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1. Introduction

In [1] Hofri & Jacquet presented an analysis of algorithmktate saddle points in a random matrix, asked
by Donald E. Knuth in exercise 1.3.2-127Te Art of Computer Programming

A random matrix has (fixed) dimensions mfows andm columns, and its elements are random variables,
denoted byX, assumed drawn independently from the same given completeatinuous distributiorfr. To
remove ambiguity we sometimes wrkg.

A saddle point is defined as a matrix entry which is the minimals row and the maximal in its column,
using sharp inequalities, which also imply that at most amddtexist in a matrix.

Brief reflection suggests two results:
(1) With a continuous distribution the veexistenceof a saddle point is extremely unlikely.

(2) The distribution of the saddle point value, which we denlgy R, when there is one, is very strongly
“pinched” around its mean.

The purpose of this note is to flesh out those observatiopgcesly the second.

2. Calculations of moments

The distribution of the saddle point size is immediate frardgfinition above, leading to the probability
density function (conditional on the value being a saddietha¢(x) = f(X)F (X)™1(1—F(x))"*, where

*This work was prepared while the author was with th& o0 project atiNrIA, Rocquencourt during his sabbatical framel.
| am very grateful for the hospitality the institute and thewgp accorded me.
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f is the probability density function of. This is enough to provide us with

Lemmal. (a) The probability density function of the size of a saddle p@rgiven by

ey

S (F ™ (1-F(x)"*, 1)
sp

r(x) =
(b) The probability of am x m matrix with independent entries drawn from a continuousritistion to
have a saddle point imnRp, wherePsp is the probability that a saddle point occurs at a given rsiind
is given by
m-+n

PSp: mn(mﬁn) = B(m> n), (2

whereB(m, n) is the beta function.

Proof. The integral of the unconditional density, which is giverrp) /Psp, over the entire support &f(x)
needs to be 1; we compute it with the change of integratioabkF (x) — u:

B(m,n)
Pop

1
1— /r(x)dx: i/ FOOF ()™ (1= F(x))™ tdx— i/ W™ 11— tdu—
Psp IDsp 0
This value forPs, was obtained by Knuth in [2], using purely combinatorial sioerations. O

Note: if F is not continuous, then quite different, and even strangeyshcan happen. In particular, the
probability Psp may depend not only on the geometry as above, but also orisdefahe distributionF.
Here is an extreme casK:has only three possible valuas< b < ¢, with probabilitiesp, g, r=1—p—q,
respectively, then a saddle point can have only the valaed happen with probabilitgs, = mngg"1r"-1,

2.1 UsingtheLaplace method

The next evidence we calculate about the random varRlIdéts moments about the origin. Such moments
require evaluating the integrals

1

ER) = gy /xi FOF ()™ L (1— F(x))" dx @3)

with the integration extending on the supportfafx). Wheni is a positive integer there is no immediate
integral in general. Some particular cases are of coureeeisting, and can be computed exactly.
Example: If F is the uniform distribution, which we may limit to (0,1), th@egration is indeed immediate,
and we find thaE[R] = m/(m+n). Then, consistent with the notion of a “pinched” distriloutj the variance

of Ris smaller than that oX by an order oh: for X ~U[0,1] we findV[R] = W
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While Eqg.(3) is not amenable usually to closed form evatumgtits appearance suggests immediately the
use of the Laplace method, which we should expect to be vargigwg so long as we could assume the
distributionF is smooth and the dimensions large. More precisely, we atdrig now at

— [RIOF ™ - Foo) k[ g e (4)

B[R] = B(m,n)

where _
X f(x)

9 = BmF 0L FX)’
and we make a natural, but in fact arbitrary choice, tariet an, so that the two dimensions of the matrix
grow at the same rate. The Laplace method calls for evaty#te minimum ofh(x). Two differentiations
of h(x) and solving forx in ' (x) = O reveal that the minimum positiorg, is given by

, 1 a _ a . 11 _ 1 a
h(X):f()O(l—F(x) _F(X)> o= 1<1+a>’ " (XO)_f(x)2<(1—F(Xo))2+F(Xo>2> ~

h(x) = —aInF(x) — In(1—F(x)), (5)

(6)
Then we have the known first-order Laplace method result
' nh’(xo)
with
_ a 1 @)t % a)fo) o a(14a)
h(xo) = —aln 1+a_|nl+or =In—2—; g.(xO)—W, ' (x0) = f (x0)**—
(8)
It only remains to evaluate the ratio
n
def _—nh(x) _ a? m+n-1
n=e /B(an,n) (7(14-0{)1” xn N . 9)

This was done using the leading term in the Stirling appratiom for the binomial coefficient, providing
n =~ \/na/2n(1+ a). When we substitute in Eq. (7) we get the compact resultf{ ~ x..

This is somewhat too compact: it fits some numerical evidéocE [R], but for the variance it only claims
that itis ino(1), some lower, unspecified ordermf'. That is the effect of the pinching process; it compares
well with the result we obtain for the uniform distributidoyt we want more specific asymptotic information
about the process in a more general situation. We can shofolinving.

