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Abstract

Because of the high volume and unpredictability arrival affedstreams, stream processing systems may not al-
ways be able to keep up with the input — resulting in bufferftoxg and uncontrolled loss of data. Load shedding,
the prevalent strategy for solving this overflow problens twdate been considered for relational stream engines.
On the other hand face additional challenges and opporiesifor "structural shedding”, due to the complex
nested XML input and result structures. We now tackle thena¥ML shedding problem by a three-pronged
solution. First, we develop a preference model for XQuergrtable users to specify the relative importance of
preserving different subpattern in the complex XML resuitcture. This transforms shedding into the problem of
rewriting the user query into possibly several sheddingiggehat return approximate query answers yet with the
highest possible utility as measured by the given user igete model. Two, we develop a cost model to compare
both the performance and the utility of alternate sheddingrggs. Third,we propose two solutions: OptShed,
and FastShed. OptShed guarantees to find an optimal solbhtarever at the cost of an exponential complexity.
FashShed as confirmed by our experiments, efficiently asheelose-to-optimal result in a wide range of cases.
Lastly we describe the in-automaton shedding mechanisRdimdrop system. The experimental results show that
our proposed preference-driven shedding solutions alwaysistently achieve higher utility results compared to
the existing “relational” shedding techniques.

1. Introduction

XML has been widely accepted as the standard data représearfiar information exchange on the web. XML
stream systems in particular have attracted interest tigcgn 10, 14, 20, 16, 22] because of the wide range
of potential applications such as auction, traffic monitgrand online stores. Different from relational stream
systems, XML stream processing experiences new challerfjethe incoming data is entering the system at
the granularity of a continuous stream of tokens, instead wée structured XML element nodes. This means
the engine has to extract the tokens to form the XML elemeRf3Ne need to do disection, restructuring, and
assembly of complex nested XML elements specified by XML gegpressions, such as XQuery.

For most monitoring applications, immediate online resuolften are required, yet system resources tend to
be limited given voluminous high arrival rate data streafjsSufficient memory resources may not be available
to hold all incoming data or 2)CPU processing Note that féati@nal stream systems, tuples are the smallest
granularity for shedding. However, in XML stream systen® ¢uery result is composed of possibly complex
nested structures. That means each output may be compoaeadéty of elements, each of them may possibly
be extracted from different positions of XML tree structwary in their importance or processing cost. This



provides new opportunity for selectively sheding XML subreknts to achieve high processing speed. In this
work, we focus on how to trade off accuracy of XML query redaitperformance.

In recent years, several load shedding techniques fornsteygtem have been proposed [25, 3, 13, 9]. The
current state-of-the-art in load shedding can be categgbiiizto two main approaches. One is random load shed-
ding [25], where tuples are discarded randomly wheneverateeof processing data cannot match the input rate
and thus the output rate is significantly affected. A cersailection rater maybe customized and adapted accord-
ing to the workload [13]. The other approach is semantic klaedding. It assigns priorities to tuples based on
their utility to the application and then shed those with loriority first. Essentially semantic shedding is to shed
tuples that do not contribute to generate output.

An XQuery may return query results with complex tree streegu In this tree structure, subelements may differ
in their perceived importance (utility). Further, thesbalements may consume rather different buffer space and
require different CPU resources for their extraction, éuifg, filtering and assembly. Consider an online-store,
customers may have periods of heavy usage, say at some [wartioie or on holidays. The online store would
receive huge numbers of orders from customers. The schantrafsaction element is given in Figure 1. Given a
fixed buffer of size B. Assume the data arrival rate.isThe system query processing speeq, ias is determined
by the available computational resources and the queryleamtk When the processing capacity is not sufficient
to keep up with data arrival rate, the data in the buffer wit@amnulate resulting in an overflow. In this case, we
have to either drop some data or improve the processing speseever, dropping complete transaction elements
means that we may effectively lose some important inforomatiln this scenario, dropping some unimportant
but resource-intensive sub elements from a root elementlieayiore meaningful to output receivers compared
to the complete-tuple-granularity shedding strategy. lethis type of "element” granularity droptructural
sheddingsince it changes the structure of query results. Let us densi online store query issued below. The
corresponding query pattern tree is shown in Figure 2.

Q1L:

FOR $a in stream("transactions”)/list/transaction
WHERE $a/order/price> 100

RETURN  $a//name, $a/ltel, $a/lemai

$a/laddr, $a/order/items, $a/survey

Transaction(0s°) )

zip St city state

Figure 1. The schema definition for Q1

This query is to return the customer’s contact informatiod &em list when their transactions are spend more
than 100 dollars. The contact information including custdmtelephone, email and the items they bought. To
process as many transaction tuples as possible, outpitgeney prefer to selectively obtain partial yet important
content in the query result while dropping less importafttedements in each transaction tuple. In this case we
may choose to drop "addr” information for two reasons: 1)didelement is much more complex than "email”, as
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can be seen in the schema. This means we have to process kemns tor each single “addr” element; 2) "addr”
element may be "optional” to output consumer because “émadly be the more likely means of contacting
customers. By dropping the "addr” element, several savamnge. First, we do not need to extract "addr” element
from the input tokens. In this case, we save the processisigofdocating tokens from<addr>" to “ </addr>".
Second, we no longer need to buffer “addr” element duringygpeocessing. Thus the buffering costs for "addr”
element is saved. Note here the query is changed to a new erte d@moving the “addr” element. Let us call the
new reduced querghed query

There are many options to drop subelements based on the dimmgver, different shed queries vary on their
importance and their processing costs. Hence choosing@om@yate shed query is very important. This raises
many challenges. First, given a query, what are differentswa change the query via shedding while keeping
the query valid. Second, what model to we employ to speciyitfiportance of each subelement. Third, which
of the potential shed query to choose to obtain maximuntytdind lastly how to implement structural shedding
in this XML context. Our solution tackles these challengadrtg a three-pronged strategy. One, we develop
a preference model for XQuery to enable output consumersarwho issue the query to specify the relative
utility (a.k.a preference) of preserving different subpatterménguery. By comparing the utility of different shed
queries, we can judge which one yields highest utility, saisfies consumer’s preference best. Two, we develop a
cost model to estimate the processing cost for the canditia queries. The main goal of our shedding technique
is to maximize output utility giving the input rate and limét computational resources. We propose two solutions:
Utility-optimal, and Ratio-based Greedy (RG). Utilitytopal guarantees to find an optimal solution however at
the cost of an exponential complexity. RG as confirmed by apeements, achieves a close-to-optimal result
in a wide range of cases. Lastly we discuss the implementati@n in-automaton shedding mechanism in the
Raindrop systems.

