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Abstract

We present analysis of an efficient algorithm for the apprate median selection problem that
has been rediscovered many times, and easy to implementcohtiebution of the article is in precise
characterization of the accuracy of the algorithm. We preaealytical results of the performance of the
algorithm, as well as experimental illustrations of itsgseon*

1. Introduction

In this paper we present an efficient algorithm for the apijpnaxe median selection problem, and its anal-
ysis. The algorithm can be used on data in an array, and itsatbenin-place requiring no extra space. It
can be used to process a read-once stream of values, antbyhbmr,timen items have been processed, the
amount of storage it needs is@logn).

The algorithm is not new, we found. In fact, it seems to havenbediscovered many times. Rousseeuw
and Bassett exclaim in [12] that each of them discoveredigpendently, and several other expositions with
the same basic idea have been published. The earliest sdordgewe have found are [13] and [14]. Our
contribution is in advancing its analysis beyond what hantshown so far.

*An early version of the work was presented in CIAC 2000 Ronay,|[1]
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The usefulness of such an algorithm is evident for all apgiims where it is sufficient to find an approximate
median, for example in some heap-sort variants (cf. [L1][2]), for regression i1 metric, or for median-
filtering in image representation. Several such applicatiare described in some detail in [12]. A different
type of applications is the planning of database queriesyény thorough [9] gives an interesting view of
such needs, and has further references.

While we discuss the algorithm to some extent, the mainésteand the focus in the paper is on its analysis,
and the implied engineering decisions. The only earlielyaea we know of are in [12], and to some extent
[4], and their point of view is rather different from ours. ién comments in [14] suggest that some analysis
was done, but none is given. In addition, the analysis of tkeeigion is largely new, and of independent
interest. The analysis sheds light on the merits of the uarpmssible settings of the main design parameter
of the algorithm, the sizé of the subsets of which it finds the true median, on the way talyee its
approximate median of all the data.

Most discussions of the algorithm in the literature refeit tts a method to estimate the median of a distri-
bution underlying the data. We adopt the more immediatectibgof finding the item in a given set which
is the median: the number of elements in the set which ardesntlan it is, and the number that are larger
than it is are equal (to within one, for an even set size). Tti®duces no distributional assumptions or
concerns about independence. Having said that, for the@syimanalysis we show that we can and need
to use meaningfully such assumptions.

In Section 2 we present the algorithm. Section 3 providesfapetory analysis of its run-time. In Section
4 we establish the soundness of the method. To do so we prepesibabilistic analysis of the precision of
its median selection, providing both precise (and ultidyaitrgractable), and asymptotic versions. Section
5 provides computational results for refinements which ayobd our analyses. Section 6 concludes the
paper with suggested directions for additional research.

2. The Algorithm

We distinguish two cases, when the input is in an array in remrage, or when the algorithm receives the
data one entry at a time (and then it need not be aware of thardritavill process).

In the first case the algorithm workssitu, and for efficiency may perform minor changes of the ordehef t
data: it swaps the selectbédmedian with the element in the middle position (if necegsaso that at every
stage the elements that are still candidates are equaltgdpaithout using any extra storage. In the second
type, the algorithm requires a sequence of arraysgafsitions. By the time it has processedntries it has
required logn arrays. We omit here the machinery of creating new arrayBeaprocess continues.
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Typical values foib are small odd numbers, such as 3,5,7....
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Figure 2: Approximate median selection: in an array and eawenput stream

We also omit in both cases, except a brief mention, the siedvheeded for an input size which is not an
integral power ob. For the first algorithm, this is a minor issue: it deals wbttin/b) | entries in the first
pass, discarding at mobt— 1. If we do this at every pass the maximal ‘loss’(ls— 1) log,n, which is
typically minor, but with some careful attention to detailpst such elements can be regrouped, for a much
smaller loss. This is especially important at the last feagals. One way to avoid the difficulty is suggested
later, and that is to stop the process as soosizzreaches a threshold valtiewhich can be several times
larger tharb, and find the exact median of the remaining terms, possibhgudoare’sQUICK-SELECT. If

this number is even, sak2we would choose betwedrandk+ 1 with equal likelihood.

When the algorithm processes a stream of data, and the impist\with some of the bases loaded, the
situation is different: it is the same number as above, bogahvalues in the high order arrays represent a
large amount of input. A simple approach is to give each valugrayB; a relative weight ob', and find

the ‘weighted’ median of the set, possibly adapting the almvick-SELECT. The small size of the set
guarantees that the extra work, even with the additionakkesping required for the weights, is negligible
compared with the main pass.

