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Abstract

We present analysis of an efficient algorithm for the approximate median selection problem that

has been rediscovered many times, and easy to implement. Thecontribution of the article is in precise

characterization of the accuracy of the algorithm. We present analytical results of the performance of the

algorithm, as well as experimental illustrations of its precision.∗

1. Introduction

In this paper we present an efficient algorithm for the approximate median selection problem, and its anal-

ysis. The algorithm can be used on data in an array, and it works thenin-place, requiring no extra space. It

can be used to process a read-once stream of values, and then,by the timen items have been processed, the

amount of storage it needs is inΘ(logn).

The algorithm is not new, we found. In fact, it seems to have been rediscovered many times. Rousseeuw

and Bassett exclaim in [12] that each of them discovered it independently, and several other expositions with

the same basic idea have been published. The earliest sources for it we have found are [13] and [14]. Our

contribution is in advancing its analysis beyond what has been shown so far.

∗An early version of the work was presented in CIAC 2000 Rome, Italy, [1]
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The usefulness of such an algorithm is evident for all applications where it is sufficient to find an approximate

median, for example in some heap-sort variants (cf. [11], [7], [2]), for regression inL1 metric, or for median-

filtering in image representation. Several such applications are described in some detail in [12]. A different

type of applications is the planning of database queries; the very thorough [9] gives an interesting view of

such needs, and has further references.

While we discuss the algorithm to some extent, the main interest and the focus in the paper is on its analysis,

and the implied engineering decisions. The only earlier analyses we know of are in [12], and to some extent

[4], and their point of view is rather different from ours. Certain comments in [14] suggest that some analysis

was done, but none is given. In addition, the analysis of the precision is largely new, and of independent

interest. The analysis sheds light on the merits of the various possible settings of the main design parameter

of the algorithm, the sizeb of the subsets of which it finds the true median, on the way to produce its

approximate median of all the data.

Most discussions of the algorithm in the literature refer toit as a method to estimate the median of a distri-

bution underlying the data. We adopt the more immediate objective of finding the item in a given set which

is the median: the number of elements in the set which are smaller than it is, and the number that are larger

than it is are equal (to within one, for an even set size). Thisintroduces no distributional assumptions or

concerns about independence. Having said that, for the asymptotic analysis we show that we can and need

to use meaningfully such assumptions.

In Section 2 we present the algorithm. Section 3 provides a perfunctory analysis of its run-time. In Section

4 we establish the soundness of the method. To do so we presenta probabilistic analysis of the precision of

its median selection, providing both precise (and ultimately intractable), and asymptotic versions. Section

5 provides computational results for refinements which are beyond our analyses. Section 6 concludes the

paper with suggested directions for additional research.

2. The Algorithm

We distinguish two cases, when the input is in an array in mainstorage, or when the algorithm receives the

data one entry at a time (and then it need not be aware of the amount it will process).

In the first case the algorithm worksin situ, and for efficiency may perform minor changes of the order of the

data: it swaps the selectedb-median with the element in the middle position (if necessary), so that at every

stage the elements that are still candidates are equally spaced, without using any extra storage. In the second

type, the algorithm requires a sequence of arrays ofb positions. By the time it has processedn entries it has

required logbn arrays. We omit here the machinery of creating new arrays as the process continues.
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Typical values forb are small odd numbers, such as 3,5,7. . . .

set size to n and step to 1;

while size > 1

set m to ⌊ size/b⌋;
find b-median in m blocks, of b

elements separated by step;

place the median in the middle

position of the block.

set size to ⌊ size/b⌋ and step

to b× step;

while new input t is available

set i = 0

A: insert t in Bi

if Bi is full

set t to median(Bi)

clear Bi

increment i

continue at A
algo

Figure 2: Approximate median selection: in an array and overan input stream

We also omit in both cases, except a brief mention, the activities needed for an input size which is not an

integral power ofb. For the first algorithm, this is a minor issue: it deals withb⌊(n/b)⌋ entries in the first

pass, discarding at mostb− 1. If we do this at every pass the maximal ‘loss’ is(b− 1) logbn, which is

typically minor, but with some careful attention to detail,most such elements can be regrouped, for a much

smaller loss. This is especially important at the last few phases. One way to avoid the difficulty is suggested

later, and that is to stop the process as soon assizereaches a threshold valuet, which can be several times

larger thanb, and find the exact median of the remaining terms, possibly using Hoare’sQUICK-SELECT. If

this number is even, say 2k, we would choose betweenk andk+1 with equal likelihood.

When the algorithm processes a stream of data, and the input ends with some of the bases loaded, the

situation is different: it is the same number as above, but those values in the high order arrays represent a

large amount of input. A simple approach is to give each valuein arrayBi a relative weight ofbi , and find

the ‘weighted’ median of the set, possibly adapting the above QUICK-SELECT. The small size of the set

guarantees that the extra work, even with the additional bookkeeping required for the weights, is negligible

compared with the main pass.

An earlier version of the work, presented in [1], went into greater detail on the efficient implementation of

the array algorithm.