Our contributions are summarized as below:

1. We introduce the concept of structural shedding for XMieain systems. To our best knowledge, we are
the first to address shedding in the XML stream context ancpo# the utility for XML elements into
shedding decision.

2. To solve the shedding problem, we introduce two classesgofithms, Utility-Optimal, and Ratio-based
Greedy (RBG).

3. We propose a simple yet elegant mechanism for performimglding in our query engine at run-time,
namely, suspending the appropriate states in the autorbatssd execution engine.

4. We provide a thorough experimental evaluation that destnates that our approach maximizes the utility
while keeping the CPU costs under the system capacity.

2. Background

2.1. Query Pattern Tree

We support a subset of XQuery. Basically, we allow “FOR... BRE... RETURN...” expressions (referred
to as FWR) where the “return” clause can contain further FWR&ssions; and the "WHERE” clause contains
conjunctive selection predicates, each predicate beingparation between a variable and a constant. Here we
assume the queries have already gone through the nornm@lizd¢ps in [7].

The query pattern tree for query Q1 is given in Figure 2. Inukég2, each navigation step in an XPath is
mapped to a tree node. We distinguish between three typeasiekn context nodes, return nodes and select nodes
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as indicated by annotations in Figure 2. Figintext nodes the node that corresponds to a context variable in
the “for ” clause, e.g.a in Figure 2. Context nodes must evaluate to a non-empty deindfng for the FWR
expression to return any result. This implies that the quesyld return nothing if we drop the context node. In
this case, dropping a context node would have the same @sditopping the root element. Second, the nodes
that correspond to the pattern in the “return” clause, @amor categoryare calledeturn node Note that return
nodes are optional patterns meaning evefuliftel evaluates to empty, other elements will still be constmlicte
The third type of the nodes correspond to the pattern in theete” clause. We call such nodsslection nodes
For instance, if an XPath is an operand in a comparison ptlithen the destination node of the XPath, e.g.,
price of $a/orderprice in Figure 2, is a selection node. We add annotations on thesimdndicate their types. A
context node is annotated with “c”. A return node is annotéth “r ” and a selection node is annotated with “s”.

Figure 2. The corresponding pattern tree for Q1

Here we define destination nodes to be either “return” or ‘whelausepatterns Particularly we call return
nodes “r’ patterns and selection nodes “s” patterns. In terygpattern tree shown in Figure 2, the “name”,

” [ TH

“email”, “tel”, “items” and “survey” are “r" patterns. Thegrice” node is an “s” pattern.
2.2. Generating Shed Queries

We now investigate the different shed queries that can bergesd for one giving query via shedding. Clearly
we should avoid generating sub queries that would result imereased output rate. Thus randomly choosing an
element to drop may not be meaningful. For instance, in Ei@udropping elemersiz is not a good idea because
$a is the outer loop binding variable. Thus this drop would ezt resulting shed query to return nothing. That
is, dropping the element correspondindbtois equal to dropping the root element.

The shed query generation process being based for an drigiesy QO has to follow three construction rules:

1. Only "r" and "s” nodes are allowed to be removed from theyiorl treeTy.
2. Any shed subtre@&; always has the same rootas

3. The leaf nodes of a subtree have to be either "r" node or &&les. For instance, the subtree depicted in
Figure 3 is not allowed. This tree does not need to keep thetdct’ element because all children of the
“contact” element are removed and it is neither an "r" nor ghpattern.

Assume B denotes the number of all 'r” and "s” patterns forvegiquery tree. When the query tree is very
bushy of width B, we can generate the maximum number of shedeg2?. When the query tree is deep and
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Figure 3. Not Acceptable Query Tree
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Figure 4. Some shed query trees

linear, we would generate at ma8tshed queries. Thus the number of shed queries for a queryacametween
B and25. Figure 4 shows some shed queries for query Q2.

3. XML Stream Systems. Processing and Cost M odel

In this section, we describe the widely-adopted automategqasing model for XML streams, which we assume
as underlying model for our systems. We then design a cosehfiodthis XML stream processing model. As is
known, automata are widely used for pattern retrieval ovgiL{oken streams. [10, 20]. After pattern retrieval,
the relevant tokens are assembled into tuples to be furthemed or filtered as final output elements. The formed
tuples then passed up to perform structural join and filierik plan for query Q1 is shown in Figure 5. Observe
that the context nodga in the “for” clause is mapped to a structural join in the pl&hus we have the following
guery processing tasks in XML stream systems:

1. Locating tokens. We use an automaton to retrieve therpatte
2. Extracting tokens. After retrieving the tokens, we ecttthe tokens and compose them into XML tuples.

3. Manipulating buffered data. Algebra operator provideué€y translation functionalities, including struc-
tural join and selection.



StructuralJoin $a

// StructuralJoin $b

Extr Extr Extr Extr Extr Extr
$a/name alcor i $a/contact/addr

Figure 5. An Example Plan

For instance, in query Q1, we perform structural join on $aditect all pieces to form a transaction tuple.
In addition we perform selection on $a/order/price to juddneether the “price” is greater than 100.