An earlier version of the work, presented in [1], went inteaer detail on the efficient implementation of
the array algorithm.

3. Performance Analysis

We discuss the performance costs assuming webuaedians, and then look at the numbers for the first
few odd integers as candidates for The performance costs are as usual in space and time, athisfor
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algorithm the space costs are one of its strengths: theyuitieergodest.

3.1 Space requirements

The array processing algorithm should not be charged faauttesy space, and beyond that uses a handful of
variables. The number of variables does not depend on the aesign parametdy, which is one of them.
We can justifiably say that this algorithm has no space costs.

The stream processing version shows a different situaBgrthe time it has read in items, the algorithm
has allocatedlog, n] buffers of sizeb. Each comes with an index or counter, to keep track of ite stat
a total of(b+ 1)[log, n| storage positions. The dependence of this formula for a value ofn which we
find representative of a moderately large applicatios, 10° is given in the following table:

b  |3]s5[7]9]
| (b+1)[log,n] | 68] 69| 76 | 84 |

Table 1: Space requirement for approximate median seteofia stream of 1®entries spb

We believe the numbers in this table support our descriliegspace requirements as modest. It would be
easy to accommodate on most embedded system, in instruoresgasors.

There are two run-time cost components: element compariaad moves (or swaps). We shall follow
tradition and pay more attention to the first component.

3.2 Run-time considerations

Except that the context is quite different, there is vetiglitifference between the operation of the algorithm
onnterms in an array, or processimgarriving entries (disregarding input management). The bemof
term comparisons the two make is the same; but there is sdfagedce in the number of term moves. In
an array, as explained above, the fraction of selebtertdians which is moved id— 1) /b, for an overall

r .
of n(b— 1)/b? expected moves in the first round and an approximate totBﬁlt—’@Q X _Zlb—l ~ p moves,

assumingn = b". When processing a stream, if we assume the initial placenfean element in the first
array is part of the input process, then we only have to addouthe move of selecteldbmedians, only, but
this time they are all moved, for a total nfb. Details of implementation may swamp this difference. The

r .
total number ob-medians selected is approximately, assunmingb’, given byn x jzlb*J A ot
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The number of comparisons is the more interesting run-tiogt component. The known values for the
number of comparisons required to find the mediab wimbers, fob € (3,5,7,9), are in the first two rows
of Table 2.

. b [ 3]5s [ 7 ]9 |

Vim(b) | 2.667] 5.867 | 9.305 | 13.187
Vm(b) | 3 6 10 14

Cpb | 1.333| 1.4667| 1.3293| 1.6484

Table 2: The number of comparisons associated with appairimedian selection

Following [8] we denote bwm(b) the minimum number of comparisons needed to find the medidn of
numbers in the worst cas&/m(b) is the averagenumber of comparisons needed for this feat. Most of
the numbers are from [8, p. 217], except the value givelVig{9). This entry is not guaranteed to be the
correct cost of the mean-optimal algorithm. That algoriitbmot yet known. For our analysis, where many
b-medians are computed, the significance of the worst-casedis unclear; we surely want the smallest
possible mean value. The reason we bring the valu€g @) is to show how close the optimal mean is to the
upper bound, and to justify the value we give Yox(9). It was obtained as the average cost of the algorithm
which isworst-case optimaks given in [10]. For other values bfwhere the optimal algorithms are known
for both objective functions, they differ. We however expibe difference would be small enough for the

given figure to be used here reasonably.

The total comparison-cost is then given iym(b)/(b— 1) d:eben. The values ofC, are given in the last

row of Table 2; because of the slight super-linear incredsé.gb), we expected the larger buffers to be
somewhat more expensive, but curiously, the charmed nurhisdrere the least expensive of this set. Some
authors have considered much larger buffers, and in [4ktleeeven some discussion of the lirhit— o;
algorithmically, there seems to be small reason to considein extremes. Finding the median of 11 or 15
items with anything close to the mean-optimal cannot be glsifeat. In fact, the optimal algorithms are
not known yet for arrays larger than seven. We do not congidematter as closed, however, since as we
shall see later, increasing the size of the buffer affe@satituracy of its selection in a significant way.

4. Analysis of the Selection Accuracy

The accuracy with which the algorithm computes its resulivds from two factors, with unequal signifi-
cance: the deterministic exclusion of extreme values fromsitleration, and the probabilistic effect of the
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repeated preference given to intermediate values. We dtativem in this order.

