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Abstract—

Multimedia streaming applications can benefit from bandwidh esti-
mation techniques to perform media scaling and buffer optinization effi-
ciently. However, most current techniques were designed fowired net-
works and produce relatively inaccurate results and long covergence times
on wireless networks where capacity and contention for the apacity can
vary dramatically. Therefore, it is difficult to apply curre nt bandwidth es-
timation tools to multimedia streaming applications in wireless network.
This paper presents a new Wireless Bandwidth estimation tdgWBest) de-
signed for fast, non-intrusive, accurate estimation of avdable bandwidth
in IEEE 802.11 networks. WBest applies a two-step algorithm1) a packet
pair technique to estimate the effective capacity of the wiless networks; 2)
a packet train technique to estimate the achievable througbut and report
the inferred available bandwidth. Using an analytic modelthe possible er-
ror sources are explored and WBest parameters are optimizegjiven the
tradeoffs of accuracy, intrusiveness and convergence timelhe advantage
of WBest is that it does not depend upon search algorithms toetect the
available bandwidth but instead, statistically detects tle available fraction
of the effective capacity, mitigating estimation delay andhe impact of ran-
dom wireless channel errors. WBest is implemented and evadtted on an
802.11 wireless testbed. Comparing WBest with other popufebandwidth
estimation tools shows WBest to have higher accuracy, lowéntrusiveness
and faster convergence times. Thus, WBest demonstrates tpetential for
improving the performance of applications that need bandwilth estimation,
such as multimedia streaming, on wireless networks.

I. INTRODUCTION

current bandwidth estimation tools have been shown [6], [7]
[8], [9] to be adversely impacted by IEEE 802.11 wireless net
work conditions.

Tools that provide only capacity estimates are not useful fo
Internet applications that adjust their traffic rate in @sge to
other concurrent flows. Moreover, applications such asimult
media streaming need an available bandwidth estimatemathi
few seconds to avoid client-side buffer underflows and te sat
isfy users waiting to use the application. This implies a muc
faster convergence time requirement than some bandwidth es
timation tools provide. The variability of the wireless cimsl
implies that multiple bandwidth estimation invocations &p-
ically used within a single application stream. This addsaan
ditional requirement that a bandwidth estimation tool mest
minimally intrusive so as to not adversely impact the a@plic
tion’s performance during measurements.

Therefore, the issues discussed above make it inefficient to
apply current bandwidth estimation mechanisms to multime-
dia streaming applications in wireless networks. The multi
media streaming applications require some additionalidens
erations when performing the bandwidth estimation in weissl
networks, such as low intrusiveness, fast convergence &gk

Multimedia streaming leads the list of Internet applicasio consistent convergence time under variable channel dondit
that are significantly impacted by the accuracy of bandwidkppendix V-B discusses the requirements of wireless mekim
estimation techniques [1]. Both media scaling techniq@és [dia streaming applications on bandwidth estimation tegini

[3] and client side buffering [4], [5] rely on the bandwidtktie

in details.

mate of the underlying network. In response to congesti@, m Most available bandwidth estimation techniques are design
dia scaling aims to adjust the media transmission rate blew to provide accurate bandwidth information for wired netisoat

available bandwidth to minimize packet loss. Client sidffdu
ing sacrifices start-up delay to reduce the jitter effects@lay-
back disruption caused by bandwidth oscillations alondltve

the cost of long convergence times and high intrusivertesk-
loadingtechniques, such again of Packet Pairs (TOPH)LO],
pathload[11] andpathChirp[12], probe the end-to-end network

path. By estimating the variance of the available bandwidt§ath using multiple traffic rates. When the probing rate edse
the client side buffer can be dynamically adjusted to redbee the available bandwidth, the probing packets become quatuied

probability of buffer underflow.

the tight link' router, which results in increased delay on the re-

~ Due to the shared nature of wireless network communicgeiver side. By analyzing the packet delay at the receiter, t
tion and MAC layer mechanisms such as wireless layer retriggailable bandwidth at the tight link is obtained from thelpr
and dynamic rate adaptation bandwidth estimation is faremgng rate when the queuing delay starts increasing. The ¢hgng

challenging when the underlying network includes wirelesis
works. Fluctuating wireless channel conditions causebdity

of the probing rate can be managed in different ways. For ex-
ample,pathloaduses binary search to adjust the probing rate,

in wireless capacity and available bandwidth, and otheewirTOPPuses a linearly increasing probing rate, whpkgthChirp

less factors such as reception signal strength and bit eates
(BER) due to path loss, fading, interference and contetitioih
the effective bandwidth that the wireless network actupty-

uses an exponentially increasing probing rémbe Gap Model

1The tight link and narrow link, as defined in [1], refer to thephwith the

vides. While providing satisfying results on wired netw&rk minimum available bandwidth and minimum capacity, respelst



(PGM) techniques, such dsitial Gap Increase/Packet Trans-
mission Rate (IGI/PTR1L3] andSprucg14], measure available
bandwidth by estimating the crossing traffic at the tighit md PO .
by monitoring the gap changes after the packets pass throu -
the tight link router. Recent research has proposed improvey

ments to bandwidth estimation specific to wireless networks S

ProbeGaf8] uses the one-way delay gap to estimate the avail-
able bandwidth in broadband access networks including IEEE ﬁi

802.11 networks. HowevelProbeGapdoes not provide capac-
ity estimation and needs to use third party capacity esiimat et

Access Point (IEEE 802.11 b/g)

L]
Application Server
(wbestserver)

Traffic Server
(tgenserver)

tools. DietTOPP[15] uses a reduced TOPP algorithm with a :f_'?fjj E:S,SL?EQT;?ZL;;.
modified search algorithm to determine available bandwiitith 2 A8 Contending Traffic
wireless networks. While improving the accuracy of bandiid Fig. 1. Network Path with Last Mile Wireless Network.

estimation in wireless networks, these techniques do niot c? K
sider convergence time and intrusiveness. ure work.

Packet dispersiortechniques, such as packet pair or packet Il. WBEST ALGORITHM

train probing, are used to measure the end-to-end capdcity o hi ion introd lqorith imath b
a network path. First introduced in [16], [17], [18], packet This section introduces WBest, an algorithm to estimaté bot

pair dispersion techniques have been enhanced via toofs Sﬁ@ective capacity e_md available bandwidth on a network pat
as bprobe/cprobe[19], sprobe[20], pathrate [21], [22], and Where the last hop is over a wireless network.