3.1. Automaton-based Implementation

name
S[ream transaction Emall

order price :
[
[ [ @ s3
s2 s2 s2 s2 s2 s2
sl sl sl sl sl sl sl
sO s0 s0 s0 s0 s0 sO sO

<stream> <transaction>  <time> <date> </date> </time>  <name>

Figure 6. Snapshots of Automaton Stack

We briefly describe how the automaton functions. A stack &lus store the history of state transitions. The
bottom of Figure 6 shows the snapshots of the stack afterteaieh is processed. Initially, the stack contains only
the start state( (see the first stack). The automaton behaves as follows:

e When an incoming token isa start tag:

When we see a start tag, we need to check whether this stawillaigad us to any transitions in the
automaton. There are two possibilities, either such naxké sxists or not. In the first case, we transition to
a new state. Within this state, tasks to be undertaken maydecetting a flag to henceforth buffer tokens,
such as to record the start of a pattern, trigger a strugirgletc. We call this cost’;,.,,s;:. Note that the
start tokens of all elements in the query tree will cause sutfansition. The other case is that there are
no states to transition to. In this case, an empty state iglgipushed onto the stack top without any other
actions. For instance, whettime> is encountered, the stack pushes an empty state onto thisaggpthat

all start tags of patterns that do not appear in the queryatilbkead to such a transition. The cost associated
with this case i€,



Notation Explanation

NTi Number of element$; for topmost element.

Nstart " Nend | Total number of start or end tags for a topmost ele-
ment.

SFi Number of tokens contained for/g element.

QA Set of states in automaton A.

QFi The set of states which include the state correspond-
ing to patternP; and all its following states.

Nactive(q) the number of times that stack top contains a state g
when a start tag arrived

Cliransit cost of processing a start tag of an element in the
query tree

Crull cost of processing a start tag of an element not in the
query tree

Chacktrack cost of popping off states at the stack top

Cous(9) cost of buffering a token

Cioin(€) cost of performing a structural join on a single ele-
ment e

Csei(pred;) cost of evaluating predicajered;

o(e) selectivity for predicate evaluation on all elements e
for a bottom input element

Table 1. Notations Used in Automaton Costing

e When an incoming token isa PCDATA token:
The automaton makes no change to the stack.

e When an incoming token isan end tag:
The automaton pops off the states at the top of the stackl{sesxth stack wher:/emph> is processed).
We call such popping off cost &%,,..:-4c- NOte that the popping cost for all end tags is the same, dézss
of if thestack top is empty or not.

3.2. CPU Cost Model for a Query

Traditional database models defined the cost of a plan agdlcessing time of the entire input data. However
for XML stream processing, this is not possible, as the sireauld potentially be infinite. One solution here is
to define the cost on a finite input chunk while the entire strean be seen as a sequence of the chunks. lItis
natural to consider a complete topmost element (exceptaneand the end of the whole XML stream) since it is
the basic unit based on which we generate query results. Whegrocessing time of handling such a top most
element thaunit processing costWe measure the cost of a query based on its unit processsigrear instance,
the cost of query Q1 thus is the unit processing cost of hagdinetransaction element.

Based on the above analysis of the basic functioning of aonzaton-based implementation, we divide the
processing cost (UPC) for XQuery into three parts: Unit ltimraCost (ULC) that measures the processing time
spent on automaton retrieval, Unit Buffering Cost (UBC)repen pattern buffering and Unit Manipulation Cost
(UMC) spent on algebra operations including selection danettural join. The relevant notations are given in
Table 1. The Unit CPU Cost for a que€y; can be written as below:

UPC = ULC + UBC +UMC 1)

3.2.1 Unit Location Cost (ULC)

We split the total ULC into two parts, one part considers tbst of locating the start and end tags for elements
in the query tree, and the other part considers the cost fatitey the start and end tags for other elements. The



first part can be measured by considering the invocationstiimeeach state and the transition cost for a token as
below:

ZqEB(A) Nactive (q)(ctransit + Cbacktrack) (2)

> 4eB(A) nactive (q) denotes the number of times new states are transitioned stefid tags of all elements in
the query tree. The number of other start tags, namely foneés which are not in the query tree, can be written
aSnstart — Y 4eB(A) nactive (). Thus the second part of the transition cost is as below:

(nstart - quB(A) nactive(q))(cnull + Cbacktrack)- (3)

In total, the ULC for a given automaton A is:

transition cost for all tokens in a bottom input element
= transition cost for tags in query

+ transition cost for other tags
= Xyenla) Mactive(@)(Ctransit+Coacktrack)

+ (nstar't_zqu(A) nactiue(q))(cnull+Cbacktr'ack)) (4)

3.2.2 Measuring Unit Location Cost (UL C) Savingsfor SubQueries

We now look at how to estimate the location cost we can saveviigting from the initial query to a shed query.
Assume the shed query is the query with patigrohosen to be dropped. This means that the patteand all its
descendant patterns will be dropped. Then in the automatdhéd shed query, as the state corresponding amd

all its subsequent states will be cut from the initial auttomaA of Q. Let us call the set of states corresponding to
p; and its dependant statés”. The location cost for patterp in initial automaton can be represented as:

quBpi Nactive (Q) (Ctransit + Cbacktrack) (5)

However, in the automaton for the shed query, since theserpatare now treated as elements that are not in
the query. Their location cost is now changed to:

ZQEQPi Nactive (Q) (Cnull + Cbacktrack) (6)

Thus the savings in location costs gained by switching frioenititial query to the shed query can written as:

quQm nactive(Q)(Ctransit + Cbacktrack) -
quQPi nactive(Q)(Cnull + Cbacktrack)
= quQm Nactive (Q)(Ctransit - Cnull) (7)
For instance, suppose the pattern “name” is chosen to b@elddjpom the shed query. Then in the automaton

for the shed query, statd will be cut from the automaton for the initial query. Here the number of times that
states3 was invoked is equal to the number of start tags of “name”. S&wings are:

zquname nactive(Q)(Ctransit - Cnull)
= Nname((ctrcmsit - Cnull) (8)