4.1 Range of selection

It is obvious that not all the input array elements can becseteby the algorithm —e.g, the smallest one

is discarded in the first stage. The discussion may be easfellaw assuming the algorithm operates on
an array, but it holds for the other version with no changet the array size be, and denote by(n) the
number of elements from the lower end (or the upper one, shea@lgorithm has bilateral symmetry) of
the input, which are excluded deterministically: they wilver be selected. The interpretation is that if we
denote byx the output of the algorithm from elements, then

v(n) < rank(x) < n—v(n)+ 1. (1)

We seeé.g, by observing the tree built by the algorithm) that a sintfte €irst) round weeds out the smallest
m values, wherb = 2m+ 1. To survive two rounds it is needed for an entry to be at ltfastm+ 1)%th
smallest, and in general, we have the recurrence

vb)=m,  v(n)> (m+1)v(n/b)+1] -1 @)
Moreover, whem = b', the equality holds. The solution of the following recuwenforn = b" follows:
V(n) = (m+ 1)[V(n/b) + 1] — :I_7 V(b) =m _— V(n) — (m+ 1)Iogbn ~1

While this may seem a nontrivial number, we see that the cditign) to n is not encouraging:

v(n) (m+1)"—-1 ( m+1>f% (})r 1

n  (2m+1) ~\2m+1 2) " w2

The fraction which is deterministically eliminated de@es exponentially im (and sublinearly im. For

b = 7 the rate is In%35621) Thus for thisb = 7 andn = 7° ~ 40M, we find just barely over one half of a
percent are trimmed from each end of the sample. Hence our claim tigfactor only makes a marginal
contribution to the accuracy of the selection.

Whenn is not exactlyb' the calculation is more awkward (a detailed examplebfer3 is given in [1]), but
the results are very close to the above and, qualitatiiedysame.

The true state of affairs, as we now proceed to show, is muttbrbevhile the possible range of choice
is wide, the algorithm zeroes in, with overwhelming prolighion a very small neighborhood of the true
median.

TThe exact numbers are262 143 out of 40,353,607.
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4.2 Probabilities of Selection

The purpose of this analysis is to be able to derive the fatigyprobability distribution:

P(z) = Prizn< rank(x) < (1—2z)n+1], (3)

for 0 <z<1/2. This describes the closeness of the selected value touthenedian.

The first part of the analysis is combinatorial, and quiteviieave only do it here for the smallest candidate
for b, three, and considerwhich is a power of three.

Definition 1.: Let qg()j be the number of permutations, out of thle= 3! possible ones, in which the entry
which is thea™ smallest in the set is: (1) selected, and (2) becomesltthemallest in the next set, which
has] = 3! entries.

It will turn out that this quite narrow look at the selectioropess is all we need to characterize it completely.

The reader may find it best, when following the derivationintagine the data arranged in a way which is
somewhat different than the one actually used by the alguritvView a permutation as an arrangement of
the firstn natural numbers i = 31 successive triplets, that we index py The jth triplet, in positions
(3j—2, 3j—1, 3j), 1< j< 3, provides one locally selected median-of-three, or thneelian, that
continues to the next stage. Only such permutations whertégera is thed™" smallest three-median are
admissible (that is, contribute qﬁ).

We count admissible permutations in the following steps:

(1) Count such permutations where the three-medians compastially sorted, in increasing order. By
partial sorting we mean that the leftmabt 1 three-medians are smaller thaand the rightmost — d are
larger thara.

(2) Account for this restriction: multiply by the number &arrangements of each permutation constructed
as in step (1).

Step (2) is easy to dispose of: step (1) fixes the positioneofriplet whereais the three-median, and allows

(d—1)!(2 —d)! orders of the other triplets. Hence step (2) will contribtie factor((j_—f)‘@_—dﬂ 037D,

To do (1) we need to account for the partial sortedness ofttteeimedians, and notice in which ways
our arrangements restrict the steps that need to be donenfwelmlow they imply certain restrictions on
in-triplet ordering). The relative order of three-medialaquires the following:

A—in each of the leftmostl — 1 triplets as above, numbergd: [1, d), there are two values smaller than
(“small values”). This guarantees that each three-medtiaretis smaller thaa. We call themmsmall triplets
One more small value must land in tH triplet.
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B—in each triplet numberegle (d, 3], there are two values larger tharf‘large values”). This guarantees
that each three-median there is larger taahVe call themlarge triplets One more large value is in triplet
d.

This guarantees the partial sortedness of the permuta@um.assumption that we use the firshatural
numbers implies numerical constraints betweagdh n:

a-1>2d-1)+1 = a>2d, (4)
n—azZ(g—d)Jrl . a§g+2d—1. 5)

This also leads to the samén), the possible range of the median-selection-procedureenesd.
Counting the ways we can do the above is best done by viewagrttangement in stages.