CapProbg[23]. Packet dispersion techniques send two or morerigure 1 depicts a typical network environment where an ap-
packets back-to-back into the network. After the packets tlplication server with a wired Internet connection sendffitra

verse the narrow link, the time dispersion between the tvepa along th_e network path to a client with a ‘last mile’ wireless
ets is linearly related to the narrow link capacity. Packist d connection. To provide better performance, such as to parfo

persion for capacity estimation is vulnerable to crossiagic Media scaling and buffer optimization for a multimedia atre
that interferes with probing packets and causes estimation the appllcatlon server needs to know the c_apacny a_nd dlaila
rors. However, the amount of interference can be used to e2fndwidth on the flow path. To characterize the wireless net-
mate the amount of crossing traffic. work impact for study, the network traffic is categorized axp

ing, crossing and contending, as depicted in Figur@rbbing

The issues Qf maccura_te r_e_sults, high intrusiveness amgj_ Icfrafficis traffic sent by bandwidth estimation tools along the net-
convergence time make it difficult to apply current bandbvidt ork path through the AP to the client (1). Wireless channel

estlmat_|0n mecha_msms to applications, such as mUItlmeclglnditions and other traffic may affect the probing traffic be
streaming, over wireless networks and lead to the develapm

of the Wireless Bandwidth Estimation tool (WBest). To addre avior and prod_uce estl_ma'u_on error_é:rossmg trafﬁcshar_es
. the bottleneck with the direction coming from the AP to assoc
accuracy and convergence, WBest employs packet dispersi

sion . : ! . i .
techniques to provide capacity and available bandwidtarinf ated clients (2).C ontendmg trafficompetes .W'th probing traff!c
. . . . on the path being estimated when accessing the sharedssirele
mation for the underlying wireless networks. Our previogs r

. . Lo channel. Contending traffic usually comes from clients ® th
search [24] models packet dispersion behavior in wireless n . N
; S ) . same AP (3) or between other clients and APs within interfer-
works under varying conditions. Using an analytical motied,

acket dispersion measuresffective capacitand achievable ence range, which is also known as co-channel interferemee d
P P ; pacity to neighboring APs. In addition to the bottleneck shariffgas,
throug_hput were shown to _be suitable for wireless netV\'Orks'ontending traffic causes further available bandwidth cédo
Comblnlng these t.WO meF”CS’ WhBest gmploys a twq-step é%Eje to wireless channel access contention. Capacity estima
gorithm to determine available bandwidth. In the first ste%

a packet pair technigue estimates the effective capacithef bn should avoid estimation errors caused by crossing and c

. . tending traffic. However, available bandwidth estimatibodd
wireless network. In the second step a packet train scheme de . . . .
) ; . : . capture the available bandwidth reduction due to both @rgss
termines achievable throughput and infers available baittw

By modeling WBest, this paper investigates the tradeoffs %?d contending traffic.

accuracy and convergence time, and possibl_e sources of eHO Assumptions

to optimize the algorithm. Thorough evaluation in a wireles o . _— :

testbed shows WBest performs better in terms of accuragy, jn 10 Simplify the bandwidth estimation algorithm, the follow
trusiveness and convergence time than three current bleaildn9d @ssumptions are made. These assumptions and possible re
bandwidth estimation tooldGI/PTR, pathChirpandpathload sultant errors are discussed in more detail later in thisaec
WBest fits the practical needs of many applications such s m&r ASSume the last hop wireless network is Hugtleneck link

timedia streaming that require low cost and accurate baittiwi ©" the whole network path. Here tbettleneck linkmeans the
estimations. last hop wireless network has both the smallest availalbie-ba
The paper is organized as follows: Section Il discusses tWédth (tight link) and th? smallest capacity_(narrpw linkprag
WBest algorithm and related issues. Section Il describes tthe network path. That is we have the relationship:

experimental setup. Section IV analyzes the experimental r .
A<(C,< min

sults. Finally, Section V provides conclusions and possib} izlwh,l(Ai) 1)



where A andC, are the available bandwidth and effective ca- C —
pacity of the last hop, respectivelyis the number of hops, and I /]
A; is the available bandwidth and capacity of title hop. This
assumption implies a packet train sent at @tds likely to ar- e
rive at the last hop at the rate 6f [22]. If this assumption does - C
not hold, as for some home wireless networks with a broadbe —— ¢ —

Internet connection, the packet train with sending @Gtewill g Wireless AP o,

get dispersed before the last hop and arrive at the last hibp v ol L
a lower rate tharC,. This, in turn, will cause a conservative 0 Cel2 Ce
under-estimate of the bandwidth which is typically a bedietr Average Dispersion Rate

come for appllcat_lon_s_ than an aggres_swe, over-estlma_lt_e. Fig. 2. A Typical Last HopFig. 3. Estimating Available Bandwidth

2. Assume no significant changes in network conditions be- wireless Network. using Average Dispersion Rate.

tween the two steps (estimate effective capacity and etwtima o . _ . i
available bandwidth) of the WBest algorithm. While chaniges To minimize the impact of crossing and (.:ontendlmg traffic,
network conditions due to rate adaptation or mobility may in%he me_dlan of Fhm pack_et pair c_apacny_ estimates is used to
pact the estimation results, given algorithm convergeimes approximateC in the estimation time period:

of milliseconds, the magnitude of these changes is assumed t

be m|n|ma| Ce = median(ci), 1= 1, ., n (3)

3. Assume packet pairs or trains do not overflow any of th

Available Bandwidth

vﬁ1ere0i is the estimation result of packet paiandC; = TL
router queues along the flow path. A queue overflow at the IastFOr the second step of the algorithm (lines 3- 13), a packet

h_op_W|II |mpact_the accuracy ofthe esumay_on results. Tos-p ain of lengthm is sent at rat&”’, to estimate available band-
sibility of queuing loss is reduced by limiting the number of : . . ; . :

) : width. A fluid model is used to estimate the relationship be-
packet pairs and the number of packets in the packet train sen . . . . .
into the network tween available bandwidth and dispersion rate. Assumgition

means the arriving rate before the last hog'isand:

B. Algorithm C. R

i i i C.+5 G, @)
Algorithm 1 provides the two-step WBest algorithm. In the et e
first step (lines 1-2), packet pairs are sent to estimate effectivghere as shown in Figure 2 is the average dispersion rate at
capacityC.. Effective capacity [24], the maximum capability ofthe receiver and represents the available bandwidth reduction

the wireless network to deliver network layer traffic, is adu  caused by crossing and contending traffic at the last hop:
tion of time and the packet size:

A=C.— S (5)
nL gy
C. = % (2) Combining Equations 4 and 5, the available bandwidth is:
whereL is the packet siz€]'(t) is the packet dispersion at time A=C.(2— %) —920, — ce (6)
t. To use packet dispersion in a discrete environniEntheith R
packet dispersion at time s used to represeft(t). For a wireless networlachievable throughpy24] is the av-
erage dispersion rate at the receiver for a probing rat€.of
Algorithm 1 WBest Algorithm. Using Equation 6, Figure 3 shows the relationship between
Require: n>0 {Measure effective Capacitﬁé)} available bandwidth and achievable throughput. Any achiev
1. Sendn packet pairs to client able throughput less than half 6f implies zero available band-
2. C. < median(C;, i =1,..,n) width, and an achievable throughput@f implies an idle wire-
Require: m > 0, C, > 0 {Measure available bandwidthf} !ess network.
3. Send packet train with length at rateC. to client Packet losses on the wireless network and along the network
Re— L path impact WBest accuracy. Some tools, eathload discard

mean(T;, i=1,..,m)
if R > <= then

4
5 estimates when packets losses occur to avoid errors in the es
6: A<«=C.[2-%]

7

8

9

mation computation. However, this implies longer measa#m
times or at least more variance in measurement times. bhstea
of discarding estimates when packet losses occur, WBesttdet
packet loss in both packet pairs and packet trains and resnove
the appropriate pair from the computation. For a packentrai
loss ratep is recorded and the available bandwidth estimate re-
duced (lines 10- 13 of Algorithm 1).