3. Performance Analysis

We discuss the performance costs assuming we useb-medians, and then look at the numbers for the first

few odd integers as candidates forb. The performance costs are as usual in space and time, and forthis
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algorithm the space costs are one of its strengths: they are quite modest.

3.1 Space requirements

The array processing algorithm should not be charged for thearray space, and beyond that uses a handful of

variables. The number of variables does not depend on the main design parameterb, which is one of them.

We can justifiably say that this algorithm has no space costs.

The stream processing version shows a different situation.By the time it has read inn items, the algorithm

has allocated⌈logbn⌉ buffers of sizeb. Each comes with an index or counter, to keep track of its state, for

a total of(b+1)⌈logb n⌉ storage positions. The dependence of this formula onb for a value ofn which we

find representative of a moderately large application,n = 108 is given in the following table:

b 3 5 7 9

(b+1)⌈logb n⌉ 68 69 76 84

Table 1: Space requirement for approximate median selection of a stream of 108 entries spb

We believe the numbers in this table support our describing the space requirements as modest. It would be

easy to accommodate on most embedded system, in instrumentsor sensors.

There are two run-time cost components: element comparisons and moves (or swaps). We shall follow

tradition and pay more attention to the first component.

3.2 Run-time considerations

Except that the context is quite different, there is very little difference between the operation of the algorithm

on n terms in an array, or processingn arriving entries (disregarding input management). The number of

term comparisons the two make is the same; but there is some difference in the number of term moves. In

an array, as explained above, the fraction of selectedb medians which is moved is(b−1)/b, for an overall

of n(b−1)/b2 expected moves in the first round and an approximate total ofn(b−1)
b ×

r
∑
j=1

b− j ≈ n
b moves,

assumingn = br . When processing a stream, if we assume the initial placement of an element in the first

array is part of the input process, then we only have to account for the move of selectedb-medians, only, but

this time they are all moved, for a total ofn/b. Details of implementation may swamp this difference. The

total number ofb-medians selected is approximately, assumingn = br , given byn×
r
∑
j=1

b− j ≈ n
b−1.
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The number of comparisons is the more interesting run-time cost component. The known values for the

number of comparisons required to find the median ofb numbers, forb∈ (3,5,7,9), are in the first two rows

of Table 2.

b 3 5 7 9

Vm(b) 2.667 5.867 9.305 13.187

Vm(b) 3 6 10 14

Cb 1.333 1.4667 1.3293 1.6484

Table 2: The number of comparisons associated with approximate median selection vmb

Following [8] we denote byVm(b) the minimum number of comparisons needed to find the median ofb

numbers in the worst case.Vm(b) is theaveragenumber of comparisons needed for this feat. Most of

the numbers are from [8, p. 217], except the value given forVm(9). This entry is not guaranteed to be the

correct cost of the mean-optimal algorithm. That algorithmis not yet known. For our analysis, where many

b-medians are computed, the significance of the worst-case bound is unclear; we surely want the smallest

possible mean value. The reason we bring the values ofVm(b) is to show how close the optimal mean is to the

upper bound, and to justify the value we give forVm(9). It was obtained as the average cost of the algorithm

which isworst-case optimal, as given in [10]. For other values ofb, where the optimal algorithms are known

for both objective functions, they differ. We however expect the difference would be small enough for the

given figure to be used here reasonably.

The total comparison-cost is then given bynVm(b)/(b− 1)
def
= Cbn. The values ofCb are given in the last

row of Table 2; because of the slight super-linear increase of Vm(b), we expected the larger buffers to be

somewhat more expensive, but curiously, the charmed number7 is here the least expensive of this set. Some

authors have considered much larger buffers, and in [4] there is even some discussion of the limitb→ ∞;

algorithmically, there seems to be small reason to considersuch extremes. Finding the median of 11 or 15

items with anything close to the mean-optimal cannot be a simple feat. In fact, the optimal algorithms are

not known yet for arrays larger than seven. We do not considerthis matter as closed, however, since as we

shall see later, increasing the size of the buffer affects the accuracy of its selection in a significant way.

4. Analysis of the Selection Accuracy

The accuracy with which the algorithm computes its result derives from two factors, with unequal signifi-

cance: the deterministic exclusion of extreme values from consideration, and the probabilistic effect of the
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repeated preference given to intermediate values. We deal with them in this order.

4.1 Range of selection

It is obvious that not all the input array elements can be selected by the algorithm —e.g., the smallest one

is discarded in the first stage. The discussion may be easier to follow assuming the algorithm operates on

an array, but it holds for the other version with no change. Let the array size ben, and denote byv(n) the

number of elements from the lower end (or the upper one, sincethe algorithm has bilateral symmetry) of

the input, which are excluded deterministically: they willnever be selected. The interpretation is that if we

denote byx the output of the algorithm fromn elements, then

v(n) < rank(x) < n−v(n)+1. (1) bounds

We see (e.g., by observing the tree built by the algorithm) that a single (the first) round weeds out the smallest

m values, whenb = 2m+ 1. To survive two rounds it is needed for an entry to be at leastthe (m+ 1)2th

smallest, and in general, we have the recurrence

v(b) = m, v(n) ≥ (m+1)[v(n/b)+1]−1. (2)

Moreover, whenn = br , the equality holds. The solution of the following recurrence, forn = br follows:

v(n) = (m+1)[v(n/b)+1]−1, v(b) = m =⇒ v(n) = (m+1)logb n−1.