First we place the elemeatin triplet d (say, in location @). Then we select and distribute— 1 pairs (and

a singleton for tripletd) of small values, in the leftmost — 1 triplets of places. These elements can be
selected in(2 %) ways. Then we scatter them around, which we can d@dh- 1)! ways, for a total of
(a—1)!/(a—2d)! arrangements. Similarly fd} —d pairs of large values (and one in tript#t in (2(%rf£+l)

ways timeg(2(§ —d) +1)!, orin (n—a)! /(3 —a+2d — 1)! ways.

To visualize the arguments below assume that at this tinoh, ®&ch pair occupies the two leftmost positions
in each triplet (tripled is now filled up).

This distribution, the first stage of step (1), creates tloeee

(a—1)!(n—a)!

(a—2d)!(D—a+2d—1)! (6)

arrangements.

Next, we are left withg — 1 elementsa — 2d of them are small, and the rest are large. They have to
be distributed into the positions left open §n-1 triplets (all except triplet numbet). Here appears a
complication, the only one in the entire procedure.

It is best shown via an example: Suppase 20, d =5 and we look at a small triplet. Further, assume the
triplet has so far the entries 1 and 2, from the first distrdout

We compare two possibilities.

In one, we now put there the element 3, one ofahe2d = 10 surviving small values. Like this triplet 1,2,3
we also get the 2,1,3, if the first distribution reversed thdepof the pair. The other four permutations of
this three values arise when the first distribution seleeidter of the pairs 1,3 or 2,3 for this location, and
the set is completed in the second step by inserting 2 or kcésply. Conclusion: each such insertion
accounts for exactly one ordered triplet.
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In the second possibility we put there a surviving large @akay 25. In the same way we now have the
triplets, 1,2,25 and 2,1,25. The other possible positidrihe“25,” unlike the first possibility, cannot arise
via the way we did the initial distribution. Hence we shouldltiply the count of such permutations by
3; in other words: each such insertion accounts for exabtlset triplets. This observation, that at this step
we need to distinguish between small and large values andevthey land, leads to the need of using an
additional parameter. We select it to be the number of snadilles, out of the — 2d, that get to be inserted
into “small” triplets, those in the range 1 d — 1, and denote it by. Further, call a small triplet into which
we put a small value ‘homogeneous,’ and let it be ‘heterogesiaf we put there a large value (and similarly
for each of the rightmos{ — d triplets which gets a large or small value, respectively)th\ihis notation
we shall have, for a fixed

i small homogeneous triplets

n . .
3 +d—a+i large homogeneous triplets
d—i—1 small heterogeneous triplets
a—2d—i large heterogeneous triplets

We need to choose which of the small, and which of the largéets would be, say, heterogeneous, and this

introduces a factor of®;%) (5, ).

Next comes the choice of the numbers, out of $he 1 available, that go into the small and large triplets.
Since these need to be put in all possible orders, the smlefattors cancel, and we are left with —
2d)!(§ —a+2d—-1)!.

Finally we need to multiply by the factors»632-9-2-1,

The factor 6 accounts for the possible number of ways we cder dhedth triplet (since so far there has
been no constraint on the locations of its elements), anddikefor the contribution of the possible orders
of the heterogeneous triplets, as shown above.

Combining it all, with the contribution of step (2) above, have

s =ana-n-an (373 )e s (U0) (Ll ) g o

From relations (4-5) we see tha;f?j is nonzero for 0< a—2d < 3 —1 only. The sum is expressible as
a Jacobi polynomial(g)a*2d Pa(:’gé (%), whereu=3d —a—1,v= §+d—a, but this does not appear to
confer any advantage.

Let pg()j be the probability that itera gets to be thel" smallest among those selected for the next stage.
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Since then! = 3"l permutations are assumed to be equally likely, we hé()@: qgé /nt:

—d -1 —d n_1
(r _ 23 (3—1) d-1 %—d l . 23 (371) _od Zid-1 n_g4
pa.d - 3 3,a(n—1) X z i a—2d—i 9i - 3 37a(271) x [Za ](1+ 9) (1+Z)3 . (8)

This allows us to calculate the function we need: The prdhmb?ér), of starting with an array o = 3
numbers, and having the" smallest element ultimately chosen as the approximateanettiis given by

P = > o) R = iy e op,,  27l<di<3 o211 (9)
r r,Ur—1,",U3

Some telescopic cancellation occurs when the explicitasgion forp(,(;()j is used here, and we get

0 g r ga-1 r dj—l 3]*1_dj i
i _<3> (n_l Z JI:L igo I djr1—2d;—ij) 91" (10)

a—l) dr,0r—1,-,03

As above, eacld; takes values in the rangj?;“'*1 L. 3imlopi-1y 1], d; = 2, andd, ;1 P (we could let
all d; take all positive values, and the binomial coefficients wiquioduce nonzero values for the required
range only). The probabilit?ér) is nonzero fowv(n) < a< n—v(n)+ 1 only.