WBest's major advantages stem from statistically detgctin
the relative available fraction of the effective capacitythe
wireless network instead of using search algorithms to oveas

else
A<=0
:endif
10: p < packet loss rate in traifError correction
11: if p > 0 then
122 A< Ax((1-p)
13: end if




the absolute available bandwidth. Most current availableds of the train. Assume CBR crossing traffic is sent at rat®ith
width mechanisms detect absolute available bandwidth - mat least one packet caught by the packet train:

suring the delay changes in the probing traffic. However; ran

dom changes in packet delay due to wireless network conditio

make it difficult to determine clear packet delay trends. sThi S*Ty/L>1

reduces the accuracy and increases the convergence tinoe, in S>L/T,=C./m (8)
siveness and instability of the estimation mechanism. Bydav

ing a search algorithm to determine the probing rate, WBestlihe sensitivity of the available bandwidth estimation cardb-
designed to converge faster and yield less estimation.emer fined based on the number of packets in the train, which has a
stead of probing for the absolute rate, WBest estimated-avaiegative relationship with the train length. For instatie&atch
able bandwidth using the effective capacity.— %) in Equa- crossing traffic sent at raté. /10, a packet train with at least 10
tion 6 is treated as the available fraction@f available to all packets is needed.

wireless flows. Derived from the ratio of the effective capac  Selecting the number of packet pairs and train length is com-
to the average dispersion rate, the available fractioistitatlly ~plicated in practice because the bottleneck queue sizdirmlise
removes random errors while still capturing the impact obsr  the number of packet pairs and the length of the packet train.
ing/contending traffic and rate adaptations inherent irelegs Thepathratequeue size probing method [22] can be used to de-

networks. tect buffer limitations along the flow path. However, thisipr
ing method increases the intrusiveness and measurement tim
C. Number of Packet Pairs and Length of Packet Train and is not appropriate for many applications. Since the WBes

Th ber of K irs in the fi fWB d acket train sending rate is set to the effective capacithef
€ number of packet pairs in the first step o estand )G ojess Access Point (AP), the probability of queue overflo

pumber of placlgetshm the packet train in the _secon(:j §tep p@é network is determined by the queue size at the last hap wir
Importantroles in the accuracy, convergence time andsie .5 Ap previous research [25] indicates that currentlegise

ness of th_e a!gorithm. Generally, more packe_t pairs anddong, queue lengths range from 40 to 300 packets. Thus, WBest
packet trains improve accuracy at the cost of higher correzg simply limits the packet train to less than 40 packets. Téhier

time and more intrusiveness. avoid queue overflow due to packet pairs, WBest inserts a 10

WBest seeks to minimize convergence time and intrusivengsgiisecond gap between pairs to reduce the packet paiiipgob
at a given accuracy level. The confidence interval (CI) ard th, during capacity estimation.

modeled variance [24] can be used to estimate the minimum
required number of packet pairs using: D. Impact of Errors in Effective Capacity Estimation

The effective capacity estimate in the first step of WBest im-
(7) pacts the available bandwidth estimate in the second sftéfj. |
cr: denotes the estimated effective capacity from the first atep

whereZ is a constant determined by the confidence level. F6 IS the actual effective capacity, the fluid model from Equa-

example, assume a streaming session wants to bound the efiég 4 yields:

tive capacity estimate within 500 Kbps to match the graritylar cr R

of encoded scaling levels for the multimedia stream. To doun A = A 9)

the effective capacity estimate within 500 Kbps with 95%feon CotCe—A  Ce

dence, Equation 7 indicates at least 6 (5.34) samples adedeeBy defining the error ratid” asC’, = C.(1+Y), the dispersion

This is based oa = 0.59 Mbps for an 11 Mbps wireless chan-ate is:

nel rate and a packet size of 1500 bytes with= 1.96 and

CI = 500 Kbps [24]. Similarly, the number of packets in po_ GC _ (+ Y)C? (10)

the packet train can also be computed. With the same avail- C'+Ce—A (2+Y)C.—A

%blj?nbandlwils(;t?/lE[Satsm[]gﬁgrb;nuggsMinpi ?:It:/::ni Irl?r?lij?z!\?g ;meicking the derivation from Equation 6, the estimatediava

o = 1. . ;o ’ ’ cé . .

packet e ol 1500 byts i conendin - 1and 10 AL 8 4 L The et b

C1 = 500 Kbps, the minimum train size: is 30 (29.26). As . ]

real network conditions may change unexpectedly, Equa?tioﬁN'dth’ A, then becomes:

only provides an approximation on the sample sizes needed.
The number of packets in a train also impacts the time scale

and sensitivity of available bandwidth estimations. In eah To study available bandwidth estimation errors due to error

the estimation of available bandwidth represents the gesga- effective capacity estimation, relative errdt, is defined as:

timation during the measurement period [1]. As a major part ,

of the convergence time, the tin¥,, spent to estimate avail- E— A-4 (12)

able bandwidth depends on the number of packets the A

train. T, can be approximated using and packet sizd, as Positive and negative values for relative erfordenote over-

T, = m* L/C.. Furthermore, the probability crossing traffieestimation and under-estimation of the available bandwyid-

gets included in the bandwidth estimation is related to¢ngth spectively. From Equation 12, the relative error in avddab

Z20?
n =

A =A1+Y)=C.Y(1+Y) (11)




haveR, = C.(1 + X), where a positiveX denotes a pre-

"A=Ce —&—
~ ° ﬁ;ggé compression and a negativé denotes a pre-dispersion. Fol-
§ g . lowing the same derivation we can get the dispersion raéz aft
R passing the last hop as:
ng.l 3 *
% 0 - ':ﬁ—ZE“E;;iTE‘EZ—ﬁ': | C.R _ C§(1+X)
s = Rp+cep—A = 2+X)C.—A (Rp = A) (14)
Ce(1 + X) (R, < A)
% 05 8 As described in Equation 6, the estimated available barttwid
< 5 with pre-dispersion or pre-compression is defined 4s =
: 2
R : : : : 2C. — %. Thus, by representing usingC,., A and X, we
* O e Caacn 08 ! can derive the relation between estimated available baittwi
pacity Error (fraction) ) i . . ]
Fig. 4. Relative Error Caused by Effective Capacity EstiomaErrors. A’ and real available bandwidth from Equation 15 as:
. S . A XC (R, > A)
bandwidth estimation i€ = Y — Y (1 + Y)C./A. Figure 4 A ={ X X P (15)
shows in fractional form the relative error of estimatedilaide 2Ce — 17 (Rp < 4)