While this may seem a nontrivial number, we see that the ratioof v(n) to n is not encouraging:

v(n)

n
=

(m+1)r −1
(2m+1)r ≈

(

m+1
2m+1

)r

≈
(

1
2

)r

=
1

nlogb 2 .

The fraction which is deterministically eliminated decreases exponentially inr (and sublinearly inn. For

b = 7 the rate is 1/n0.35621). Thus for thisb = 7 andn = 79 ≈ 40M, we find just barely over one half of a

percent† are trimmed from each end of the sample. Hence our claim that this factor only makes a marginal

contribution to the accuracy of the selection.

Whenn is not exactlybr the calculation is more awkward (a detailed example forb = 3 is given in [1]), but

the results are very close to the above and, qualitatively, the same.

The true state of affairs, as we now proceed to show, is much better: while the possible range of choice

is wide, the algorithm zeroes in, with overwhelming probability, on a very small neighborhood of the true

median.

†The exact numbers are 2×262,143 out of 40,353,607.
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4.2 Probabilities of Selection

The purpose of this analysis is to be able to derive the following probability distribution:

P(z) = Pr[zn< rank(x) < (1−z)n+1], (3) pfunc

for 0≤ z≤ 1/2. This describes the closeness of the selected value to the true median.

The first part of the analysis is combinatorial, and quite heavy; we only do it here for the smallest candidate

for b, three, and considern which is a power of three.

Definition 1.: Let q(r)
a,d be the number of permutations, out of then! = 3r ! possible ones, in which the entry

which is theath smallest in the set is: (1) selected, and (2) becomes thedth smallest in the next set, which

hasn
3 = 3r−1 entries.

It will turn out that this quite narrow look at the selection process is all we need to characterize it completely.

The reader may find it best, when following the derivation, toimagine the data arranged in a way which is

somewhat different than the one actually used by the algorithm: View a permutation as an arrangement of

the firstn natural numbers inn3 = 3r−1 successive triplets, that we index byj. The jth triplet, in positions

(3 j − 2, 3 j − 1, 3 j), 1 ≤ j ≤ n
3, provides one locally selected median-of-three, or three-median, that

continues to the next stage. Only such permutations where the integera is thedth smallest three-median are

admissible (that is, contribute toq(r)
a,d).

We count admissible permutations in the following steps:

(1) Count such permutations where the three-medians come out partially sorted, in increasing order. By

partial sorting we mean that the leftmostd−1 three-medians are smaller thana and the rightmostn3 −d are

larger thana.

(2) Account for this restriction: multiply by the number of rearrangements of each permutation constructed

as in step (1).

Step (2) is easy to dispose of: step (1) fixes the position of the triplet wherea is the three-median, and allows

(d−1)!(n
3 −d)! orders of the other triplets. Hence step (2) will contribute the factor (n/3)!

(d−1)!( n
3−d)! = n

3

( n
3−1
d−1

)

.

To do (1) we need to account for the partial sortedness of the three-medians, and notice in which ways

our arrangements restrict the steps that need to be done (we show below they imply certain restrictions on

in-triplet ordering). The relative order of three-mediansrequires the following:

A—in each of the leftmostd−1 triplets as above, numberedj ∈ [1, d), there are two values smaller thana

(“small values”). This guarantees that each three-median there is smaller thana. We call themsmall triplets.

One more small value must land in thedth triplet.
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B—in each triplet numberedj ∈ (d, n
3], there are two values larger thana (“large values”). This guarantees

that each three-median there is larger thana. We call themlarge triplets. One more large value is in triplet

d.

This guarantees the partial sortedness of the permutation.Our assumption that we use the firstn natural

numbers implies numerical constraints betweena,d,n:

a−1≥ 2(d−1)+1 =⇒ a≥ 2d, (4) E1

n−a≥ 2(
n
3
−d)+1 =⇒ a≤ n

3
+2d−1. (5) E2

This also leads to the samev(n), the possible range of the median-selection-procedure we derived.

Counting the ways we can do the above is best done by viewing the arrangement in stages.

First we place the elementa in triplet d (say, in location 3d). Then we select and distributed−1 pairs (and

a singleton for tripletd) of small values, in the leftmostd− 1 triplets of places. These elements can be

selected in
( a−1

2d−1

)

ways. Then we scatter them around, which we can do in(2d− 1)! ways, for a total of

(a−1)!/(a−2d)! arrangements. Similarly forn3−d pairs of large values (and one in tripletd), in
( n−a

2( n
3−d)+1

)

ways times(2(n
3 −d)+1)!, or in (n−a)!/(n

3 −a+2d−1)! ways.