This distribution has resisted our attempts to provide eadlianalytical characterization of its behavior. The
examples irg4.3 give a fairly good idea of its behavior, but to gain ariagjtinsight we needed to develop
in §4.4 an approach that uses the large-sample behavior ofigjioisthm. We obtain there a function which
is the limit distribution of the selected median, and whilappears remarkably close to the Gaussian, it is
not! its tails are heavier.

4.3 Numerical examples

The key relation (3) in terms of these probabilities is gitgn

P where 0< z < }, (12)
|zn|<a<[(1-2)n]+1 2

but in view of these unwieldy expressions we chose to prabeneffectiveness of the algorithm by con-
sidering directly the bias of the returned approximate raed, d:ean — Mq(n), whereMgy(n) is the true
median rank(n+1)/2. SinceE[Dy] = 0, by symmetry, it i§D,| which is of interest. We computed the

statistics of this absolute value using the probabilitre&d.(10).

We denote the mean dbp| by Ly, and the standard deviation Bf, by gy. (This is then alsd&[D2]; if we
wanted the variance ¢D,| we would compute it ag7 — u2.)
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We obtained the results in Table 3; note the trend in the tglatmost columns. In the next subsection we
show that these ratios approach limits.

The ratiopy /Mq(n) relativizes the expected error of the approximate mediktsen algorithm. The trend
of this ratio g /Mq(n) can be then seen as the improvement of the selection effeetg with increasing

(initial) array sizen. It is apparent in the table, and shown later, that this rdéoreases ag®%21 =

(2/3)r — 1/ n0-36907

n|r=loggn g Od | Ha/Ma(n) | pa/n'°%2 | gg/nlo%s2
9 2 0.428571| 0.654654| 0.107143| 0.107143| 0.163663
27 3 1.475971| 1.892344| 0.113536| 0.184496| 0.236543
81 4 3.617240| 4.563487| 0.090431| 0.226077| 0.285218
243 5 8.096189| 10.194222| 0.066911| 0.253006| 0.318569
729 6 17.377167| 21.872372| 0.047739| 0.271518| 0.341756
2187 7 36.427027| 45.839609| 0.033328| 0.284586| 0.358122
6561 8 75.255332| 94.679474| 0.022944| 0.293966| 0.369842

Table 3: Statistics of the median selection hiag| as function of array size

In [1] we show experimental results with this algorithm farder arrays, and its sensitivity to threshold
settings.

4.4 Asymptotic analysis

Since we find the probability-mass functiarvF) given in Eq.(10) hard to appreciate, we did what analysts
do: went asymptotic. But in order to do this, we need to shat ithis possible to approximate thewF
with another distribution, that is easier to handle, in a mivegful way.

Let= = (&1,&2,...,&n) benindependent identicdl (0,1) variates. We denote these values, when sorted,
by &(1),€(2),---»€mn)- The ranks of the elements &fform a permutation of the integers 1 throughlf we
used our Section 2 algorithm on this permutation, and itrnetdl the resulk,, then using the algorithm on

= itself would return the order statisty), which we denote by,. Since the; are independent, unlike
the elements of a permutation, it is much easier to calculsiteg these variates.

We first show that th&,, provide a useful approximation as we claimed. More pregiset use the distri-
bution ofY, — 3 to approximate the distribution @&,/n.
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The probability density function of the order statisfig) of U (0,1) is given by

w9 = (‘e ta—xr s (12)

hence k k(n+1—k)
n J—
- \Y = — 7 13
n+1’ [Sw] (n+1)2(n+2) (13)
Therefore, the mean square distance betvvaen% andDy,/n, over all the permutations for which, say,

Xn = k (which impliesY, = &), can be estimated as follows:

_ni1\ ]2 _ 2 K— 2
S R e S

El€w]

n

where the last expectation is over the variability of thedhaer statistic only. Since the bound is indepen-
dent ofk, it holds for all samples, and in terms of locating the medmrer all permutations. While we
have no tractable mathematical expression for the variahtiee approximate mediaX,, we can use the
numerical results that were computed from the probabildépsity function of Eq. (10). Table 3 suggests
thatV (|Dp|/n) is in Q(n'°%4-2); since log4 ~ 1.262, and them!°%4-2 ~ n~9732 which is significantly
larger than the bound in Eq.(14), we can say Yat 1/2 is a good approximation fdd,/n; in particular,
their distributions converge (to each other)mas: . While the table was computed under the assignment
b = 3, similar behavior is expected for largeas well. We shall be able to quantify this claim later on.