3.2.3 Unit Buffering Cost and Saving

In our query engine, not all incoming tokens are stored. Wg store the tokens that are required for further
processing of the query. For a given query, all “r" and “stpats are to be stored, since they need to to be returned
or filtered. We associate such pattern information withrtherresponding states in the automaton. For example,
in Figure 6, state4 represents an “r” pattern. Note that it is associated wighatlgebra nodé ztractg,$b. Once

s4 is activated by the arrival ofname>, Extractg,$b raises a flag. As long as the flag is raised, the incoming
tokens will be stored to compose theller element nodes. Whe#it is popped off the stack by the arrival of end
tag, i.e., a</name>, Extractg,$b revokes the flag and thus terminates the extraction ohémeeelement. We
assume that for each individual token, the buffer cost igifiXehe buffer cost for a topmost element is defined as
UBC (Unit Buffering Cost).

$a

@/r? & @/ﬁ)

r r®gr r o r I'@Br
r
'@

@ (b) (c)
Figure 7. Buffer Sharing Examples

We do not store the same token twice in our buffer, insteag &ne shared. Three query examples are shown
in Figure 7. In Figure 7(a) and 7(b), the parent pattern amdhildren overlap. Since both the parent and the
children are to be returned, we only need to store the paagtgrppl and set a reference for its childrem, p2
andp3 pointing top1. In this case, the buffer cost is equal to the buffer cost efghirent patterpl. However, in
Figure 7(c), since the parent is not a “r” pattern, only itddrien are to be returned. The buffer cost is equal to the
buffer cost of all the children.

Hence, for a given query, we need to find all the non-overlagppopmost patterns required to be buffered,
called henceforth thstoring pattern setTo obtain this storing pattern set, we traverse the trea tiee root node
in a breadth-first manner. If the root node is an "r” pattehgnt add this root node to the storing pattern set and
stop here. Otherwise, for each its children, check fromtéefight. if the node is a "r” pattern or an "s” pattern,
add this node into storing pattern set and label all its detaets as visited. If it is not, we move on and check its
children, repeating the above steps.

Assume the storing pattern set for our query Q is denoted. 44BC can be written as

UBC(Q) = ) _ N'S"Ciuy ©)

For instance, the storing pattern set for query tree in [eigifa) is{p1}. However the storing pattern set for
Figure 7(c)is{p2,p3,p4}. For the query tree shown in Figure 7(a), if pattethis chosen to be dropped, no
buffering cost is saved since the buffering cost for the gigequal to the buffering cost of patteph. However,
for the query tree shown in Figure 7(c), if patteihis chosen to be dropped, the buffering cost for the new query
will be reduced byN?2S572Cy, ;.



3.24 Unit Manipulating Cost (UM C) and Measuring Manipulating Cost Saving

The Unit Manipulating Cost is defined as the cost spent orcefeand structural join operations( the cost of
Extract operator is measured by the buffer cost). Note thébte plan shown in Figure 5, the algebra operators
consist of selection and structural join operators. Fohegwerator in the plan, we must estimate the cost of
performing such an operator. In addition, we must estinfaesize of the result for each operator, since this result
is the input for the downstream operators. Note that theele®# the plan can only be Extract operators since
tokens for each pattern have to be extracted first. Here wetel¢ne cardinality of the output from each Extract
operator on patterp; NPi. We now look at how to estimate the unit cost of the whole pkirst we will look at
how to estimate the cost and result size of the selectioratqrerThen we will examine how to estimate the cost
and result size of a structural join operator.

For a selection patterp, in the query, several predicates may be defined on it. We defioeconcepts for
selection operators, selectivity and non-empty probigbillThe selectivity for predicatered; on patternp; is
defined as

Number of elements satisfying pred;

ot (pred;) = (10)

Number of input elements

For each selection operator, we need to estimate whethéredament of pattermp, satisfies the predicate
pred;. We call this result non-empty probability. As long as asteane element of patten is evaluated to be
true, the result of this selection operator is true and westamchecking other elements. In other words, the return
result for selection operator is equal to the disjunctioealuation result for each element. Thus the non-empty
probability for selection on a predicapeed; is defined as:

pxg(pred;)
Nin
= U - P(No jth element satisfies pred;) (11)

If the patternp; needs to be returned, we also need to count how many elemieptdtern p, satisfy the
predicatepred; among the input elements, in other words, the result sizesue there are — 1 predicates
located upstream of selection operator med;. Note that the input cardinality for the bottommost selacti
operator isN?:. Its result size of selectiopred; is equal to:

Nowt(pred;) = NP H aps(predk) (12)
k=1

The cost for a selection operator of pattggronpred;, C*s,(pred;), is decided by the number of input elements
for the operator and unit predicate evaluation cost on ordipate. The selection cost for predicate:d; on

patternp; can be written as:

Cps

sel

(pred;) = Nj;Cse(pred;) (13)

The structural join cost is decided by the types of input afmrand the number of the elements in each input.
If the structural join has a selection operator descendangeds to consider the selectivity of the the selection
operator before since the structural join is performed arign the predicate is evaluated to be true. Thus the cost
of the structural join on the elemen(’;;(e) can be defined as below:

Csj(e) = ([1pere NB) % Cjoin (14)
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StructuralJoin $a

_——/

[ Extract J [ Select J StructuralJoin $b

------
StructuralJoin $e

Figure 8. Structural Join Cost Example

Note that/® denotes the input operators of structural join operatolementa and N ? denotes the number of
elements in input operator B:;,;, is the processing time for joining one element from one input

The result size of a structural join operator on elemeist decided by how many elements are bound to
a top most element and whether each elemesuccessfully generates non-empty query result when it bas n
returned selection operator. Assume therelafeslements bound te, the result size of a structural join operator
one is thus written as:

NE
Z Hp7g¢(B), here B € I° and B is selection (15)
k=1

For the shed queries, we can estimate the unit manipulatehsavings by checking which input pattern is
dropped in the shed query. Suppose the patigris dropped from the shed query, the Extract operator and the
selection operatorgred; ... pred; are then removed from the plan. Assume there is one striigbimson top of
it, the UMC savings in the new plan can estimated by:

S(UMC) = C%(predy) + CP% (predy) + ...C%*% (pred;)

= ([Ipere NP — M segre—preasy NBY s Cjoin (16)

When there is no predicate under the structural join, thecsiglty o (pred) is set to 1 default. For example,
there is a structural join on pattegi shown in Figure 7. Assume we drop patterin the shed query, the
structural join cost for the shed query is equal6® x NP4 x Cj,;,, instead of NP2 x NP3 « NP4 x O}y, in the
initial query.

4. Runtime Statistics Collection

We now sketch how we collect the statistics needed for thengpasing the estimation methods described in
Section 3. We piggyback statistics gathering as part ofygarecution. We attach counters to automaton states
and algebra operators to collect the statistics. Duringygexecution, statistics collection for an automaton-bdase
operator for instance proceeds as follows: when a gtédeactivated, its associated counter will be incremented
to collectng.ive (¢). Then for k most recent tompmost elements, we combine thistgta gathered in this period
with the last statistics using a weighted function that gikiggher priority to the more recently collected statistics
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over older ones. We then use these statistics to estimatogtef the candidate sub queries using the formula
given in Section 3.

Note that some of the cost parameters in table 1 such,assi:, Cruii» Cour andCj,;,, are constants. We do not
need measure them in the query execution. Other paramegergly, cardinality and counts suchmag..(q),
NP, SP andng,,+. Note thatN? is actually equal tov,.ive(¢) Where q is the corresponding states for pattern p in
the automaton.

5. Preference Model for Query Pattern Trees

Different elements may vary in their importance to real aggpions. For instance, the "name” element may be
more important than the "email” element for query Q1 becdusene” is the unique identifier of &-ansaction
while "email” may in fact be an optional item feransaction. Thus we need a metric to measure the importance
of each pattern for a given query. In this work, we define a ttadive preference model to represent preference
of different elements for a query. THe preferences can beifige by the user who issue the query or the output
consumer. By binding different nodes with their respecpveference, shed queries would vary in their overall
perceived utility to the user. In this way, we can rank therigsederived from the initial query. The notion of
preference model has been investigated in the literatu@}. [fistead of using the preference model to represent
the preference between tuples as in previous work [18, 12yé8hre using the preference model to represent the
preference between different nodes in the query tree. Weasupwo types of preferences representations, one
using prioritized preference [17] to explicitly exprese tielevant ranking among different elements, and the other
is using a quantitative approach [12, 11] that by scoringfion to represent the importance for the nodes. In this
work, we allow user to choose either model to represent firelfierence. For prioritized preference model, we
provide a default score assignment to assign scores toattf@aodes.

Before we describe our proposed preference model, we fiedyzm what nodes user needs to assign prefer-
ences. As we mentioned in Section 2.1, there are three typexles in the query tree. Recall that ‘c” nodes are
considered essential, i.e., they cannot be shed. So we eatyto consider the preference of the “r’(return nodes)
and “s” patterns (selection nodes).

5.1. Prioritized Preference Model(PPM)

If a user chooses to use the prioritized preference, thegritbesthe partial-order relationship between nodes. It
means that given a query tree, for all the nodes on the quesyttie user has to declare the ordering of all “r" and
“c” nodes in term of their importance.

An example prioritized preference for query Q1 could be:

name > order = price = items. = tel > email = survey

Note that prioritized preference satisfies the structungidrtance relationship, that is, the parent pattern is more
important that its children pattern. This is because thtepatlways contains its child pattern. After ranking, a
default score assignment strategy is applied based orargleanking. The score calculation formula is given as:

v(Pattern Ranking k) = 2%

For instance, the utility for “name” is equal goand the utility of order is equal t%. Note this score assignment
method can conserve the structural importance relatiprshte it guarantees that the utility of pattern ranking k
is greater that the sum of utility for patterns ranking aker
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5.2. Numerical Preference Model (NPM)

If users choose to use a quantitative approach, they cagnaibgir customized importance (a.k.a utility) for
different elements in the query in a numerical form. We deffimeescoring function to represent the importance of
each node in the query tree. The scoring function for a pattethe query tree is defined as below:

v(F;) — [0,1]

whereP; is an "r ” or an "s” node in the query tree andR] is a constant value between (0,1). An example of
utility for query Q1 is shown in Figure 9.

Figure 9. The Query Tree Augmented by Preference

Based on the literature [26], we can easily extend the syoténtegrate the preference into the query below:

QL:
FOR $a in stream("transactions”)/list/transaction
WHERE $a/order/price> 100
RETURN  $a//name, $alltel, $a/lemai
$a/laddr, $a/order/items, $a/survey
with v(name)= 0.2yp(tel)= 0.1,v(email)=0.1...

In some cases a user may not be able to or want to specify thessioo all nodes. Thus only some scores of
“r" and “s” nodes are determined. In this case, we would atersthe other nodes to be not as important as the
scored nodes. Thus the scores of other nodes will be set tarfipmrtant” being represented by the infinitely
small numbek.

When no scores forny nodes are specified, then we would assign default scoredl thedr” nodes and “s”
nodes. In this case, the default score of all “r" nodes andtgles would be set to 1.

The utility of a query pattern tree indicates the amount dityitwe expect to gain by running this particular
guery on a topmost element. It is defined as below:

v(Qi) = > v(P).