To visualize the arguments below assume that at this time, each such pair occupies the two leftmost positions

in each triplet (tripletd is now filled up).

This distribution, the first stage of step (1), creates therefore

(a−1)!(n−a)!
(a−2d)!(n

3 −a+2d−1)!
(6)

arrangements.

Next, we are left withn
3 − 1 elements,a− 2d of them are small, and the rest are large. They have to

be distributed into the positions left open inn3 − 1 triplets (all except triplet numberd). Here appears a

complication, the only one in the entire procedure.

It is best shown via an example: Supposea = 20, d = 5 and we look at a small triplet. Further, assume the

triplet has so far the entries 1 and 2, from the first distribution.

We compare two possibilities.

In one, we now put there the element 3, one of thea−2d = 10 surviving small values. Like this triplet 1,2,3

we also get the 2,1,3, if the first distribution reversed the order of the pair. The other four permutations of

this three values arise when the first distribution selectedeither of the pairs 1,3 or 2,3 for this location, and

the set is completed in the second step by inserting 2 or 1 respectively. Conclusion: each such insertion

accounts for exactly one ordered triplet.
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In the second possibility we put there a surviving large value, say 25. In the same way we now have the

triplets, 1,2,25 and 2,1,25. The other possible positions of the “25,” unlike the first possibility, cannot arise

via the way we did the initial distribution. Hence we should multiply the count of such permutations by

3; in other words: each such insertion accounts for exactly three triplets. This observation, that at this step

we need to distinguish between small and large values and where they land, leads to the need of using an

additional parameter. We select it to be the number of small values, out of thea−2d, that get to be inserted

into “small” triplets, those in the range 1. . .d−1, and denote it byi. Further, call a small triplet into which

we put a small value ‘homogeneous,’ and let it be ‘heterogeneous’ if we put there a large value (and similarly

for each of the rightmostn3 −d triplets which gets a large or small value, respectively). With this notation

we shall have, for a fixedi,

i small homogeneous triplets
n
3

+d−a+ i large homogeneous triplets

d− i −1 small heterogeneous triplets

a−2d− i large heterogeneous triplets

We need to choose which of the small, and which of the large triplets would be, say, heterogeneous, and this

introduces a factor of
(d−1

i

)( n
3−d

a−2d−i

)

.

Next comes the choice of the numbers, out of then
3 −1 available, that go into the small and large triplets.

Since these need to be put in all possible orders, the selection factors cancel, and we are left with(a−
2d)!(n

3 −a+2d−1)!.

Finally we need to multiply by the factors 6×3a−d−2i−1.

The factor 6 accounts for the possible number of ways we can order thedth triplet (since so far there has

been no constraint on the locations of its elements), and thenext for the contribution of the possible orders

of the heterogeneous triplets, as shown above.

Combining it all, with the contribution of step (2) above, wehave

q(r)
a,d = 2n(a−1)!(n−a)!

( n
3 −1
d−1

)

3a−d−1×∑
i

(

d−1
i

)( n
3 −d

a−2d− i

)

1
9i . (7) Eq

From relations (4–5) we see thatq(r)
a,d is nonzero for 0≤ a− 2d ≤ n

3 − 1 only. The sum is expressible as

a Jacobi polynomial,
(8

9

)a−2d
P(u,v)

a−2d

(5
4

)

, whereu = 3d− a− 1,v = n
3 + d− a, but this does not appear to

confer any advantage.

Let p(r)
a,d be the probability that itema gets to be thedth smallest among those selected for the next stage.
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Since then! = 3r ! permutations are assumed to be equally likely, we havep(r)
a,d = q(r)

a,d/n!:

p(r)
a,d =

2
3

3−d
( n

3−1
d−1

)

3−a
(n−1

a−1

) ×∑
i

(

d−1
i

)( n
3 −d

a−2d− i

)

1
9i =

2
3

3−d
( n

3−1
d−1

)

3−a
(n−1

a−1

) × [za−2d](1+
z
9
)d−1(1+z)

n
3−d. (8) Eps

This allows us to calculate the function we need: The probability P(r)
a , of starting with an array ofn = 3r

numbers, and having theath smallest element ultimately chosen as the approximate median. It is given by

P(r)
a = ∑

dr

p(r)
a,dr

P(r−1)
dr

= ∑
dr ,dr−1,··· ,d3

p(r)
a,dr

p(r−1)
dr ,dr−1

· · · p(2)
d3,2

, 2 j−1 ≤ d j ≤ 3 j−1−2 j−1+1. (9) Ep

Some telescopic cancellation occurs when the explicit expression forp(r)
a,d is used here, and we get

P(r)
a =

(

2
3

)r 3a−1

(n−1
a−1

) ∑
dr ,dr−1,··· ,d3

r

∏
j=2

∑
i j≥0

(

d j −1
i j

)(

3 j−1−d j

d j+1−2d j − i j

)

1
9i j

. (10) Epp

As above, eachd j takes values in the range[2 j−1 . . 3 j−1−2 j−1 + 1], d2 = 2, anddr+1
def
= a (we could let

all d j take all positive values, and the binomial coefficients would produce nonzero values for the required

range only). The probabilityP(r)
a is nonzero forv(n) < a < n−v(n)+1 only.