bandwidth and the relative error in capacity estimatiortfioee To study the errors caused by pre-dispersion and pre-
distinct cases. Effective capacity estimations that aséaigh al- compression, we compute the relative erkbbetween the es-
ways under-estimate the available bandwidth. Effectiypacidy timated available bandwidth and the real available banthwid
estimations that are too low can result in either an overredé using Equation 12. Therefore, a positive and negativeivelat
or under-estimate of the available bandwidth, dependiranuperror E denote a over-estimation and under-estimation of the
on the actual available bandwidth in the network. Errorsfin eavailable bandwidth, respectively. The relative erroniaikable
fective capacity estimation can be bounded by modeling [2djndwidth caused by pre-dispersion and pre-compression ca
or by measurement, e.g., using the range of the results fromderived as Equation 16:

the capacity estimation step to approximate the relatixa @n

the estimation of available bandwidth. Moreover, for apgpli 5 % (R, > A)
tions where a conservative estimate of the available badttiwi o w -1 (R, < A)
is desireable, such as in multimedia streaming, a higheceff _. = . . . .
tive capacity estimator can be used (e.g., using the top IO%FiIgure 5 ShOV_VS the_oretlcal relatlor_lshlp of _pre—dl_speraod
Equation 3 forC, instead of the median) to minimize the popre-compre55|on rati?f and the rglatwe error in available l_aand-
tential performance degradation caused by over-estigatie width E for the network with different amount of available

(16)

available bandwidth of the underlying network. bandwidth. . . . .
It clearly shows that pre-dispersion results in a lower-esti

o On the contrary, pre-compression results in a higher esti-
We assumed that the last mile is the bottleneck of the Nglaieq available bandwidth. Moreover, as the available band
work path defined in Equation 1. However, even though We C@ith decreases, the impact caused by pre-dispersion &ad pr
assume that the last hop have the less available bandwigth, W5 ression increases. In addition to the theoreticatiosla
may still expect some problems such that the packet traearri¢ i e pre_dispersion reduces the packet train probingleater
at the AP with a lower rate or higher rate thdp. We call this -, the available bandwidth, there will be no further disjz
rate?, as pre-dispersion and pre-compression rate because they,e |ast hop. Therefore, Equation 13 cannot be used to com-
happen before the packet train arrive at the last hop wiseles pute the dispersion rat&. Instead, we hav® = R, and the
works. _ , , _relative error of available bandwidth can be computed based
The possible sources of a pre-dispersion could be a link il ,ation 6 and 12. The “No dispersion” curve depicts the con-
an available bandwidti; less than the packet train ra&, yerting point of the relative errors when the pre-dispersiate
which is also the effective capacity of the last hop wireless |o\ver than the available bandwidth.
network. Therefore, to analyze the impact caused by the prégq sireaming applications, the underestimation of thé-ava
dispersion and pre-compression behaviors, we can usertie sgp|e handwidth caused by pre-dispersion make the media scal
fluid model as Equation 4 if the pre-dispersion/pre-COmpgEs jg more conservative, which is helpful for avoiding peffor
rate R, is greater than or equal to the available bandwidth i ance problems such as bursty lost and rebuffer events. The
R R overestimation caused by pre-compression impacts theamedi
m = (Rp, > A) (13) scaling performance. A possible solution is to increase the
P ¢ ¢ estimation samples, thus reducing the errors caused by pre-
In the case of pre-dispersion rat&,, is less than the avail- compression. Be aware that the errors shown in Figure 5 rep-
able bandwidth, the probing traffic will not be further disped resent the worst case such that all samples in the estimat&on
at the wireless hop. Therefore, Equation 4 is not applicalpee-dispersed/pre-compressed for the given ratio, weatx@e
and we haveR = R,. We defineX as the ratio of pre- lower relative error in practices because the WBest algorit
dispersion/pre-compression on the probing traffic, suahwe based on an average of multiple samples.



1 ‘ ‘ — connect to the AP with a wired 100 Mbps LAN, and the clients
_ o 3 * connect to the AP with IEEE 802.11b/g WLAN using AllRet
8 E ALL0271 54 Mbits wireless PCI card with a prism GT chip&et.
% osr § For performance comparison, three popular, and available,
£ s P e bandwidth estimation tools were selectedGI/PTR v2.0,
£ pathChirpv2.4.1 andpathloadv1.3.2. For the experimental
3 . runs, the four tools are run sequentially to estimate therdow
g E A stream available bandwidth from wbestserver to client Ail&vh
8 051 % i/ ; A=Ce —s— | all the tools were setup using their default configuratiompro-
z g g e - vide a fair performance comparison, the following methodgl
. f{ /] No disperaon was used to run and summarize the estimation results. Agthou
1 -05 0 05 1 IGI/PTR converges with two results, the PTR results are used
Predispersion/precompression Ratio (fraction) as the author suggests. Simathloadconverges with a range

of available bandwidths, the median of the range is used for
comparison. During the evaluation, sompathloadruns never
converge under particular wireless channel conditionsesgéh

E. Error Detection runs were halted if they fail to converge in 100 seconds wlsich

Packet loss observed at the WBest receiver may be attributtre] upper limit of normal convergence time {mathload Since

. ; . pathChirpis designed as a continuous monitoring tool without
to either wireless losses or congestion losses (queue owerfl lici i foll hba
The WBest error correction adjusts for wireless losses Hopy oXP leit convergence policy, convergence o OWtSt
' ethod described in [12]. In this method, the difference be-

ever, while WBest controls the probing traffl_c sendmg rate ween the 90th and 10th percentiles of the estimations are co
avoid queue overflow, large amounts of crossing traffic amd co

tending traffic mav still produce queue losses that can Canseputed and convergence is defined when the difference is less
9 y P d than1/57 of the available bandwidth (approximately 6 Mbps

over-estimate of available bandwidth. In most cases, one ca
our testbed).

. ) . n
assume that any queuing loss is due to a saturated wirahiss II| . . . .
yq 9 To evaluate estimation accuracy, the true available badtttiwi

with no available bandwidth. However, to guard against gueu i . i i )
overflow at an upstream router, Loss Discrimination Alduris of the wireless network under different configurations isded

(LDA), such as [26], [27] could be added to WBest to distiri- referred to here as thground truth Since it is difficult to

guish ’congestion Ioés or wireless loss get the actual ground truth during dynamic wireless network

Another potential source of estimation error comes frorh Ia%ond_mons, the ground truth of the available bar_ldW|dthps a
ximated by the downstream throughput of a single satdrat

. r
hop probe packet.compres.smn. System factorls, such as Iﬁqgh UDP flow with a packet size of the Maximum Transmis-
CPU load at the wireless clients and user-level timesta2@js [sion Unit (MTU) for each case tested. The exception is foesas

may cause two or more packets_ to have very glose arrival t'm.%vsnh TCP crossing and contending traffic where ground trath f
tamps. This last hop compression can result in recordedadrri