P;ES;

The query tree with preference for query Q1 is shown in Figura this case, the utility for Q1 is equal to:

02+0.140.140.25+0.4+0.05=1.1

In addition, we have two special queries which are also damed to be shed queries: empty quély and
initial query. The utility for the initial query can be calated easily. The empty query indicated dropping the
whole root element. This is equal to shed all patterns. Treibaver(Q)y) = 0.
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5.3. Total Data Utility

After discussing the utility for a query running on singlg@meoost element, we now examine how much total
utility we can gain by apply a query given some input data. ifstance Q1 is applied to some topmost elements
while Q2 is applied to other topmost elements. Assume jomakhed queries are chosen in shedding phase. There
arexg topmost elements that execute empty query(droppedjppmost elements that execute Q%,topmost
elements that execut@,, and so on. The total utility for n topmost elements can bétewrias below:

¢ = 2?21 x; % v(Qs), Whel’ezgz1 z; = N.
5.4. User Preference Model to Prune Candidate Query Set

As we discussed in Section 2.2, when the initial qu@nyis in a “bushy” shape, for instance, all k patterns are
independent2® possible shed queries where k is the number of patter@s iexist. However, some of them may
contain too few patterns and thus not be meaningful to usere idea is to use the preference model to prune
these shed queries. We can set up a threshold utility valueafadidate queries, e.g., half of the utility of initial
query Q.. By setting up this threshold, we can avoid generating trexigs with low utility values. The other
advantage of applying the utility threshold on the candidpiery set is that we guarantee that our query result
in the shedding have some lower-bound on the utility for eadiput result, similar to satisfying the accuracy on
some degree.

6. CPU constraint shedding

We allow different tuples executing different queries iedtiing phase, for instance, we can let first 500 tuples
executing initial queryQ, the later 300 tuples executing another shed qugry First, we describe when to
trigger structural shedding. Then we describe choose shey get. 0 choose so to maximize the total utility. We
present two solutions, OptShed and FastShed. Finally thenséaljes and disadvantages of these two approaches
are analyzed.

6.1. Decide When to Shed

We assume a fixed memory buffer to store the input XML data.ofsg las all the tokens in an XML element
are processed, we clean those tokens from the buffer. Websdfiea threshold for the system. From the beginning
of the execution, we have load monitoring step to check theenttmemory buffer periodically. As long as the
buffer occupancy exceeds the threshold, we would triggedding phase.

6.2. Problem Statement

Given the candidate shed query $6l, Qo, Q1,..Qn} WhereQ. is empty query and), is the initial query.
Note utility of empty queryQ, vo and the UPC of), are both assume to be zero. We have the following inputs
for our cpu-oriented shedding problem: 1. data arrival at2. utilities of candidate query séty, v1, .1, }. 3.
processing cost of candidate query &, C4,..C), }.

Our goal is to find a coefficient vectdr., xo, 21, ..z, }for candidate shed query set, to make the utility of the
total processed XML tuples maximal while keeping the preirescost below the CPU processing capability. The
formal problem can be represented below:

We have the following constraints:

1. The total number of processing XML elements(includingni@st element who run empty quei}) equal
to number of input XML elements:
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Zwi = A
2. Total execution cost should be less than or equal to umé.ti
Egzoxi*Ci = x20%Cyp + 1 xC; +..+ Zj *Cj <= 1000ms

3. The number of tuples running queg};process cannot exceed its processing spgéBxcept empty query
whose unit processing cost can be looked as zero).

T <= Clz

For queryQ., its coefficientzy should be less than arrival rate. Because the number of mhgppmost
elements cannot exceed arrival elements, meaning.= A

Given the above constraints, we want to maximize the totzl dtlity:

maz{d " o x;* v}

Observe that the objective function is linear, i.e., it has tinear constraint functions. The variables all have
be to non-negative integers. We thus conclude that thisdgmois an instance of the bounded knapsack problem.

We have two solutions for this problem, one is dynamic progréng approach, the other is greedy approach.

6.3. OptShed Approach

The OptShed solution is using a dynamic programming saidtiom [23]. To state our approach, we construct
a matrix of sub-problems:

$o(0)  o(1) ... o(1000)
$1(0) 1(1) ... ¢1(1000)

Vn(0) (1) ... 1, (1000)

Here;(¢) only uses queries fro@, to ); and its total cost satisfieggzo x; * C; < ¢. Clearly,,(1000) is the
original problem we want to resolve.

Now, we definep;(¢) to be the maximum utility of sub-problem;(¢), the dynamic programming approach
can be presented recursively as follows:

¢;(0) = 0(0<j <n)

9;(¢) =
#;-1(¢)
max{ 6512 = kCy) + kv; (1 <k <[2/C5))

Here the maximum utility is set to zero initially. Tabulajithe results fromp,(0) up throughe,,(1000) gives
the solution. Each time the algorithm will check which sulexyuwould contribute to the maximum utility if it is
added.

Since the calculation of eaeh(¢) involves examining n query pattern trees (all of which hagerbpreviously
computed), and there ar800 values ofp(¢) to calculate, the running time of the dynamic programmirigtsmn is
thus O(000n). The time complexity for the dynamic programming can berowpd to:O(zg‘:1 |logo(1000+1])
according to [23].

6.4. FastShed Approach

Since the time complexity of OptShed is big, we want to findnagde but effective way to solve this problem.
FastShed, Greedy approach is proposed to solve this prdhblenis case. FastShed approach is described as
follows:
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1. For every candidate que€y, @)1, ...Q2,, compute their utility gain ratio

(Q) _ Utility of query tree Q; _ v(Qy)
M) = Processing cost of query tree Q; ~—  C;)

2. Sort the utility gain ratio in descending order.

3. Choose the query.,.... with the highest utility gain ratig,,., as the new query. Assume the UPC of query
Qmaz 1S €qual toCs; The number of the root elements we are going to adopt thisygsequal to

.

