of size bεLc; in particular the number of
blocks is a constant. Let us take the first block of bεLc vertices in V0. For each vertex w in
this block in parallel we find a pair (V i

1 , V i
2 ) such that either

deg(w, V i
1 ) ≥ δ|V i

1 |, (13)

or
deg(w, V i

2 ) ≥ δ|V i
2 |. (14)

(3) and (4) imply that for every vertex w there is a pair (V i
1 , V i

2 ) for which either (13) or (14)
holds. In case (13) holds we assign w to V i

2 , and in case (14) holds we assign w to V i
1 . After

a block is finished, since we do not want to assign “too many” vertices to a pair, we do the
following update. We declare a pair forbidden if at least

√
εL vertices have been assigned to

it from all the blocks so far, and in the next block we will not consider this pair in (13) and
in (14). Then using (4) and (12) we can redistribute all the vertices of V0 among the pairs,
since during the whole process the number of forbidden pairs is at most 4

√
εl.

4.5 Step 5

First using Fact 5 we can find m connecting paths P r
i in Gr from V i

2 to V i+1
1 for every

1 ≤ i ≤ m (for i = m we go from V m
2 back to V 1

1 ). Note that these paths in Gr may not be
internally vertex disjoint. Note also that Fact 5 actually gives alternating paths, but now
we just look at these as ordinary paths. From these paths P r

i in Gr we can construct vertex
disjoint connecting paths Pi in G connecting a typical vertex vi

2 of V i
2 to a typical vertex vi+1

1

of V i+1
1 . More precisely we construct P1 with the following simple greedy strategy. Denote

P r
1 = (p1, . . . , pt), 2 ≤ t ≤ 1/δ, where according to the definition p1 = V 1

2 and pt = V 2
1 . Let

the first vertex u1 (= v1
2) of P1 be a vertex u1 ∈ V 1

2 for which degG(u1, p2) ≥ (δ − ε)L and
degG(u1, V

1
1 ) ≥ (δ− ε)L. By ε-regularity most of the vertices satisfy this in V 1

2 . The second
vertex u2 of P1 is a vertex u2 ∈ p2 ∩ NG(u1) for which degG(u2, p3) ≥ (δ − ε)L. Again by
ε-regularity most vertices satisfy this in p2 ∩ NG(u1). The third vertex u3 of P1 is a vertex
u3 ∈ p3 ∩NG(u2) for which degG(u3, p4) ≥ (δ − ε)L. We continue in this fashion, finally the
last vertex ut (= v2

1) of P1 is a vertex ut ∈ pt ∩NG(ut−1) for which degG(ut, V
2
2 ) ≥ (δ − ε)L.

Then we move on to the next connecting path P2. Here we follow the same greedy
procedure, we pick the next vertex from the next cluster in P r

2 . However, if the cluster has
occurred already on the path P r

1 (or on any other connecting paths later in the procedure),
then we just have to make sure that we pick a vertex that has not been used so far. Since
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the total number of vertices on the connecting paths will be a constant, this is feasible.
(Furthermore, this also implies that the running time of this step is a constant as well.)

We continue in this fashion and construct the vertex disjoint connecting paths Pi in G,
1 ≤ i ≤ m. These will be parts of the final Hamiltonian cycle in G. We remove the internal
vertices of these paths from G. In case the number of remaining vertices is odd, since P r

1

does not have to be an alternating path, we can clearly make it one cluster longer. Thus we
may always assume that the number of remaining vertices is even.

4.6 Step 6

At this point we might have a small discrepancy (≤ 2
√

ε|V i
1 |) among the remaining vertices

in V i
1 and in V i

2 in a pair. Therefore, we have to make some adjustments. Let us take a
pair (V i

1 , V i
2 ) with a discrepancy d ≥ 2 (if one such pair exists), say |V i

1 | = |V i
2 | + d (only

remaining vertices are considered). Using Fact 5 we find an alternating path (with respect
to M) in Gr starting with V i

1 and ending with V i
1 . Let us denote this path by

V i
1 , V i1

2 , V i1
1 , V i2

2 , V i2
1 , . . . , V it

2 , V it
1 , V i

1 , where t ≤ 1/δ. (15)

(Here for simplicity we assumed that on this path all the pairs are visited in the order V i
2 , V i

1 ,
otherwise it is similar). In parallel we remove d typical vertices from V i

1 and we add them
to V i1

1 , then we remove d typical vertices from V i1
1 and we add them to V i2

1 , etc., finally we
remove d typical vertices from V it

1 and we add them to V i
2 .