This distribution has resisted our attempts to provide a direct analytical characterization of its behavior. The

examples in§4.3 give a fairly good idea of its behavior, but to gain analytical insight we needed to develop

in §4.4 an approach that uses the large-sample behavior of this algorithm. We obtain there a function which

is the limit distribution of the selected median, and while it appears remarkably close to the Gaussian, it is

not! its tails are heavier.

4.3 Numerical examples
examp

The key relation (3) in terms of these probabilities is givenby

∑
⌊zn⌋<a<⌈(1−z)n⌉+1

P(r)
a where 0≤ z<

1
2
, (11)

but in view of these unwieldy expressions we chose to presentthe effectiveness of the algorithm by con-

sidering directly the bias of the returned approximate median,Dn
def
= Xn−Md(n), whereMd(n) is the true

median rank,(n+ 1)/2. SinceE[Dn] = 0, by symmetry, it is|Dn| which is of interest. We computed the

statistics of this absolute value using the probabilities in Eq.(10).

We denote the mean of|Dn| by µd, and the standard deviation ofDn by σd. (This is then alsoE[D2
n]; if we

wanted the variance of|Dn| we would compute it asσ2
d −µ2

d .)
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We obtained the results in Table 3; note the trend in the two rightmost columns. In the next subsection we

show that these ratios approach limits.

The ratioµd/Md(n) relativizes the expected error of the approximate median selection algorithm. The trend

of this ratioµd/Md(n) can be then seen as the improvement of the selection effectiveness with increasing

(initial) array sizen. It is apparent in the table, and shown later, that this ratiodecreases asnlog3 2−1 =

(2/3)r = 1/n0.36907.

n r = log3n µd σd µd/Md(n) µd/nlog3 2 σd/nlog3 2

9 2 0.428571 0.654654 0.107143 0.107143 0.163663

27 3 1.475971 1.892344 0.113536 0.184496 0.236543

81 4 3.617240 4.563487 0.090431 0.226077 0.285218

243 5 8.096189 10.194222 0.066911 0.253006 0.318569

729 6 17.377167 21.872372 0.047739 0.271518 0.341756

2187 7 36.427027 45.839609 0.033328 0.284586 0.358122

6561 8 75.255332 94.679474 0.022944 0.293966 0.369842

Table 3: Statistics of the median selection bias|Dn| as function of array size tty

In [1] we show experimental results with this algorithm for larger arrays, and its sensitivity to threshold

settings.

4.4 Asymptotic analysis
asymp

Since we find the probability-mass function (PMF) given in Eq.(10) hard to appreciate, we did what analysts

do: went asymptotic. But in order to do this, we need to show that it is possible to approximate thatPMF

with another distribution, that is easier to handle, in a meaningful way.

Let Ξ = (ξ1,ξ2, . . . ,ξn) be n independent identicalU(0,1) variates. We denote these values, when sorted,

by ξ(1),ξ(2), . . . ,ξ(n). The ranks of the elements ofΞ form a permutation of the integers 1 throughn. If we

used our Section 2 algorithm on this permutation, and it returned the resultXn, then using the algorithm on

Ξ itself would return the order statisticξ(Xn), which we denote byYn. Since theξi are independent, unlike

the elements of a permutation, it is much easier to calculateusing these variates.

We first show that theYn provide a useful approximation as we claimed. More precisely, we use the distri-

bution ofYn− 1
2 to approximate the distribution ofDn/n.
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The probability density function of the order statisticξ(k) of U(0,1) is given by

fk(x) =

(

nk
k

)

xk−1(1−x)n−k, (12)

hence

E[ξ(k)] =
k

n+1
, V[ξ(k)] =

k(n+1−k)
(n+1)2(n+2)

. (13)

Therefore, the mean square distance betweenYn − 1
2 andDn/n, over all the permutations for which, say,

Xn = k (which impliesYn = ξ(k)), can be estimated as follows:

Ek

[

(

Yn−
1
2

)

−
(

Xn− n+1
2

n

)]2

= Ek

[

Yn−
Xn−1/2

n

]2

= E

[

ξ(k) −
k−1/2

n

]2

.
1
4n

, (14) Ea

where the last expectation is over the variability of the theorder statistic only. Since the bound is indepen-

dent ofk, it holds for all samples, and in terms of locating the median, over all permutations. While we

have no tractable mathematical expression for the varianceof the approximate medianXn, we can use the

numerical results that were computed from the probability density function of Eq. (10). Table 3 suggests

thatV(|Dn|/n) is in Ω(nlog3 4−2); since log3 4 ≈ 1.262, and thennlog3 4−2 ≈ n−0.732 which is significantly

larger than the bound in Eq.(14), we can say thatYn−1/2 is a good approximation forDn/n; in particular,

their distributions converge (to each other) asn→ ∞. While the table was computed under the assignment

b = 3, similar behavior is expected for largerb as well. We shall be able to quantify this claim later on.