Next we derive a recurrence for the distributionYpf- 1/2. We continue to consider only valuesrofvhich
are powers ob and define:

FX)=PrY,—1/2<x), —-1/2<x<1/2, n=b". (15)

We start the recursion withy(x) = X+ 1/2. SinceYy, is obtained by taking the median bf=2m+ 1
independent values each of which has the distributiov},ef 1/2, denoted by (-), thenYy, — 1/2 has the
distributionF; ;. 1(+), equal to the probability that at least+ 1 of theY, are smaller tham.

2l /p . .

Fra(®) =Pifn<x+1/2)= Y ( ,-)FJ (¥)(1— F ()™ 171 Ly (Fy (%)), (16)
j=m+1

where®y(t) = 354 (tj’)tj(l—t)b*j. This is exactly the recurrence obtained in [12]. They wenesi-

ering a general underlying distribution, whereas our negdswell met by the basic uniform distribution

u(0,1).

Note that the transformatiof®,(-) transforms a distribution into a distribution on the santerval, since

it transforms the values of the distribution at the endmiftand 1, into themselves, and has a positive



Sicilian Median Selection — August 10, 2006 13

derivative throughout0, 1). Iterations of®,(-), denoted with a parenthesized integer for the iteratioemrd
preserve this property, and it implies that the sequéhce = CDE)')(FO(X)) converges. The limit function

F (x) satisfies the equatioR(x) = ®,(F(x)), and it is not an interesting one: it has the values 0 and 1, in
the subintervals{$1/2,0) and (0,1/2] respectively. At the origin and the enth{oit has the same values as
Fo(+).

While this is a consistent result, it is hardly useful. It glgrtells us that as increases,, — % (andDy/n)
converge to zero, as Table 3 suggests strongly. To look irerdetail in the way this happens we need to

create a non-degenerate version of the distribution, aadh@ve this we introduce a change of scale.

A clue to the range of possible scales is given by Eq.(14)chvimplies thap® E [(Y, — 3) — Dn/n] 2_.0
asr (andn = 3") increase, so long gs is not too large. A simple calculation shows we nged [0, v/3).
With such au we could still tracku' (D, /n) with u" (Y, — 1/2) effectively.

The needed rescaling follows naturally from the followirgima, which we prove here, since its details are
essential in the continuation.

Lemma 1.: [6] Let a € (0,) and a mappingp of [0,a] into [0,a] be given, extended by defining(x) = x
for x > a. Assume

M o

(i) (@)=
(i)  @(x) >x forallxe (0,a).

(iv) @ (0)=u > 1, and continuous there;@(-) is continuous and strictly increasing {ha).
(V) @(x) < ux, xe(0,a).

Then
asr — o,  @(x/u") — Y(x), x>0 (17)

whereg (-) is therth iterate ofg(-). The functiony(x) is well defined and strictly monotonic increasing for
all x. It increases from 0 ta, and satisfies the equatio(ux) = @((x)).

Proof. From Property(v): e(x/u" ) < x/u’,

Since iteration preserves monotonicity (1(x/u"*1) = @ (e(x/u"+1)) < @ (x/u").

Since@(-) and its iterates are nonnegative, this monotonic decreagkes convergence. We denote the
limit by ().

We note that the properties gf(x) depend on the behavior @f(-) nearx = 0. In particular, sincep/(x)

is continuous ak = 0, (-) is continuous throughout. Since it is bounded, the convergés uniform on
[0,00]. Hence, sincep(-) and all its iterates are strictly monotonic, safi§) itself.
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To find more information aboup(-), we use the monotonicity we showed gwl again, to produce

Yx) < @(x/u) < @x/H) < x (18)

For any positivex there is a minimal such thatx/u" < a. Since@ (-) maps|0,4d to itself, then Eq.(18)
implies @(x) < a, for all x> 0. We now show thaty(-) achieves the valua. We create an increasing
sequenceX;, j > 1}, such that

Xj_1 /it <xj/pl —a, (19)
that is, the valueg;/u’ increase as well, and approaglirom below. Propertyiii) iterates tog (x) > X,
hence alsap; (xj/p)) > xj/p) — a. Sincey () = limj_. Y(X;), this limit achieves the valua O

The transformatiorb,(x) does not quite satisfy the properties claimed goin Lemma 1, but it is close;
we only need to shift its argument. We defi@gx) = F (x) — 1/2, and the function&, (x) are iterated as

follows
Gr1(X) = Fiya(¥) — 5 = OolF (%) — 5 = (Gr(X)+1/2) — 5 ' (G (X)),

. @)

and6,(x) is a suitable candidate for the transformatia(x) on the interval0,1/2]. An explicit expression
for the kernelB,(x) is then given by

b /p\ /1 71 b=i 1 1 1
an= 3 (G G -2 aex<z

Here are the polynomial,(x) for the small values df we have been considering.