4. Calculate the remaining processing cost, which is equal t
1000000 — Zmaz * Crax

Find the queries which have the cost lower th800000 — x4 * Cruae- Pick the query with highest utility
gain ratioy..onqg among these queries. The number of the root elements foratiisis equal to

_ L1000000—xmaz*cmaz) ]
d = Csecond

xsecon

Since the greedy approach always use the query with thedtigkiity gain ratio. The time complexity is only
the sorting cost. Thus the time complexity is O(nlgn), wheig the number of candidate subqueries.

7. Shedding M echanism I mplementation

In this section, we examine the implementation of differsimédding approaches in Raindrop Systems [15].
For streams systems, one common implementation way is éstidsop boxes in plan [25, 2, 4]. However, in
XML stream system, many systems are using automata to reeogglevant elements from arriving data. We
adopt a unified framework which combines both automata agebsh plan. Instead of dropping tuples directly,
we need to look at which token is coming into the system andt whdo with the arriving token. We provide
a state-disabling strategy which is able to drop tokens bahiling the state invocation. We then discuss how to
switch shed query from one to another.

7.1. In-Automata Shedding Mechanism: Disable Transition and propagate Drop Signal

For our shedding approaches, we use an state-disablingaagbpto drop tokens. Assume we want to drop pat-
tern $a/name and $a/contact/tel. Figure 10 shows whereéotidrop box in automata. To drop pattern $a/name,
the automaton would temporarily removed the transitiomfiiate s2 to s3. When the start tag of name element
comes, the state s3 is never reachable. Thus it would ndtémt® downstream operatoEztract$a/name. On
the other handyxtract$a/name will be labeled with a “dropped” flag. This flag guarantees tha downstream
structuraljoin$a operator work correctly. Thus wheitructuraljoin$a check its input operator one by one, if
an input operator is labeled with "dropped " signal; ucturaljoin$a would skip this input.

7.2. Random Shedding in XML Streams

In XML streams, we perform random shedding dropping at aatomlevel. because it conforms to the "the
earlier dropping, the better” rule. since the unit of incoghdata in XML Streams is a token, the start token of
the topmost elements is recognized by automaton. We thesatdishedding” flag to be true. As long as this
flag is true, the incoming token is dropped. At the same timeadd a counter to monitor how many topmost
elements we have dropped. When the end token of the topnmaraeat arrived, the counter’s value is check. If
the counter’s value is reached, the flag is disabled andreysti@ switch back to “non-shedding” phase.
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StructuralJoin $a  |op1

Figure 10. Disable Transition Strategy for XML Shedding

7.3. Shed Query Switching at Run-time

We support the mixture of shed queries in execution. Assima®©ptShed approach provide a solution vector,
say{60, 10, 2Q. In this case, we will first drop 60 topmost elements, thenquery ), for 10 topmost element,
then switch to query), for the next 20 topmost elements. What we do is using a cotmtexcord the number of
topmost elements have been run for qu@ry When the number of topmost elementshas been reached. After
processing the last end tagofth element, the system restore the removed state transitimediately and then
switch to the new shed query. Since the switching time onppkas after the processing of the last token of the
topmost element, meaning the output has been generataedséfd to switch to another query for next topmost
element. Furthermore, we only involve with the state trdmsidisabling and labeling “dropped” flag, we do not
physically change the plan. Thus the overhead is very small.

8. Related work

In streaming systems, approximate query processing hasdmesidered an effective method for trading off
performance with accuracy[21, 25, 9, 24]. However, no axiprate query processing has been touched in XML
streams. Load shedding and sampling data are two most convenanto reduce system workload. Load shedding
on streaming data has firstly been proposed in the AuroremsyR5]. This work introduces two types of load
shedding: random and semantic load shedding. Based on #hgsisnof the loss/gain rate, the random load
shedding strategy will determine the amount to shed to gieeahe output rate. For semantic drop, they assume
that different tuple value may vary in term of utility to apaition. In this case, maximizing the utility of output
data is their goal. We have the same goal of maximizing theudata utility in XML streams. However, instead
of a simplistic model of certain domain value denoting tytilwe must consider the complexity as well as context
of XML structure and XQuery. we do not specify importancedshsn different value interval. Instead we let user
to denote the importance of different patterns in the query.

Most approximate query processing works focus on the mhgefugoal, which is, to maximize the output
rate [13, 9, 2].[9] provides an optimal offline algorithm fjom processing with sliding windows where the tuples
that will arrive in future are known to the algorithm. An amdi algorithm which does not know which tuples will
arrive in the future is giving under assumption about ceréarival possibilities. [24] proposes a novel age-based
stream model and give the load shedding approach for joingsging with sliding windows under memory-
limited resources. We can apply their techniques into joatessing among multiple XML stream systems if our
goal is to get max-subset instead of maximizing outputtutilin addition, we are considering looking for shed
query for XML streams under CPU limited scenario. For CPUthtion scenario, [13] provides an adaptive CPU
load shedding approach for window stream joins in relatietr@am systems. It follows a selective processing
methodology by keeping tuples within the windows, but pssieg them against a subset of the tuples in the
opposite window.[1] also discussed how to perform sheddinder CPU limited scenario. They proposes an

17



Insert — No— Probe and Probe — No — Insert shedding approach which is limited to window join in relatb
streams.

We can divide approximate query processing work into the ¢ategories based on the query execution
paradigm. One type is to keep the query unchanged and inteaal utilize available system resources effi-
ciently to maximize the output, which is a subset of outputclvtwould have been generate without resource
limitations. The other reduces workload by changing queplieitly. [21] mentioned changing query at operator
level. This is similar to our removal some patterns from therg. However, our goal is to maximize output utility
instead of maximizing output rate.