. . . the available bandwidth in the wireless network is zero. sThu
rates that are higher than the effective capacity. For el@ropr . . )
o . each evaluation consists of back-to-back runs employing fo
measurements show the minimum timestamp from the user leye . L .
. . . : ; . andwidth estimation tools and one downstream CBR traffic, a
timer is about 2.3:s. This results in a dispersion rate over 500 - : . !
; shown in Figure 6. For all cases with crossing or contending
Mbps for a probe packet size of 1500 bytes. Thus, to reduce,.. L .
T . . traffic, the estimations start five seconds after the backuto
the error due to last hop compression, if the received tiamest . py e . )
: : ; traffic starts to let the system stabilize. Similarly, thexa five
yields a higher rate than the actual sending rate, WBest uses
. . . f seécond delay between the end of one tool and the start of the
the actual sending rate instead of the dispersion rate tg@atam

. : next to allow background traffic to stabilize.
available bandwidth. L :

Table | itemizes the fourteen experimental cases. The base
configuration, case 0, has no contending or crossing traffic a
no induced changes in the wireless network conditions. £ase

WBest is implementedin Linux and evaluated by varying 1-12 include a variety of crossing and/or contending trasifia-
network conditions in an IEEE 802.11 wireless testbed. Asions provided by UDP and TCP traffic generators residing on
shown in Figure 1, the wireless testbed consists of an appliglient B, client C and tgenserver. The Multi-Generator Setl
tion server that performs the estimation (whestservemafid (mgen) v4.2b6 and iperfv2.0.2 are used to generate UDP and
server (tgenserver), a wireless AP and three clients (CAen TCP traffic, respectively. For case 13, wireless rate adaptis
B and C). The AP in the testbed is a Cisco Air-AP1121@th  induced by removing the antenna of a wireless client andaedu
IEEE 802.11b/g mode. Both servers are PCs with P4 3.0 Gh‘hg the wireless AP’s sending power and receiving antenima ga
CPUs and 512 MBytes RAM and the three clients are PCs wililith a client received signal strength indicator (RSS! )mn
P4 2.8 GHz CPUs with 512 MBytes RAM. All the testbed PCs

run SUSE 9.3 Linux with kernel version 2.6.11. The servers 5http:/mwww.allnet-usa.com/
Shttp://www.conexant.com/products/entry.jsp?id=885
2WBest source code can be download from http:/performedpitools "This ratio is computed from the evaluation setup in [12]
3http://www.cisco.com/en/US/products/hwiwirelesspadindex.html 8http://pf.itd.nrl.navy.mil/mgen/
4http:/iwww.novell.com/linux/ 9http://dast.nlanr.net/Projects/Iperf/

Fig. 5. Relative error caused by pre-dispersion/compoassi
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To mitigate interference from co-existing campus wirelest
works, all experiments are run in our wireless streaming-mul
timedia lad! which was painted with an addititeto reduce
the radio transmissions going through the walls. Furtheemo
all the experiments were conducted at midnight during thé WP
summer break such that most of the campus wireless network
was in an idle state.

The relationship between relative error and the numberiof pa
pairs in step 1 of the WBest algorithm (estimate effectiyeaca
ity) was explored by using Equation 12 to compute the error
of the estimated effective capacity using different nursbar
packet pairs and defining real effective capacity as the amaafi
the 90 packet pair run. Figure 8 shows the relationship batwe
the effective capacity error and the number of packet pains s
for four typical wireless cases: idle, crossing traffic, tor-

-70 dbm and -74 dbm, the rate adaptation ranged from 1 to g traffic, and rate adaptation. As the number of packetspair
Mbps. Figure 7 shows the actual rate adaptation measured véént increases, the error decreases. Rate adaptatioresete

a wireless sniffel’. This rate adaptation case results in 8% dfighest number of packet pairs to produce reasonably aecura
wireless layer retries for both the AP and the client.

TABLE |

EVALUATION CASES FOREXPERIMENTS.

measurements. To provide accuracy for all these cases while
reducing the impact on the available bandwidth estimafidfs
packet pairs were used in all the WBest evaluations. Sitpilar
based on Figure 9, 30 was chosen as the length of the packet
train for step 2 of the WBest algorithm (estimate availalaedy

[ Case]| Crossing Traffic | Contending Traffic width) for all the WBest experiments.
0 None None
1 Client B: UDP 4.6 Mbps| None V. A
2 None Client B: UDP 4.6 Mbps ' NALYSIS
3 Client B: TCP None
4 None Client B: TCP A. Data Collected
5 Client B: UDP 2.3 Mbps| None For each of the fourteen test cases, Table Il gives the median
ClientC: UDP2.3Mbps| estimated available bandwidth for 30 evaluations runs ot @4
6 None Client B: UDP 2.3 Mbps . . . . s
Client C: UDP 2.3 Mbps the fpur bandwidth estimation tools_. The groun_d truth’woh
7 Client B: TCP None provides the true available bandwidth, approximated from t
Client C: TCP _ measured CBR UDP throughputwith a packet size of 1500 bytes
8 || None g::gm (B:'_ LC:F; or set to zero if the specific test case includes a TCP bulktean
9 || Client B: UDP 2.3 Mbps| Client C: UDP 2.3 Mbps as described in Section Ill.
10 || Client B: TCP Client C: TCP For Case 6, the UDP traffic from the two contending clients
1; g:!em B: U(E:’P 2.3 Mbps g:!em g TCP — causes the AP and the clients to use rate adaptation even with
L lent B: TCP |_Client C: UDP 2.3 Mbps good RSSI values. While it is normal for rate adaptation to be
13 Case 0 with rate adaptation

r
Each of the fourteen cases were repeated 30 times with ﬂgg

triggered by high contention for the wireless channel, tie s
ated CBR throughput of 9.29 MBps for case 6 does not rep-
ent ground truth because higher throughput can be ebtain

me‘?'.ia” and qua_rtiles reported for all runs. To ensure COMRGith a lower offered CBR rate, as could be the case with the
rability across different runs, the RSSI range for all v@sa 1,4 ith estimation tools. Thus, for case 6 the groundh it

clients is between -38 dbm f’md -42 dbm, and all clients Wefarked as unknown. Appendix V-D discusses the rate adapta-
shown to have the same maximum throughput of about 29 Mbps.

 http://perform.wpi.edu/wsml/

10http://perform.wpi.edu/tools/ 12http://www.forcefieldwireless.com/defendairadditivienl



tion of case 6 in detail. In general, for all other cases ind§&dh (case 2), and rate adaptation (case 13). The complete sedtof t
WBest provides the most accurate estimation of the availabésults can be found in Appendix V-A.

bandwidth compared to the other three bandwidth estimation
techniques. C. Idle Channel (Case 0)

_ Inaddition to the accuracy, the intrusiveness and conve@e g re 10 depicts the estimations, intrusiveness and cenve
time is recorded for each test case. The intrusiveness isetefigence times for the idle channel (case 0). When the wireless
as the total bytes sent by each tool during an estimation gtithne| s idle, the available bandwidth and the effectagac-

the convergence time the time spent by each tool to CoONVefge,re the same. The measured ground truth throughput shows
to a bandwidth estimation result in each estimation. Table i o available bandwidth/effective capacity of 28.94 Mipsse
provides the median of value of intrusiveness and conve®eR, the maximum throughput of 31.4 Mbps mentioned in Cisco
times over 30 runs for all fourteen test cases. WBest yi¢lds ty,c ment4 Figure 10 shows thaGI/PTR and pathloadsig-
lowest intrusiveness and convergence time in every case.  pjsicantly under-estimate the available bandwidth. A paissi
reason is that the packet sizes used during probing these two
tools are small.IGI/PTR uses a 500 byte packet apdthload
uses a 200 byte packet. The overhead caused by the sizes of
probing packets has been shown to be larger in wireless net-
works than in wired networks [24], [15], [8], so the maximum

TABLE Il
ESTIMATED AVAILABLE BANDWIDTH (MEDIAN, IN MBPS).