Theorem 1. Let R be the size of the saddle point value inrar m matrix of independent entries satisfying
the probability lawf (x) with a completely continuous distribution, then its firsotwmoments are given to
first order inn~! as follows:

1 aF (%) EIRY ~ 2 1a(xF" (x0) —F'(%))

T n2(1+a)3F (%)’ 0T T 1T 0)F (%)

E[Rl ~x (10)
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Proof sketch:  To obtain such estimates a more delicate calculation thefirdt-order Laplace method,
that produces Eq. (7) is called for. The main contributiomes from refining the Laplace method, and we
also added lower order terms to the ratio

To improve the “Laplace” estimate we make a change of integrazariable, defined bii(x) —h(xo) — u?.
This keeps the convenience of working with Gaussian integfehe main computational difficulty is then
solving for x in the equation,/h(x) —h(x) = u. This approach is essentially the same as presented in
[3, §3.8], and we did it withmaPLE, which allows us to experiment with higher order terms thaa oan
reasonably do by hand. WhemPLE is presented with such an equation, in which the left-hadd & a
power expansion aroundg (specifically, of theMAPLE type “series”), it solves fox by reversing the series
and producingk = X + ¥ j a; ul. The number of terms in this expansion is determined acegrth the
desired order of the final result, since the integration edsvit to an expansion in powers of/2, For
the value ofr (xp) we added terms to the asymptotic development of the rp\tiﬂe*”h(’@)/Psp, from EQ.(9)
beyond the first one given above. This expansion underlies/mour calculations, and can be seen in the
Appendix, in Eq.(20).

Since the integrand is given in terms of the unspecifiedidigion functionF(x), the expansions, and the
termsa; in solution series fox in terms ofu, are all expressed via the derivatives of this function, all
evaluated at the convenient poigat

Notes: (1) The “~" signs following Xy or x% in Eg. (10) were chosen for convenience and do not mean
the moments are smaller than these values. Each of the folid@rms there can assume any sign; the first
derivative ofF is a density, hence positive, but the second derivative isa@bvious. In particular, for a
unimodal function, at least somewhat symmetrical distiiny we would expecE”(xp) to be positive for

a < 1 and negative for higher values, but things could be differe

(2) We calibrated our calculations by performing a similamputation with withgg(x) of Eq. (5). It should
provide, naturally, 1, but as we use fairly short expansisimece we only wanted few leading coefficients,
we used enough terms so that the lowest order term in our astiofE[R°] beyond 1 it produced was n
©(n~3) (which corresponds to even higher-order “error terms” mltigher order moments).

Several technical details are involved in the calculatiwe;posted the1APLE program we used, with some
comments. at http://www.cs.wpi.eduiofri/maplel . O
Once we have these moments we can calculate the variancindnidat as expected it is indeed of a lower
order inn thanV [X]:

Corollary 1. Under the conditions of Theorem 1 the variance of R is given by

1 a 1
V[R]:EWJFO(F). (12)

The explicit coefficient of the A term in V[R] is given in the Appendix, in E(L8). O
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This result corresponds to the intuition, that for moderaggrices the distribution of any saddle point value
gets pinched around its expected value, and tends to a det¢emandom variable as the matrix grows.
Note moreover that the leading term\ifiR] does not even “acknowledge” the variance of the elements: it
depends on the geometry (it is equal i’ (Xp), and is closely related to the curvature of the functi¢x)

at the critical point).

3. Computing thedistribution

Since the leading term i%[R] is in 8(n~1), we should expect the random varia}#R to have a finite
variance, and the question arises: what is the shape ofdhlisdsdistribution, and in particular, what is the
functional form of its tail probabilities, that give the ékhood of deviation from the mean. We define the
nearly-centeretirandom variablé def vN(R—Xp); in this way, we letxy essentially stand fdE[R], but this
choice of centering means that 0 is the mod@& piut it is its expectation only to zero-ordernn?.

While E[T] is in 8(n~%/2), its variance and standard deviatiay,—the natural unit for the scale of devia-
tions which appear most informative—ared(il), we want to handle both small deviations, in the scale of
the expectation, and more informative deviations, couirtedfew ot units.

We can cover both needs by computing

t(x) Z'PAT > X = Py/A(R—x0) > X = Pr [R > Xo+ %} x € O(1). (12)

With the density available from Eq.(1) we can write an exgi@s fort(x)

1

~ P m-10q_ n-1
_Psp/t>xO+x/ﬁf(t)F(t) (1-F())" ~dt (13)

t(x)

This is even less inviting than the previous integral, beeanwow the lower limit of the integration depends
onnin away that breaks the standard applicability of the Laplaethod, except in the extreme case, when
we takex = 0. The integral we then compute is

{(x) = /mo g(t)e "Vdt, (14)

with h(t) the same as given in Eq. (5), ag@t) the same agp(X) there. We have the same integral as in
Eq. (4) fori = 0, but extending only on the positive real line. The caldafais similar (except that we

*Normally random variables are centered at their expectatiod we would need to udé d:ef\ﬁ(R— E[R]), but the centrality

of the pointxg in our calculations as the mode of the distributiorRpthe fact that all developments are in terms of the expansion
of Fx(x) at this point, and the nearnessxgfto E[R], make this a natural choice.
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cannot use symmetry to cut on the number of contributing $&ramd we find the reasonable result

1 (a—1) —3/2
t(0)=PrT >0/ ==+ +0(n¥2). 15

© T=0 2 3y/2nma(l+a) ( ) (13)
Two further terms are given in the appendix, in Eq. (19). Nb#&d for a square matrig = 1, andxg is at
the median of the entry distribution. Then the mean, modenaedian ofT are all zero, exactly.