Next we derive a recurrence for the distribution ofYn−1/2. We continue to consider only values ofn which

are powers ofb and define:

Fr(x) ≡ Pr(Yn−1/2≤ x), −1/2≤ x≤ 1/2, n = br . (15)

We start the recursion withF0(x) = x+ 1/2. SinceYbn is obtained by taking the median ofb = 2m+ 1

independent values each of which has the distribution ofYn−1/2, denoted byFr(·), thenYbn−1/2 has the

distributionFr+1(·), equal to the probability that at leastm+1 of theYn are smaller thanx.

Fr+1(x) = Pr(Ybn ≤ x+1/2) =
2m+1

∑
j=m+1

(

b
j

)

F j
r (x)(1−Fr(x))

2m− j+1 def
= Φb(Fr(x)), (16) E18

whereΦb(t) = ∑b
j=m+1

(b
j

)

t j(1− t)b− j . This is exactly the recurrence obtained in [12]. They were consid-

ering a general underlying distribution, whereas our needsare well met by the basic uniform distribution

U(0,1).

Note that the transformationΦb(·) transforms a distribution into a distribution on the same interval, since

it transforms the values of the distribution at the endpoints, 0 and 1, into themselves, and has a positive
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derivative throughout(0,1). Iterations ofΦb(·), denoted with a parenthesized integer for the iteration order,

preserve this property, and it implies that the sequenceFr(x) = Φ(r)
b (F0(x)) converges. The limit function

F(x) satisfies the equationF(x) = Φb(F(x)), and it is not an interesting one: it has the values 0 and 1, in

the subintervals [−1/2,0) and (0,1/2] respectively. At the origin and the end points it has the same values as

F0(·).

While this is a consistent result, it is hardly useful. It merely tells us that asn increasesYn− 1
2 (andDn/n)

converge to zero, as Table 3 suggests strongly. To look in more detail in the way this happens we need to

create a non-degenerate version of the distribution, and toachieve this we introduce a change of scale.

A clue to the range of possible scales is given by Eq.(14), which implies thatµ2rE
[(

Yn− 1
2

)

−Dn/n
]2 −→ 0

asr (andn = 3r ) increase, so long asµ is not too large. A simple calculation shows we needµ ∈ [0,
√

3).

With such aµ we could still trackµ r(Dn/n) with µ r(Yn−1/2) effectively.

The needed rescaling follows naturally from the following lemma, which we prove here, since its details are

essential in the continuation.

Lemma 1.: [6] Let a∈ (0,∞) and a mappingφ of [0,a] into [0,a] be given, extended by definingφ(x) = xlem1

for x > a. Assume

(i) φ(0) = 0

(ii ) φ(a) = a

(iii ) φ(x) > x, for all x∈ (0,a).

(iv) φ ′(0) = µ > 1, and continuous there;φ(·) is continuous and strictly increasing on[0,a).

(v) φ(x) < µx, x∈ (0,a).

Then

asr −→ ∞, φr(x/µ r ) −→ ψ(x), x≥ 0 (17) A1

whereφr(·) is therth iterate ofφ(·). The functionψ(x) is well defined and strictly monotonic increasing for

all x. It increases from 0 toa, and satisfies the equationψ(µx) = φ(ψ(x)).

Proof. From Property(v): φ(x/µ r+1) < x/µ r ,

Since iteration preserves monotonicity,φr+1(x/µ r+1) = φr(φ(x/µ r+1)) < φr(x/µ r ).

Sinceφ(·) and its iterates are nonnegative, this monotonic decrease implies convergence. We denote the

limit by ψ(·).

We note that the properties ofψ(x) depend on the behavior ofφ(·) nearx = 0. In particular, sinceφ ′(x)

is continuous atx = 0, ψ(·) is continuous throughout. Since it is bounded, the convergence is uniform on

[0,∞]. Hence, sinceφ(·) and all its iterates are strictly monotonic, so isψ(·) itself.
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To find more information aboutψ(·), we use the monotonicity we showed and(v) again, to produce

ψ(x) < φr(x/µ r ) < φ(x/µ) < x. (18) Eac

For any positivex there is a minimalr such thatx/µ r ≤ a. Sinceφr(·) maps[0,a] to itself, then Eq.(18)

implies ψ(x) ≤ a, for all x ≥ 0. We now show thatψ(·) achieves the valuea. We create an increasing

sequence{x j , j ≥ 1}, such that

x j−1/µ j−1 < x j/µ j −→ a−, (19) Eae

that is, the valuesx j/µ j increase as well, and approacha from below. Property(iii ) iterates toφr(x) > x,

hence alsoφ j(x j/µ j) > x j/µ j −→ a. Sinceψ(∞) = lim j→∞ ψ(x j), this limit achieves the valuea.