Now we are closer to the perfect distribution by one more pair, and by iterating this
procedure we can assure that the discrepancy in every pair is at most 1. Furthermore,
similarly as in Step 4, after handling each such pair, we declare a pair forbidden if at least
4
√

εL vertices have been added to it or removed from it during the whole process in Step 6 so
far. Then we will not consider a forbidden pair in the next iteration. (3) and Fact 5 imply
that we can always find the alternating path in (15), since during the whole process in Step
6 the number of forbidden pairs is at most 5

√
εl ¿ δ2l.

We consider only those pairs for which the discrepancy is exactly 1, so in particular the
number of remaining vertices in one such a pair is odd. From the construction it follows
that we have an even number of such pairs. We pair up these pairs arbitrarily. If (V i

1 , V i
2 )

and (V j
1 , V j

2 ) is one such pair with |V i
1 | = |V i

2 | + 1 and |V j
1 | = |V j

2 | + 1 (otherwise similar),
then similar to the construction above, we find an alternating path in Gr between V i

1 and
V j

1 , and we move one typical vertex of V i
1 through the intermediate clusters to V j

2 .
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4.7 Step 7

Thus we may assume that the distribution is perfect, in every pair (V i
1 , V i

2 ) we have the
same number of vertices left. Furthermore, each pair (V i

1 , V i
2 ) is super-regular with some-

what weaker parameters (say ( 5
√

ε, δ/2)-super-regular). In this case Lemma 3 closes the
Hamiltonian cycle in every pair.

We note that here in the non-extremal case we can also prove the following. For every
pair of vertices u, v ∈ V (G), we can find in NC4 a Hamiltonian path in G connecting u and
v. Indeed, the only difference in the above is that instead of the connecting path Pm, we will
have one connecting path P 1

m connecting vm
2 and v and another one P 2

m connecting u and v1
1;

all the other details above are the same. This fact will be used later in the extremal case.

5 The extremal case

First we treat two special cases and then we handle the general extremal case.
Case 1: Assume that we have a partition V (G) = A1 ∪ A2 with |A1| = bn

2
c and

d(A1, A2) < 4
√

α. (16)

Thus the bipartite graph between A1 and A2 is very sparse.
First we claim, that in this case in G

dk > min
{
k + ηn,

n

2

}
(17)

always holds for k < n
2
. Suppose (17) is not true, thus for some k < n

2

dk ≤ min
{
k + ηn,

n

2

}
. (18)

(2) then gives

dn−k−ηn ≥ n− k. (19)

But from (19), k ≤ (1− η)n
2

follows. Otherwise

n− k − ηn ≤ n− (1− η)
n

2
− ηn = (1− η)

n

2
< k and thus

n

2
< n− k ≤ dn−k−ηn ≤ dk
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a contradiction with (18). Thus we can assume that k ≤ (1− η)n
2

and that (19) holds. Then
for at least k + ηn ≥ ηn vertices v

degG(v) ≥ n− k ≥ n− (1− η)
n

2
=

n

2
+ η

n

2
.

Thus in either A1 or A2 (suppose in A1) we have ≥ η
2
n from these vertices. But then for

these vertices v
degA2(v) ≥ η|A2|,

a contradiction with (16) from (3). Thus we can assume that (17) holds.
We define exceptional vertices v ∈ Ai, i ∈ {1, 2}, as

deg(v, Ai′) ≥ 8
√

α|Ai′|, {i, i′} = {1, 2}.