[ case[[ IGI/PTR | PathChirp | Pathload] WBest || Ground truth |

0 |[811 30.15 6.78 28.47 || 28.94 _ k :
1 874 58.89 681 53.04 || 24.39 throughput will be lower for these smaller packet sizes.c8in
2 10.06 27.59 6.91 1576 || 20.52 with a 500 byte or 200 byte packet, the maximum throughput
3 || 192 >.00 1.95 1.01 0 of the wireless network is around 19.2 Mbps or 11.4 Mbps, re-
g ;'ég ;g'gg %'gg (2)'2027 24 0 spectively, even with the consideration of smaller packatss
5 T o962 56.98 578 1456 - IGI/PTRandpathloadstill significantly underestimate the avail-
7 1.48 5.00 1.10 0.00 0 able bandwidth.PathChirpand WBest get an available band-
8 || 0.66 11.97 0.92 0.00 0 width estimate close to the ground truth. HoweysathChirp
190 3'23 257"230 g'gg cl)3dc2)6 36'26 tends to overestimate the available bandwidth with a laege v
T 1 059 505 048 500 0 ance in the estimatiorPathloadandpathChirpboth have long
12 || 0.77 12.73 1.06 0.00 0 convergence times, because both apply a search algorithm to
13 |[ 5.18 16.79 5.99 13.99 || 15.26 adapt the probing rate during the estimations.
D. UDP crossing traffic (Case 1)
TABLE Ill

Figure 11 depict the estimations, intrusiveness and cenver
gence times when there is one UDP crossing traffic flow (case
1). WBest performs better than the other tools with low intru
GIPTR PathChim Bathioad WhBest siveness and convergence times and accurate estim_atém_st.resu
case || intru | time || intru | time || intru [ tme || intru | time The under-estimation caused by the smaller packet sizelSmse
0561 155 [l 045 ] 1743 .18 | 14881 0.13 | 041 ] |GlI/PTRandpathloadshows that they are insensitive to crossing

056 | 1.42 ][ 045 [ 1758 | 1.55 | 20.22 || 0.13 | 0.42 | traffic, as well. Pathload in particular, has large intrusiveness
254 [ 1721 046 | 17.24 || 1.22 | 42.06 || 0.13 | 0.67

151 [ 7.86 || 045 | 17.22 || 0.86 | 32.16 || 0.13 | 0.44 . .
056 | 1.35 || 045 | 17.68 || 1.67 | 19.24 [| 0.13 | 0.a2| E- UDP contending traffic (Case 2)

0.47 | 1.30 || 045 | 17.79 | 1.66 | 17.33 | 0.13 | 0.42 : : :
317 12669 T 046 T 18411 095 15390 T 0.3 1070 Figure 12 shows results when there is one UDP contending

198 | 1957 046 | 17891 098 | 55.02 1 0.13 | 051 flow (case 2). WBest still performs well in the presence of-con
0.66 | 1.60 || 0.45 | 18.10 || 1.57 | 18.42 || 0.13 | 0.42 | tending traffic, however the variance is larger than in theeaz

1(13 f% gggg 8-38 g;? (1)-?31 gg-gi 8-12 8-23 the crossing traffic (case 1), because contending traffieases
>t eso T oa6 T a5 T a6 T 204 F o3+ o042 the variance in d_ela)_/ in accessing the W|rele§s channekeSin
13 17066 | 1.86 11 045 | 17481 166 | 23731 0.13 | 0.42 the_samp_llng perlc_)d is smaller in WBest than in other tod_)is, t
variance is amortized by other tools, suchpashload Again,
comparing case 2 with with case 0 andG|/PTRandpathload

are not sensitive to contending traffic.

INTRUSIVENESS(MEDIAN, IN MBYTES) AND CONVERGENCETIME
(MEDIAN, IN SECONDS).

©| 00| N| O OIf BfwNf O

B. Case analysis

Due to space limitations, detailed analysis is provided f@t Wireless rate adaptation (Case 13)
only four representative cases from the set of fourteenrexpe
ments. Details are presented as box-and-whisker'glfisthe
idle channel (case 0), crossing traffic (case 1), contertdfiic

Figure 13 shows results for wireless rate adaptation (c3ge 1
where the the packet transmision rate and channel access del
vary as in Figure 7. With wireless rate adaptation, all thedsa

131n a box-and-whisker plot, the ends of the box are the uppilamer guar- width estimation tools produce a larger variance than wheret
tiles, the horizontal line inside the box is the median amdo lines (whiskers)

outside the box extend to the 10 and 90%-tile of the obsemnsti 14Cisco AVVID Wireless LAN Design. http://www.cisco.com
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Fig. 13. Summary Results for Evaluation Case 13 (Wireleds Rdaptation, Range 1-48 Mbps).

is no rate adaptation. Howev@athloads variance remains low Figure 14 and 15, respectively. For these figures, on thasg-ax
with rate adaptation. a negative error represents an under-estimation and aveasit
ror represents an over-estimation; and on the y-axis, |ower-
bers are better. Therefore, good, fast estimates lie indttern

To provide summary analysis, the estimation error of eacknter of these two figures.
case is computed and the distributions of the error versais th IGI/PTRtends to greatly under-estimate the available band-
convergence time and error versus intrusiveness are dmawrwidth with UDP crossing or contending traffic and even with an

G. Summary
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pend on delay measurements to detect the available barddwidt
Instead, WBest detects the available bandwidth in termisaof

tion of the effective capacity by measuring the relativerges

in packet dispersion between two steps. This makes WBest ro-
bust even when packet dispersion is impacted by the wireless
conditions.

V. CONCLUSION

This paper presents WBest, a new bandwidth estimation tool
for wireless networks, designed to provide accurate badittwi
estimation in a short amount of time and without excessively
intruding on existing traffic. One advantage of WBest over ex
isting tools is that WBest does not depend upon search algo-
rithms to measure available bandwidth. Instead, WBesisstat
tically measures the relative available fraction of thesefif/e
capacity, mitigating estimation delay and the impact oflass
channel errors. WBest is compared with other popular aviaila
bandwidth estimation tools in a wireless testbed under iztyar
of wireless and network conditions. The following conchurs
can be drawn:

1. Current bandwidth estimation tools are signficantly iotpe
by wireless network conditions, such as contention froneioth
traffic and rate adaptation. This results in inaccurateregts
and high and varying convergence times and intrusivendss. T
makes current tools generally impractical for applicadionn-
ning over a wireless link, such as streaming media, thatirequ
fast, accurate, non-instrusive bandwidth estimates.