@

m|b 6h(X)
3
13 “x—2x3
2X
2|5 1—;’x—5><3+6><5
35 35 .
3|7 Ex—zxg'+2b<5—20x
315 105 . 189 . °
419 S5 +Tx5—90x + 70K

Table 4: The iteration kernél,(x)—first few b values
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Of major interest is the derivative of the polynomiakat 0. Extracting the coefficient ofin 6,(x) we find

6o = K160 = (%) 22)

For larger values df the last right-hand side is very closelif,/mrt.

We can now state and prove our main asymptotic result

Theorem 1. [6] Letn=b",b=2m+1 mr € N, and denote by, the approximate median of a random
permutation of 1... n (with all permutations assumed equally likely) computethvainy of the algorithms
of Figure 2. Then a random variab¥eexists, such that

_ntl
Wtz x 23

n

whereX has the distributiork (-), determined by the equations
F(X) =G(X)+1/2, G(ux)=6(G(X)), —o<Xx<o0 (24)
The distribution functiorf (-) is strictly increasing throughout.
Proof. We need only verify thaf,(x) satisfies the conditions put @min Lemma 1, witha=1/2:
0) 0)=0

(
(i) (1/2) =
(iii) 6p(x) > x, forallxe (0,1/2).
(
(

S P

(iv)  6,(0) = u > 1, and continuous there;0y(-) is continuous and strictly increasing #1/2).

(V) G(x) < px, xe(0,1/2).

Property {) is manifest in Eq.(21), sincgffﬁ]il (2’“].*1) 3 x 22mL,

Property {i) is best seen in Eq.(21) as well, whichxat 1/2 has only the termj'= b’ survive in the sum.
For property i), to show thaiu, > 1 we extracted the coefficient given in Eq.(22). The resofed from
6,(x) being a polynomial.

Propertiesi{i, v), combined ax < 6,(x) < ux for x € (0,1/2), can be verified by inspection. Property
(i) is intuitively clear, once stated in probabilistic ternitsclaims that the probability a binomial random
variableB(2m+ 1,3 +X) exceedsnis larger than its single event probabilify+ x, for x > 0. Forx=0 it

achieves equality.

Hence6h(xu"), as defined in Eq.(20), converges to a funci@&(ix) which satisfies Eq.(24). O
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There is no obvious way to “solve” Eq. (24), but it can stilNey informative. First, we see th@(x) and
6y(x) are odd functions, hence all ti& (x), as well as5(x) are necessarily odd as well. We can write then
F(x) = %Jr k1 fix®=1. This power series expansion can be computed by extracisugssive coefficients
from Eq. (24). This requires some care, when done numeyjaatice the signs of thé alternate, but for

b = 3 we could carry it out, using MPLE and the recurrence

fj = 2

p(1—p2i=2)

-2 ji

Zfiszfjfifﬁla j>22 f1=1 b=3 u=3/2
=1

(25)

The value off; is obtained by extracting the coefficientofn both sides of Eq. (24). The recurrence was
iterated to produce Table 5, which contains a few of the aoefits (for some of the results below we needed

significantly higher-ordeffy).

Table 5: Coefficients for the expansi@{x) = ¥ -1 fix< 1.

K i
1 1.00000000000008 10+
2 | —1.0666666666666% 107
3 1.0502564102564% 107°°
4 | —8.42310905468808 10792
5 5.6639155445928% 1091
6 | —3.2904369220166% 10 91
7 1.6906321932952% 10~ %t
8 | —7.8205212348212% 10°9?
9 3.30170547707528 1092
10 | —1.28576608229956 1092
20 | —4.33903859413399 108
30 | —3.2012627623255% 10~ 1°
40 | —1.94773425996709 1023
60 | —4.03988860877434 10 42
80 | —5.6305045425561% 1052
100| —1.8881074756209% 108>
125| 2.5025357023533% 10~ 11°
150 | —8.1629942237444Q 10147

Curiously, initial use of these coefficients to compute ealfor F(x) produced values for the distribution
so close to a centered Normal distribution with standardadiew of o = 1/+/2m, that we suspected this to
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be the true limiting distribution; the largesilative difference betweef (x) andN(0, o?) over the interval
[0,1.3963—which covers approximately 3.5 standard deviations—éselto 0.14% (and with a slightly
higher value foro decreases further, to 0.05%). We found such a concluside qurprising, since this
limiting process shows no reason why it would lead to a Gansdistribution — and indeed, it is not! The
coefficients of theN(0, 0?) do not satisfy anything like the recirrence in Eq. (25).