Note that from the density condition (16), the number of exceptional vertices in Ai is at
most 8

√
α|Ai|. In parallel we remove the exceptional vertices from each set and then we add

each extra vertex to the set where it has more neighbors. We still denote the sets by A1 and
A2. Thus in G|Ai

, i ∈ {1, 2}, it is certainly true that apart from at most 3 8
√

α|Ai| exceptional
vertices for all the vertices v ∈ Ai we have

degG|Ai
(v) ≥ degG(v)− 3 8

√
α|Ai|, (20)

and for the exceptional vertices using (4) we have

degG|Ai
(v) ≥ η|Ai|/2. (21)

(3), (17), (20) and (21) imply that if we denote the degree sequence of G|Ai
by di

1, d
i
2,

. . . , di
|Ai|, then we have for all 1 ≤ k ≤ |Ai| the following.

di
k > min

{
k +

η

4
|Ai|, (1− η)|Ai|

}
. (22)

Thus in particular G|Ai
, i ∈ {1, 2} are η/4-Chvatal graphs, and furthermore (22) clearly

implies that the extremal case EC cannot hold for them. (17) implies that we can find
two independent edges (bridges) e1 = (u1, v1) and e2 = (u2, v2) between A1 and A2, where
u1, u2 ∈ A1, v1, v2 ∈ A2. Running the non-extremal version of our algorithm twice we can
find a Hamiltonian path in G|A1 connecting u1 and u2 (see the last remark at the end of
Step 7) and a Hamiltonian path in G|A2 connecting v1 and v2. This gives us the desired
Hamiltonian cycle in G.
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Case 2: Assume next that there is a partition V (G) = A1 ∪ A2 with |A1| = bn
2
c and

d(A1) < 4
√

α. Thus the graph G|A1 is very sparse.
A vertex v ∈ A1 is called exceptional if it has a relatively large neighborhood in A1, more

precisely if we have
degG(v, A1) ≥ 8

√
α|A1|.

From d(A1) < 4
√

α we get that the number of exceptional vertices in A1 is at most 8
√

α|A1|.
In parallel for each exceptional vertex v, we add v to A2 if it has more neighbors in A1 than
in A2. We still denote the resulting sets by A1 and A2. Thus in G|A1 it is certainly true that
apart from at most 8

√
α|A1| exceptional vertices for all the vertices v ∈ A1 we have

degG(v, A2) ≥ degG(v)− 8
√

α|A1|, (23)

and for the exceptional vertices we have

degG(v,A2) ≥ η|A2|/2. (24)

Let k = |A1| − dη
2
ne. Similarly as above in the proof of (17) for this k we have

dk > min
{
k + ηn,

n

2

}
. (25)

From (23) and (25) it follows that there are at least η
2
n vertices v ∈ A1 for which

degG(v,A2) ≥ (1− 2 8
√

α)|A2|.

This in turn implies that we can have at most 4 8
√

α|A2| exceptional vertices v ∈ A2 for which

degG(v,A1) ≥ η

4
|A1| (26)

does not hold. In parallel we remove each of these exceptional vertices from A2 and add them
to A1. We still denote the resulting sets by A1 and A2. We have d = ||A1| − |A2|| ≤ 5 8

√
α|A2|.

The rest of the proof in this case will be a bipartite adaptation of the proof in the
non-extremal case. Therefore we are not going into details, we just point out the major
differences. First, since the “heart” of the non-extremal case was the expansion property
(9), here we need a bipartite version of this as well. First (2), (3), (23) and (24) imply that
similarly as in (9) for all X ⊂ A1, 1 ≤ |X| ≤ |A1| we have

|NA2(X)| ≥ min
{
|X|+ η

4
|A2|, (1− η)|A2|

}
. (27)

14



But then (3), (26) and (27) imply in turn that we have a similar expansion property from
the other direction as well; more precisely for all Y ⊂ A2, 1 ≤ |Y | ≤ |A2| we have

|NA1(Y )| ≥ min
{
|Y |+ η

5
|A1|, (1− η)|A1|

}
. (28)

Indeed, for small |Y | we get this from (26), and for larger |Y | we get this from (27) by
choosing X = A1 \NA1(Y ) since then N(X) ⊂ A2 \ Y .

Before starting the bipartite version of the non-extremal case, we need one more technical
step; namely we would like to achieve that d = ||A1| − |A2|| = 0. Without loss of generality
assume |A2| > |A1|. If there is a vertex v ∈ A2 for which degA2(v) ≥ η2|A2| then we put
v in A1, and thus reducing |A2| − |A1|. Therefore we may assume that there is no such
v ∈ A2 and let us denote 0 < d = |A2| − |A1| ≤ 5 8