The transformationΦb(x) does not quite satisfy the properties claimed forφ in Lemma 1, but it is close;

we only need to shift its argument. We defineGr(x) = Fr(x)−1/2, and the functionsGr(x) are iterated as

follows

Gr+1(x) = Fr+1(x)−
1
2

= Φb(Fr(x))−
1
2

= Φb(Gr(x)+1/2)− 1
2

def
= θb(Gr(x)), (20) gr1

andθb(x) is a suitable candidate for the transformationφ(x) on the interval[0,1/2]. An explicit expression

for the kernelθb(x) is then given by

θb(x) =
b

∑
j=m+1

(

b
j

)(

1
2

+x

) j(1
2
−x

)b− j

− 1
2
, −1

2
≤ x≤ 1

2
. (21) gr4

Here are the polynomialsθb(x) for the small values ofb we have been considering.

m b θb(x)

1 3
3
2

x−2x3

2 5
15
8

x−5x3 +6x5

3 7
35
16

x− 35
4

x3 +21x5−20x7

4 9
315
128

x− 105
8

x3 +
189
4

x5−90x7 +70x9

Table 4: The iteration kernelθb(x)—first few b values tsb



Sicilian Median Selection — August 10, 2006 15

Of major interest is the derivative of the polynomial atx = 0. Extracting the coefficient ofx in θb(x) we find

θ ′
b(x)|x=0 = [x1]θb(x) =

(

2m
m

)

b
4m . (22) gr8

For larger values ofb the last right-hand side is very close tob/
√

mπ.

We can now state and prove our main asymptotic result

Theorem 1. [6] Let n = br , b = 2m+1, m, r ∈ N, and denote byXn the approximate median of a randomT3

permutation of 1, . . . ,n (with all permutations assumed equally likely) computed with any of the algorithms

of Figure 2. Then a random variableX exists, such that

µ r Xn− n+1
2

n
−→ X, (23) Elimit

whereX has the distributionF(·), determined by the equations

F(x) ≡ G(x)+1/2, G(µx) = θb(G(x)), −∞ < x < ∞ (24) Eab

The distribution functionF(·) is strictly increasing throughout.

Proof. We need only verify thatθb(x) satisfies the conditions put onφ in Lemma 1, witha = 1/2:

(i) θb(0) = 0

(ii ) θb(1/2) = 1

(iii ) θb(x) > x, for all x∈ (0,1/2).

(iv) θ ′
b(0) = µ > 1, and continuous there;θb(·) is continuous and strictly increasing on[0,1/2).

(v) θb(x) < µx, x∈ (0,1/2).

Property (i) is manifest in Eq.(21), since∑2m+1
j=m+1

(2m+1
j

)

= 1
2 ×22m+1.

Property (ii ) is best seen in Eq.(21) as well, which atx = 1/2 has only the term ‘j = b’ survive in the sum.

For property (iv), to show thatµb > 1 we extracted the coefficient given in Eq.(22). The rest follows from

θb(x) being a polynomial.

Properties (iii , v), combined asx < θb(x) < µx for x ∈ (0,1/2), can be verified by inspection. Property

(iii ) is intuitively clear, once stated in probabilistic terms:it claims that the probability a binomial random

variableB(2m+1, 1
2 +x) exceedsm is larger than its single event probability12 +x, for x > 0. Forx = 0 it

achieves equality.

Henceθb(xµ r ), as defined in Eq.(20), converges to a functionG(x) which satisfies Eq.(24).
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There is no obvious way to “solve” Eq. (24), but it can still bevery informative. First, we see thatG0(x) and

θb(x) are odd functions, hence all theGr(x), as well asG(x) are necessarily odd as well. We can write then

F(x) = 1
2 +∑k≥1 fkx2k−1. This power series expansion can be computed by extracting successive coefficients

from Eq. (24). This requires some care, when done numerically, since the signs of thefk alternate, but for

b = 3 we could carry it out, using MAPLE and the recurrence

f j =
2

µ(1−µ2 j−2)

j−2

∑
i=1

fi
j−i

∑
k=1

fk f j−i−k+1, j ≥ 2 f1 = 1, b = 3, µ = 3/2. (25) Ebrecur

The value off1 is obtained by extracting the coefficient ofx in both sides of Eq. (24). The recurrence was

iterated to produce Table 5, which contains a few of the coefficients (for some of the results below we needed

significantly higher-orderfk).

k fk
1 1.00000000000000×10+00

2 −1.06666666666667×10+00

3 1.05025641025641×10+00

4 −8.42310905468800×10−01

5 5.66391554459281×10−01

6 −3.29043692201665×10−01

7 1.69063219329527×10−01

8 −7.82052123482121×10−02

9 3.30170547707520×10−02

10 −1.28576608229956×10−02

20 −4.33903859413399×10−08

30 −3.20126276232555×10−15

40 −1.94773425996709×10−23

60 −4.03988860877434×10−42

80 −5.63050454255617×10−63

100 −1.88810747562091×10−85

125 2.50253570235335×10−115

150 −8.16299422374440×10−147

Table 5: Coefficients for the expansionG(x) = ∑k≥1 fkx2k−1. fuy

Curiously, initial use of these coefficients to compute values forF(x) produced values for the distribution

so close to a centered Normal distribution with standard deviation of σ = 1/
√

2π, that we suspected this to
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be the true limiting distribution; the largestrelativedifference betweenF(x) andN(0,σ2) over the interval

[0,1.3963]—which covers approximately 3.5 standard deviations—is close to 0.14% (and with a slightly

higher value forσ decreases further, to 0.05%). We found such a conclusion quite surprising, since this

limiting process shows no reason why it would lead to a Gaussian distribution — and indeed, it is not! The

coefficients of theN(0,σ2) do not satisfy anything like the recirrence in Eq. (25).