2. WBest consistently provides fast available bandwidti es
mation, with overall more accurate estimations and lower in

idle channel.IGI/PTR has widely variable convergence time%trusiveness over all conditions evaluated

and intrusiveness, varying by a factor of 20 times for théedif
ent casesPathChirptends to over-estimate the available band-
width in all casesPathChirphas a consistent convergence tim
of around 17 seconds and a consistent intrusiveness of 400ut
KBytes. Pathloadtends to greatly under-estimate the available
bandwidth in most wireless traffic cases including: idlercha
nel, UDP crossing or contending traffic, and rate adaptati
Pathloadhas the longest overall convergence time, taking
to 85 seconds in some cases and even fails to converge in

seconds for some crossing and contending cases. WBest gener

ally provides the most accurate estimations compared With t
other tools. In most cases, WBest converges in less tharahalit!
second, and has a nearly constant instrusiveness of 13GKByt

For wireless networks, the accuracy I&I/PTR, pathChirp [2]
and pathloadis poor because each approach relies on delay
changes to measure available bandwidth. In wireless nkswvoys)
gueuing delay is not the only source of changes in delay. Wire
less contention, MAC layer retries and rate adaptation tae-a
sult in delay changes to different extents. These delaygdmnia]
disturb the searching algorithm for these tools and yieltin
curate results and often increase the convergence timemand®
trusiveness. Moreover, with higher packet loss rates ielegs
networks, some estimation techniques discard probes tegac
by loss to improve accuracy, but this also increases copvery (6]
time and intrusiveness.

WBest estimates the available bandwidth without usin
searching algorithms which means a low, consistent convEl-
gence time and intrusiveness. Furthermore, WBest doesnot d

Our ongoing work is to apply WBest to multimedia streaming
pplications to improve the performance of media scalind) an
uffer optimization in wireless networks. Other possihlaufe
work may include the improvement to WBest evaluations under
more complex wireless conditions, including experimehts t
Odeliberately cause pre-dispersion and pre-compressioalto
c? te the WBest model and assumptions inherent in Figure 4 and
thance WBest robustness during AP queue overflow.
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APPENDIX 2.5 Mbps and 5 Mbps, an available bandwidth estimation ¢f 3.5
Mbps will trigger a media scaling down to 2.5 Mbps. However,
any estimation result between 2.5 Mbps and 5 Mbps will tigge

This section shows the extra experiment results that werre fite same media scaling. Thus a maximum acceptable estima-
included inline in the paper (for space constraints for &@en tion error for the 3.54 Mbps estimation result can be comgpute
ence submission). Figure 16 to Figure 25 shows the box-whislas min(3.54 — 2.5,5 — 3.54) = 1.04 Mbps, which indicates
figures of estimated available bandwidth, intrusivenesiscam-  you do not need a accuracy lower than 1.04 Mbps in this case.
vergence time for experiment case 3 to 12, respectively. In addition, a higher media scaling frequency implies a lowe

perceived quality [28]. Since both the effective capacitgt the

B. Bandwidth Estimation for Streaming Applications in Wireayajlable bandwidth change dynamically in wireless nekspr

less Networks to reduce unnecessary media scaling actions, a time-b&sed a

Bandwidth estimation techniques have been widely studi6fig€ measurement is preferred more than an accurate-instan
in recent years. However, there are few studies discusesssu taneous bandwidth measurement. Th_erefore, the instantane
applying such techniques in real applications. Differemia- a_ccuratg es_timate is not a critical requirement for stragmme-
tions and network environments may have distinct requirgene dia applications.

on bandwidth estimation, thus need diverse adaptatiorsridb  The convergence time is of major concern for streaming me-

width estimation tools. It is difficult to design a generatpose dia applications over wireless networks. The applicatiqreets

bandwidth estimation tool for all type of applications. Tée to know the available bandwidth change as soon as possible,

fore, to evaluate the applicability of a bandwidth tool weshl even if the streaming media scaling does not need to exetute a

include the applications and the network context. the same frequency. In addition, a short convergence time ma

The previous bandwidth estimation tools usually target gifovide more estimations in the same time period, thus may pr
network management, monitoring system, thus prefer to havige a better chance for a filtering or smoothing algorithm to
accuracy bandwidth results. The applied bandwidth memig find a reasonably accurate average estimation of bandwidth.
be either capacity or available bandwidth of the backbore nghorter convergence time improves the capability to cagtte
works. To describe the differences between the bandwidih egariation in the effective capacity or available bandwidihs
mation tool required by multimedia streaming applicatiand shown in recent research [29], the variation in the wirelegs

the general purpose bandwidth estimation tools, we follives capacity may degrade the video performance even if the geera

generate applied evaluation criteria: measured metriosy-a capacity is sufficient for the streaming bit rate.

racy, convergence time, intrusiveness, robustness aruliisa  Another important issue related to both accuracy and cenver

in the wireless networks. gence time is theompeting effectsaused by the probing traffic.

The bandwidth metrics used in bandwidth estimation tools With self-loading or packet dispersion techniques, thebjmg
wired network need to be redefined in wireless network. Ftraffic will temporary increase the queuing delay of the siog
example, the capacity is not constant in wireless netwd@4§ [ traffic. The responsive crossing traffic, such as TCP flowH, wi
instead, theeffective capacity24] that takes the dynamical ca-response to this RTT changes to reduce the sending ratee-Ther
pacity changes into consideration is more preferred. &mnilfore, the finally available bandwidth estimation will be oesti-

as discussed in Section Il, the available bandwidth is net deated if the convergence time is longer enough for TCP flow to

fined as the capacity excludes the amount cross trafficadsie reduce the sending rate. As discussed in [30], TCP throughpu

should take the consideration of both capacity sharing and ¢ B can be approximate as the equatidh:= 1/RT'T+/3/2bp,
tending effects. However, most current available bandwédt wherep is the probability that a packet is lodtis the number of
timation tools did not study these issues, for example, I3],[ packets that are acknowledged by a received ACK. Therefore,
assumption of a known constant capacity. This not true ftite RTT is increased because of the probing traffic, the tifreu
wireless networks, thus need to be adapted before applgingut of TCP traffics that sharing the same AP will be impactéd. |
wireless networks. For a multimedia streaming applicatisn we assume that the probing traffic will not overflow the queue,

ing bandwidth estimation to adapt the sending rate and @@@imthe TCP congestion control will response to the RTT charmes t

the client side buffer, the bandwidth metrics that helpsthee reduce it congestion window, thus will reduce the TCP thisug

available bandwidth and the statistical information ofilade put in few RTTs. For example, the time for a packet train with
bandwidth, such as variance. Therefore, the capacity astm 30 packets to pass an AP with effective capacity of 6 Mbps is
only tools are not qualified to be used by streaming appticati about 58 ms. If we assume the TCP RTT is in the same range,

Moreover, these tools designed only for wired networks rieedthe throughput of the TCP traffic will decreased to almost hal

be improved before they can be applied to streaming appli@cording to the equation. Therefore, we expected thatahd-b

tions in wireless networks. width estimation can be completed in less than few RTT so that

For multimedia streaming applications, the accuracy isanothe TCP crossing traffic will not back off due to the temporar-
primary concern any longer. The reason is that the streamihgcongestion caused by probing traffic. In fact, this commme
media applications usually scales the sending rate in stepseffectis not particular for streaming applications or Jéss net-
stead of smoothly. Thus, any bandwidth estimation resuli &i works, but for all bandwidth estimation tools. Possibleitiohs
granularity less than the streaming media encoding legpbsts include reduce the intrusiveness and convergence time,ap-t
sufficient for controlling the media scaling. For exampla, & proximate the amount of overestimation and compensate it to
media stream encoded at multiple levels of 700 Kbps, 1.2 Mbjpise final estimation of available bandwidth.