Equation (23) can be written &, — Xn/u" = X x n*~'°%H_ An immediate corollary is that, asymptoti-
cally, this determines the rate of growth of the momentBgfor of |D,|) with n: every timer is raised by
1 (n multiplied byb), we find thatuy andog get multiplied byb' %% — b/u. In the casé = 3, g anday
should double. The numbers in Table 3 show this, and also bosnfiall values oh the rate of increase is
even faster, as the influence of the “taboo” values, as showh. 1, decreases.

Bounding the function F)

While the numbers in Table 5 are not very useful in giving ugeatlidea about the behavior of the function
F(x), it turns out that combined with the properties of the disttion, given in Theorem 1, they can lead to
quite definite statements.

We continue withb = 3, taking advantage of the availability of Table 5; similadaulations for higher
b would be much more complicated, because the kernels arerhitfigree polynomials, but numerical
experimentation suggests they exhibit similar behaviosing) Theorem 1 we find thdt(-), the limiting
distribution ofu"Dy,/n, satisfies

F(xu) =3F?(x) —2F3(x), b=3, u:g. (26)

Let g(x) for positivex be the complementary probability functiogix) = 1 — F(x), and the last equality
means thag)(-) also satisfies the equation

a0) = 36709 ~ 26°(9 — 3a0) = (3000)* (1- 3009 @)
Since 0< g(x) < 1 for all finite x, we find
2 (30067 < 39040) < (39(x)%. (28)

The right-hand side inequality, written fafx) = 3g(x), produces when iteratddtimesh (xuk) < (h(x))Zk.

Taking logarithm of both sides, we writeHv((u)kx) < 2¥Inh(x).

Define a(t
t=xut = k= l9(t/x)
lgu
where we used binary logarithm, since we hiae 2¥, and now we can write

1

nh) <ot = hy e, v= L,

q(x) =xVInh(x). (29)
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We now viewx as a parametet;is the argument ofi(-), the two are related through the valuekafwhich
need not be an integer, sinbg) is a smooth function).

The functiong(x) is negative. To have a tight bound we would like to select aevalf x which minimizes

its value. We denote it bgo = q(Xo), wherexg is selected to make that negative coefficient as low as it can
go. Since we do not know yé&t(x) well enough to locatep analytically, we did so numerically, with the
help of the coefficients in Table 5, and obtained that beyend 2.2 the functiong(x) becomes remarkably
flat,* and the value ofjp is approximately—3.88112230. .. Forb = 3, the numerical value of the parameter
v is 1.70951129. ., and this value is inherent in the equation tR#k) satisfies. The relation (29) for the
limit in n, and for allx > 0, is now

Inh(t) < —cexp<|nt|n|nT/22> — h(t) <e ™™, c~3.88112230 v~ 1.70951129 (30)
From the left-hand side of relation (28) we obtain a simiteduality,g(ux) < g?(x), which leads us to a
bound of the form Igy(t) > p(x)tV; samev, and trying for the best bound we look for a valuexptall it

x1 where the negative(x) = x Y Ing(x) is simply q(x) — In3x~Y, clearly asx increases the value qf(x)
approaches that @f(x) and we can peg its desired value at the sangpas

We have proven

Corollary 1.: The tails of the distribution of the random variable X defimedquation(23) satisfy

1 i

ge*Ct <1-F()< §e*Ct , CA~3.88112230 va 1.70951129 t — co. (31)
We remark that the tails of the Normal distributidf{0, 1/2m1) decay faster; they satisfy, for large 1 —

Py (X) ~ e /2 / (21x), and it is remarkable that the parameters in equation (&13wch that over the entire
range of practical interest the two distributions are haditinguishable.

5. Conclusion

We have presented an approximate median finding algoriththaa analysis of its characteristics.

Both can be extended. In particular, the algorithm can betedao select an approximat®-element, for
anyk € [1,n], as has been shown in [3]. The analysis of Section 4 needsaxtéeded to higher values bf
both in the combinatorial calculation and in the asymptbtiands; in particular, estimates of the variance
and higher moments are needed.

*which means that the exponential is a very good estimalté)dhere.
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