Preference model is a natural way for decision making p@rpdsis used in many applications, such as e-
commerce and personalized web services. [18] proposesrBnet SQL, an extension language SQL which
is able to support user-definable preference for pers@thkearch engines. It supports some basic preference
types, like approximation, maximization and favoritesference, as well as complex preference. Preference
XPath [26] provides a language to help users in E-commeregfoess explicit preference in the form of XPath
query. For view synchronization in dynamic distributed ismvments, EVE[19] proposes E-SQL, an extended
view definition language by which view definer can embed theéferences about view evolution into the view
definition. However, their preference model is differenthwours:

9. Experiment Results

We use ToXgene[5], an XML data generator, to generate XMluduwnts. All the experiments are run on a
2.8GHz Pentium processor with 512MB memory. We performetsets of experiments. The first one shows
that when we run query on different utility settings, thepuitutility for greedy and exhaustive are better than
random shedding approach. The second set of experimemsirexdhe possible factors to affect output data
utility. It shows that different preference model and thétgra sizes would impact the output utility. The third
set of experiments compares the overhead of three sheduatggies. It shows the greedy shedding approach
has little overhead which is similar as random shedding. ¢l@x the overhead of exhaustive is big when the
query size scales. The final set of experiments shows wittorarassignment of preference, greedy can achieve
close-to-maximum output utility compared to dynamic pesgming approach.

9.1. Effect of Arrival Rate

In this set of experiments, we study the output utility vaoia with varying arrival rate using different shedding
approaches. We use query Q1 as running query. The perfoerianoeasured by output utility by checking
the output utility per second. Once the structural join if@ened, the joined tuples are purged from the buffer.
Fig. 11 shows the output data utility for query Q1 using extiza approach and greedy approach is about 20%
higher than that of random approach.

9.2. Effect of Preference Assignment and Pattern Size
The second set of experiments show that the output utiligffected by the assignment of preferences as well

as the size of patterns in the query. It also implies that isggament of preference affect which shed query will
be chosen to run at shedding phase. The definition of pattagnssgiven by:

Size of Pattern P;
= {average number of P; elements per topmost

element} x {average number of tokens in an element}
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Figure 11. The output utility change with varying arrival ra tes for three shedding strategies

Note that the exhaustive and greedy approach tend to chbegpiery which has higher utility with low cost.

In this set of experiments, we use a different query Q3.
QL:
$0 in document("a.xml")/list/transaction
return<result>
$o/category, $o/addr, $ofitem/price,
$ol/item/name, $o/item/description
<l[result>

Q3 tries to find for every transaction element, its categsmipping address, prices of each item, name of each
item and description for each item.

Output Utility with Varying Prefrence Deviation
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Figure 12. Data Utility Difference Between Random, Greedy a  nd Exhaustive Shedding Strategies with
Varying Assignment of Preference Model

Figure 12 shows that the output utility is higher when therbigger variance among preference values when
each pattern in query has same size. Observe that when teeedife among preference values is very small,
there is little difference for the output utility for threproaches. However, the difference of output utility would
be different when the standard deviation of preferenceegmheaches 0.5. Figure 13 shows the output utility
changes with varying pattern sizes given the same timegberlere all the patterns(assume they are independent)
in the query are independent and of equal preference. Gbt®atthe output utility for data with greater standard
deviation using random approach is decreased because aacteduire higher processing cost than the data with
smaller standard deviation. However, this is not the casgrigedy and exhaustive approach. The output utility
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Performance Comparison with Varying Data Size
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Figure 13. Data Utility Difference Between Random, Greedy a  nd Exhaustive Shedding Strategies with
Varying Pattern Size

for these two approaches is much higher than random appwilageh the size deviation size is 5. This is because
the query with small size patterns have smaller locatiort and buffering cost, which result in lower overall

processing cost. In this case greedy and exhaustive sliedgiproach would pick such shed query since they
have relative higher utility.

9.3. Overhead of Shedding Approaches

In this section, we study the overhead of three sheddingegies. The overhead of shedding approach is
measured by the time spent on choosing which shed query tatrsimedding phase. We study whether the more
complex query is, the overhead is increased dramaticall.ugé five queries which vary on number of patterns.
From the figure shown in Figure 14, we can investigate evemule query become more complex, the overhead
of greedy approach is still very small, although it is a bgter than random shedding. But it does not scale when
the query becomes more complex. However, for exhaustiveoapp, it is already very high when the number of
patterns in query is 5. This would cause the total datayfiit a certain time period decrease. Thus the overhead
of exhaustive is very big and not desirable.

Overhead of Shedding Stra

@ Random 1
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Time

200
ol ] J
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Number of Patterns

Figure 14. Overhead difference between random, greedy and e  xhaustive shedding approach
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9.4. Random Experiments on Three Shedding Approaches

In the first and second set of experiments, we can observeréleelyyand exhaustive approach perform better
than random shedding approach on output utility. Howeverpmwly compare them based on limited number of
preference settings. People would be concerned about apjmtoach can generate better results for most cases,
i.e. What is the general comparison result of these sheddgipgpaches on output utility. In order to compare these
three shedding approaches, we generate 1000 sets of pferedel which satisfy our constraints on preference
model. Then we compare greedy versus exhaustive and rangi@uswgreedy separately. We run experiments on
these 1000 sets of sample data and compare their outpty. Ugigure 15 shows the histogram on utility ratio of
output utility of greedy over exhaustive approach. We caseole that the output utility ratio of greedy approach
over exhaustive approach is skewed left. The height of thevbare the ratio equal to 1 is the highest. In addition,
about 80 percent data stay in the area where the ratio is &®el Bis means that greedy can get close to optimal
result in most cases. Figure 16 shows that the histogram tpuiutility ratio of random over greedy approach.
Observe that the utility ratio of random over greedy apphnoacskewed right. Most data are staying in the area
where the ratio of random over greedy is less than 0.6. Only fesv percent of data can reach the ratio 1 which
means random approach has same output utility as greedyaagbpr
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Figure 15. Histogram of output utility Ratio of Greedy over E xhaustive Approach
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