Equation (23) can be written asDn −→ Xn/µ r = X×n1−logb µ . An immediate corollary is that, asymptoti-

cally, this determines the rate of growth of the moments ofDn (or of |Dn|) with n: every timer is raised by

1 (n multiplied byb), we find thatµd andσd get multiplied byb1−logb µ = b/µ . In the caseb= 3, µd andσd

should double. The numbers in Table 3 show this, and also how for small values ofn the rate of increase is

even faster, as the influence of the “taboo” values, as shown in §4.1, decreases.

Bounding the function F(x)

While the numbers in Table 5 are not very useful in giving us a direct idea about the behavior of the function

F(x), it turns out that combined with the properties of the distribution, given in Theorem 1, they can lead to

quite definite statements.

We continue withb = 3, taking advantage of the availability of Table 5; similar calculations for higher

b would be much more complicated, because the kernels are higher-degree polynomials, but numerical

experimentation suggests they exhibit similar behavior. Using Theorem 1 we find thatF(·), the limiting

distribution ofµ rDn/n, satisfies

F(xµ) = 3F2(x)−2F3(x), b = 3, µ =
3
2
. (26) E29

Let g(x) for positivex be the complementary probability function,g(x) ≡ 1−F(x), and the last equality

means thatg(·) also satisfies the equation

g(xµ) = 3g2(x)−2g3(x) =⇒ 3g(xµ) = (3g(x))2
(

1− 2
3

g(x)

)

. (27) E30

Since 0< g(x) < 1 for all finitex, we find

1
3

(3g(x))2 < 3g(xµ) < (3g(x))2 . (28) E32

The right-hand side inequality, written forh(x) ≡ 3g(x), produces when iteratedk timesh
(

xµk
)

< (h(x))2k
.

Taking logarithm of both sides, we write lnh
(

(µ)kx
)

< 2k lnh(x).

Define

t ≡ xµk =⇒ k =
lg(t/x)

lg µ
where we used binary logarithm, since we havek in 2k, and now we can write

lnh(t) ≤ q(x)tν =⇒ h(t) ≤ eq(x)tν
, ν ≡ 1

lg µ
, q(x) ≡ x−ν lnh(x). (29) fio
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We now viewx as a parameter;t is the argument ofh(·), the two are related through the value ofk (which

need not be an integer, sinceh(·) is a smooth function).

The functionq(x) is negative. To have a tight bound we would like to select a value ofx which minimizes

its value. We denote it byq0 = q(x0), wherex0 is selected to make that negative coefficient as low as it can

go. Since we do not know yetF(x) well enough to locatex0 analytically, we did so numerically, with the

help of the coefficients in Table 5, and obtained that beyondx0 = 2.2 the functionq(x) becomes remarkably

flat,‡ and the value ofq0 is approximately−3.88112230. . .. Forb= 3, the numerical value of the parameter

ν is 1.70951129. . ., and this value is inherent in the equation thatF(x) satisfies. The relation (29) for the

limit in n, and for allx > 0, is now

lnh(t) < −cexp

(

ln t
ln2

ln3/2

)

=⇒ h(t) < e−ctv, c≈ 3.88112230, v≈ 1.70951129. (30) E34

From the left-hand side of relation (28) we obtain a similar inequality,g(µx) < g2(x), which leads us to a

bound of the form lng(t) > p(x)tν ; sameν , and trying for the best bound we look for a value ofx, call it

x1 where the negativep(x) = x−ν lng(x) is simply q(x)− ln3x−ν , clearly asx increases the value ofp(x)

approaches that ofq(x) and we can peg its desired value at the same asq0.

We have proven

Corollary 1.: The tails of the distribution of the random variable X definedin equation(23) satisfy

1
9

e−ctv < 1−F(t) <
1
3

e−ctv, c≈ 3.88112230, v≈ 1.70951129, t → ∞. (31) E38

We remark that the tails of the Normal distributionN(0,1/2π) decay faster; they satisfy, for largex, 1−
Φσ (x)≈ e−x2/2/(2πx), and it is remarkable that the parameters in equation (31) are such that over the entire

range of practical interest the two distributions are hardly distinguishable.

5. Conclusion

We have presented an approximate median finding algorithm, and an analysis of its characteristics.

Both can be extended. In particular, the algorithm can be adapted to select an approximatekth-element, for

anyk∈ [1,n], as has been shown in [3]. The analysis of Section 4 needs to beextended to higher values ofb,

both in the combinatorial calculation and in the asymptoticbounds; in particular, estimates of the variance

and higher moments are needed.

‡which means that the exponential is a very good estimate ofh() there.
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