In general we need to deal with the integral given in Eq. (WBlich we transform as in the proof of Lemma
1 to the simpler looking integral

1 S - 1 1 _ def
tx:i/ umll—unldu:if we "MYduy,  VEF(x+x/vn). (16
) = g A A B o IV (o+x/V).  (16)
The simplicity consists in restricting the appearance efdtbitrary distributiorx (x) to the specification
of the lower integration limit. Otherwise we continue as whefining the Laplace method above, using

MAPLE at every step of the way to obtain

Theorem 2. With the conditions of Theorem 1, the limiting tails of thestibution of the size of the scaled
saddle point elemerit are Gaussian, far — co:
lim t(x) = 1— ® <i

nN—oo

) — T — N(0,02). (17)
ot

In §4.4 of the Appendix we provide the ingredients of the relasgmptotic expansion. Note that it is
asymptotic inn — oo, while we keepxin O(1).

Proof sketch:  The pattern of the following steps should now be familianaf all the details:

(1) Define the functioni(u) = —alnu—In(1—u) and g(u) =1/[B(an,n)u(1—u)],

(2) Observe thal(u) is minimized atxo = o /(1+ o), and define the new integration varialyléhrough the
relationh(u) — h(xp) = y°.

(3) Obtain the series solution of this equationuas s(y), and use it to expreggu) anddu/dy, to yield an
integrand in terms of, denoted by (y). The pointy; = v/h(v) — h(xo) is the lower limit for integration on
y; the upper limit is infinity, from lim_1 (— In[u9 (1 —u)]).

(4) Evaluate the integraf., | (y)e*”yzdyto get an expression in terms[df— erf(/ny1)] and terms multi-
plied bye—”ﬁ. Denote the result by 11, and multiply yfrom Eq. (20) for the complete value.

(5) Express the integration limitto second order as= xg + fx//N+ F”x?/(2n) where the derivatives are
evaluated axg as well.

(6) Substitutey; in the results of step 4 while controlling the order of thereggions im. Lettingn — oo
produces the above result, since Jing, v/Ny1 = x/orv/2, and 1- erf(t) = 2(1— ®(tv/2)).

TheMAPLE script for the above is in http://www.cs.wpi.eddiofri/maple2 . O
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4. Appendix

In order to simplify the presentation, the formula does mats explicitly that all functions are evaluated at
Xo=FY(a/(1+a)); f stands forF’.

4.1 Expansion of V[R] to order n—2

V[R]—} a 2f4(1—|—a)2—|—2(1f|:(3)+F//(4f2_402f2_7a|://)

- 18
nltapfe 2(1+ a)Bfor? (18)

4.2 Expansion of Eq.(15)to order n—>/2

(a—1) (a-D(@*+25a+1)  (a—1(1+a+a?)(250%+73a +25)
2 3v/2na(1+a) nl/2 540(a(1+a))3/2y/2me/2 6048 a(1+ a))5/2y/2mmd/2

£(0) ~
(19)

4.3 Thevalue of the density function r(x) at its mode

(14 a)? (14 a)? na 1+A  (1+A)?
= f(x))———2L n=f —
(x0) = fx0) === = 100) == [ 5ra oy \ 1~ T2an * 2eema
417A+139A°% — 15A% + 139 (14 A)(571A% — 15A% + 1713+ 571)
51840A3n3 2488320\
(1638793 — 3317592 + 49163A + 163879(1+ A)? ‘o (n6)>

(20)

209018880° n®
where the symboA stands foro (1+ a).
4.4 Tailsof thedistribution of T = \/n(R— o)

We give the results as produced for Theorem 2. Refer to thelskd the proof for terminology. We found
it more useful to give the ‘building blocks’ of the resulthse putting it all together provides on paper
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unwieldy, and not particularly meaningful expressions.

(1+a)3, x (14 a)¥2 (3F"a +2f%(a? - 1)) x2

' NG \/ n 21
’ vn 6v/2a3 n (21)
1 5/2 12F" 1 220 (14 o 75201 3
L (raP(aFa@-b2Paura) 1A ed) R s
36v/2a5/2 n3/2
Note that the first term of; is x/or/n.

i1 L [1- erf(yny) (1+a) 1 JA(l+a+a?) e o

G . T Jaiira) 5401+ )2

W(sﬁ/ a(l+a)(a—1)(a+2)(2a +1)

+ 4502y (14 a)(1+a+a?)+180,/a3(1+a)(a®— 1)>] }

« [ > (a-L(a+2)(2a+1)+

Finally, we note that the value of was read from Eq.(20) and th@t— erf(t)) = 2(1— ®(t\v/2)).
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