A. Extra results
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Fig. 16. Summary Results of Evaluation Case 3 (One TCP Grpdsaffic)
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Intrusiveness is another major concern for evaluating tltreaming applications tend to perform bandwidth estiomati
bandwidth estimation techniques over wireless networksequently during the whole streaming session, therefare,
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Fig. 21. Summary results of Evaluation Case 8 (Two TCP CalienTraffic)
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Fig. 23. Summary results of Evaluation Case 10 (One TCP @wssid One TCP Contending Traffic)

lower intrusiveness is critical for reducing the impactsediby works may be reduced due to the probing traffic over satugatin
the probing traffic itself. Available bandwidth of wirelesst- the wireless network. As a result of bandwidth reductioe, th
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performance of streaming media applications can also be iousses issues that may impact the performance of WBesg, ther
pacted by the heavy probing traffic. are additional issues in the implementation phase that fitegta
Robustness and usability are mandatory to all bandwidth &¥Best as well.
timation technigues. Since streaming servers and clieatdex The Linux system provides timers with milliseconslgep
signed to work in client/server mode, the usability of waiki and microseconduleepand selec} resolution timers. How-
in uncooperative environments is not an issue any longer-Hoever, these timers may not satisfy the required resoluti@on-
ever, to assure the applicability to streaming applicatidhe trol accurate sending rates. Therefore, we implement a-busy
bandwidth estimation tool should have a relative consisten- waiting timer using thgetimeofdayo provide microsecond res-
vergence time under varies channel conditions. That isaphe olution timer for the high sending rate cases. Even though th
plications expect the convergence time and intrusivereed&t busy-waiting method may increase the CPU usage of the server
bounded by upper limits, so that the applications can exgectluring measurement, the impact caused by this short measure
cost in term of time and intrusiveness on performing banttwidment duration is not significant, especially when the semdin
estimation. hosts of WBest are usually on high performance, multiproces
In summary, the multimedia streaming application in wissle Sor servers. The microsecond resolution timer togethen wit
network require a bandwidth tool with fast convergence fiméhe selectfunctions provide a reasonable sending rate control
low intrusiveness, reasonable accuracy, and consistehtor for WBest. Figure 26 shows an evaluation of the sending rate
the initializing bandwidth estimation of multimedia aggli control mechanism of WBest. The mean sending rate for and
tions, we expected the bandwidth estimation can be complthe confidence interval shows that the rate control mechanis
in few RTT time so that it will not add extra delay to the stagti works as expected. Also, the CPU usage does not have notice-
delay of the streaming. For the estimation during the stiegyn able increases when WBest is sending at the rate of 35 Mbps on
we expected convergence times smaller than the buffer time2oPentinum 4 2.8 GHz computer, where 35 Mbps is about the
the streaming application, which means a in time adaptagsn maximum effective throughput of IEEE 802.11g working at 54
fore the buffer underflow. Given the expected convergemse ti Mbps link data rate with a packet size 1460 Bytes.
of few RTT, most of the general purpose bandwidth estimation
are not qualify for multimedia applications. D. Discussion on Experiments Setup

This section provide additional information about evalat
case 6, 13 and 14. As discussed in Section IV, case 6 with

We implemented WBest on Linux system and evaluated it hUDP contending traffic flows experiences the impact of rate
our IEEE 802.11 wireless testbed. Even though Section } desdaptation. Depending on the implementation of the ratp-ada

C. Implementation Issues
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Fig. 28. AP’s data rate with two contending UDP traffic

18Mbps, 0.15%
tation algorithm, it is a normal behavior that wireless cetn

tions reduce the data rate upon multiple transmissionrtsiu
which could be caused by either low signal strength, high BER
or contention. The rate adaptation triggered by contendfng
fects may reduce the wireless network performance, which is
also demonstrated in research [31]. To describe the rapada
tion behaviors of the clients and AP, we collect and analyta d
from the wireless AP log and the packet captured on clients.
Figure 27 and Figure 28 show that both the clients and AP the
involve rate adaptation in a typical run of case 6. The AP log
also denotes that AP has a high retry rate more than 20% with
multiple retry data rate as shown in Figure 29. The throughpu
measured at one of the clients also confirm the impact caused
rate adaptation as shown in Figure 30.

24Mbps, 0.47% 11Mbps, 0.02%

36Mbps, 4.46% SMbps, 0.07%

48Mbps. 43.71% 54Mbps, 51.10%
ps, 43.71%

1Mbps, 8.34% E. Extra Error Analysis

2Mbps, 1.25%

Fig. 29. AP retries’ data rate with two contending UDP traffic
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This section provides extra error analysis for WBest tools.
The errors are computed using Equation 12. For these cases
with O available bandwidth, the error is computed for estada

54Mbps, 36.29%

12Mbps, 5.35%

24Mbps, 23.12%

36Mbps, 8.12% 48Mbps, 15.59%

crossing/contending effects. Figure 32 and 33 depictsiuheie
lative distribution of the error in effective capacity anddable
bandwidth estimation for all cases evaluated. Both thect{fe
capacity and available bandwidth have consistent estimsti

according to the CDF shown in the figures. Figure 34 shows
that the relationship between effective capacity error aral-
able bandwidth error. Even though the figure confirm that the
underestimation in effective capacity could result in eitbver-

or under-estimation in available bandwidth, it does notficon

Fig. 27. Clients’ data rate with two contending UDP traffic

that the overestimation in effective capacity always rssin
underestimation in available bandwidth. This is because th

Evaluation case 13 is designed to test WBest under rate ad@und truth used in the calculation is the median of mutipl

tation conditions. As discussed in Section lll, the ratepaligon v
is observed by a wireless sniffer. However, to show the irnpdf€ error computation.
on the packet delay, which could impact accuracy of delasetla

bandwidth estimation, we show the RTT measured by ping with

64 byte and 1460 byte packet in Figure 31. Fewere than 10% of

packets have a large RTT, where for the bad condition, inkvhic

the data rate is adapted to the channel condition, more 0#n 4

of the packets have a large RTT. The RTT changes under the

rate adaptation condition could potentially impact theusacy

of the delay-based bandwidth estimation tools.

runs, which could vary for each individual test, thus coudaiyw
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