√
α|A2|. By (2), we know that in A2 there

are still at least ηn vertices u ∈ A2 for which degA2(u) ≥ d
2
, namely these are vertices with

degG(u) ≥ n
2
. Denote the set of edges leaving these vertices in A2 by E. Running MIS on

the linegraph defined on E and using the maximum degree condition we can find in NC4 d
independent edges from E, denoted by e1 = (u1, v1), e2 = (u2, v2), . . . , ed = (ud, vd). Next
we will find in NC4 short vertex disjoint connecting paths in G|A1×A2 between vi and ui+1

for 1 ≤ i ≤ d − 1. Similarly to the non-extremal case the expansion property (28) implies
that for each 1 ≤ i ≤ d − 1 there are many internally disjoint connecting paths between
vi and ui+1. Then running MIS on the appropriately defined auxiliary graph (the vertices
are the connecting paths, and we put an edge between two connecting paths if they share
a common vertex) we can select d − 1 vertex disjoint connecting paths connecting vi and
ui+1 from 1 ≤ i ≤ d − 1. We add one more arbitrary edge of G|A1×A2 to the path from vd;
denote its other endvertex by ud+1 ∈ A1. This way we get a path P connecting u1 and ud+1

that contains the d edges e1, . . . , ed. We remove the internal vertices of this path P from G.
Now we just have to find in NC4 a Hamiltonian path in the leftover (where now we have
the same number of vertices on the two sides) connecting u1 and ud+1. This together with
P gives us the desired Hamiltonian cycle in G in this case.

Thus now we may assume |A1| = |A2|, (27) and (28), and we have to find a Hamiltonian
cycle in G|A1×A2 . We follow a bipartite adaptation of the non-extremal case. Note that
(27) and (28) clearly imply that the extremal case cannot hold here. We apply the bipartite
version of the Regularity Lemma to get two partitions

A1 = V 1
0 + V 1

1 + V 1
2 + . . . + V 1

l ,

A2 = V 2
0 + V 2

1 + V 2
2 + . . . + V 2

l .

The reduced graph Gr is a bipartite graph as well between Ar
1 and Ar

2 satisfying similar
conditions to (27) and (28) (with somewhat weaker parameters). We take a maximum
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matching M again, and we show that it is a perfect matching. For this we show that the
expansion conditions imply similarly to Fact 5 that if we have a cluster Vi ∈ Ar

1 and a cluster
Vj ∈ Ar

2 then there are many short internally disjoint alternating paths connecting Vi and Vj.
Note that we might not have these paths between Vi and Vj belonging to the same partite
set, but fortunately we never need this, as |A1| and |A2| are already balanced. From this
bipartite version of Fact 5, it follows again that M is a perfect matching and that we can
perform all the other steps of the non-extremal case. All details can implemented again in
NC4 and are omitted here.

Extremal Case: Assume finally that the extremal case EC holds, so we have A,B ⊂
V (G), |A| = |B| = bn

2
c and d(A,B) < α. We have three possibilities.

• |A ∩ B| ≤ d 3
√

αne. The statement follows from Case 1. Indeed, let A1 = A, A2 =
V (G) \ A1, then clearly d(A1, A2) < 4

√
α if α ¿ 1 holds.

• d 3
√

αne < |A ∩ B| < (1− 3
√

α)n
2
. This case is not possible under the given conditions.

In fact, otherwise denote k = |A ∩ B| − d 3
√

αne. Then 1 ≤ k < n/2. We have two
subcases:
Subcase 1: dk ≥ min

{
k + ηn, n

2

}
.

In this case we have

∑

u∈A∩B

degG(u,A ∪B) ≥ 3
√

αn min
{
ηn− d 3

√
αne, n

2
− |A ∩B|

}
≥ α2/3n2,

a contradiction with d(A,B) < α.

Subcase 2: dk < min
{
k + ηn, n

2

}
.

From (2), we get
dn−k−ηn ≥ n− k.

Thus in this case the vertices with the k + ηn largest degrees have at least 3
√

αn
neighbors in A ∩ B. From these vertices at least ηn/2 vertices are in A ∪ B. Thus
again ∑

u∈A∩B

degG(u,A ∪B) ≥ η

2
3
√

αn2,

a contradiction with d(A,B) < α.

• |A ∩ B| ≥ (1 − 3
√

α)n
2
. The statement follows from Case 2 by choosing A1 = A,

A2 = V (G) \ A1, and then d(A1) < 4
√

α.

This finishes the extremal case and the proof of Theorem 1.
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