

Common Tutor Object Platform – an e-Learning Software
Development Strategy

Goss Nuzzo-Jones
Michael A. Macasek
Jason A. Walonoski

Kai Rasmussen
Neil Heffernan

Worcester Polytechnic Institute
100 Institute Road

Worcester, MA 01609
1-508-831-5569

goss@wpi.edu
macasek@wpi.edu

jwalon@wpi.edu
kair@wpi.edu
nth@wpi.edu

ABSTRACT

The Common Tutor Object Platform (CTOP) was designed
as a lightweight component framework for creating and deploying
applications relating to Intelligent Tutoring Systems and e-
Learning. The CTOP supports a runtime for intelligent tutoring
system content deployment, a content development environment,
an extensive reporting tool, and other smaller applications. The
CTOP was designed with future development in mind, allowing
easy specification of new base objects and extension points for
future development. It has been used as the foundation of the
Assistments Project, a wide scale server based ITS deployment.
This paper documents the software engineering side, and has been
submitted in conjunction with a second paper detailing the
educational results [5]. The Assistments Project is capable of
supporting a quarter of targeted students in Massachusetts, and
optimistically scalable to the entire state and beyond.

1. INTRODUCTION

Intelligent Tutoring Systems (ITS) have been proven in the past as
an effective means of educating an audience [8]. However many
of the ITS strong points are eclipsed by the high cost involved in
the cost of construction of the system. The Office of Navel
Research has funded us to develop tools which reduce the cost of
development of ITS. It has been estimated that for one hour of
content that is delivered via a ITS it requires upwards of 200
hours of content development time [13][1]. In order to produce
content the author needs to be highly knowledgeable in several
areas including the writing of complex production rules that
requires a cognitive science background. Generally speaking most
users and potential content developers do not have the
sophisticated background required to adequately develop content
for an ITS. Many systems have attempted to lower the content
development time and recently the Assistment Project has been
able to significantly reduce the time by limiting the complexity of
the content that can be developed [18].

The term Intelligent Tutoring Systems covers a wide range of
possible computer-based tutors, from cognitive model tracing
tutors [3], constraint-based tutors [11], to pseudo-tutors. A
pseudo-tutor is a simplified cognitive model based on a state
graph. State graphs are finite graphs with each arc representing a
student action, and each node representing a state of the problem
interface [2][10]. Student actions trigger transitions in the graph,
and the current state of the problem is stored by the graph.

Pseudo-tutors have nearly identical behavior to a rule-based tutor,
but suffer from having no ability to generalize to different
problems [3]. This pseudo-tutor approach allows for predicted
behaviors and provides feedback based on those behaviors.

While in this paper there will be a focus on the Assistment Project
there are many other ITS systems available. The Cognitive Tutor
Authoring Tools [10] developed at Carnegie Mellon University
offer a robust system devoted to work space tutors. The Online
Learning Initiative (OLI) [15], also from Carnegie Mellon
University, offers tutors on many subjects and is distributed over
the internet. The National Center for Research on Evaluation,
Standards and Student Testing (CRESST) [19] offers a suite of
online tools to develop content, however this ITS is limited in that
the questions are open ended and require human intervention for
assessing the answers.

The success of ITS in general is well known, demonstrating useful
learning effects [10]. There have been ITS that have been
deployed on a wide scale [10], but they suffered from some
limitations, such as a lack of centralized logging, upgrade
difficulties, and tutor strategy inflexibility. It has been shown that
centralized logging of student actions in databases for
experimental analysis is valuable [12]. Our research sought to
address these issues, as well as provide a rich feature base for
future development of all tutor types.

The Assistment Project was previously built on top of the
eXtensible Tutor Architecture (XTA) [14] which easily allowed
for the extendibility of they system to increase functionality.
When developed the XTA proved to be a reliable system however
as time passed many of the faults of the XTA began evident the
biggest of which was scalability. This prompted the Assistment
Project Team to reevaluate the XTA and devise a new architecture
that embodied many of the same principles of the XTA but also
solved many of the on going issues present in the XTA. Out of
this redesign the Common Tutor Object Platform (CTOP). This
new architecture is the subject of this paper.

1.1 Assistments Project

The Assistments Project [16] is a multi-pronged educational
software project (see Figure 1) with three primary goals. The first
goal is to provide intelligent tutoring system content to students in
a platform independent manner. The second goal is to provide the

teachers of those students with fine-grained, useful reports
identifying the strengths and weaknesses of those students.
Finally, the third goal is providing a rapid development tool for
creating intelligent tutoring system content.

Over the past year, the system has undergone development to
provide core functionality to our first target audience, students
preparing for the MCAS test in 8th grade. This academic year,
tutoring content will be provided to 10th grade students in
Massachusetts.

Figure 1 - Assistments Homepage

1.1.1 Goal of CTOP
The goal of this project was to create a component framework and
API for developing applications dealing with Intelligent Tutoring
Systems. This framework grew from the runtime XTA described
in [14], as well as providing support for other applications. This
paper will first examine the architecture of CTOP, then move into
specific application instantiations, and conclude with anecdotal
and scalability results from those applications and their
development.

2.0 ARCHITECTURE

The CTOP is not a full feature component model (i.e. Enterprise
Java Beans or .NET Framework); as such a replication of existing
technology would be redundant and expensive. However, CTOP
provides some services and features similar to existing component
models, allowing developers to engineer their component-based
applications on top of this platform.

2.1 Core Object Model

The core object model consists of a series of components
considered to be universally applicable in many different pieces of
ITS software. These core objects focus on content management
and representation, as well as complex metadata associated with
that content.

Content is rooted in curriculum components, which represent a
series of problems. The curriculum unit can be conceptually
subdivided into two main pieces: the curriculum itself, and

sections. The curriculum is composed of one or more sections,
with each section containing problems or other sections. This
recursive structure allows for a rich hierarchy of different types of
sections and problems.

The section sub-component is an abstraction for a particular
listing of problems. This abstraction has been extended to
implement our current section types, and allows for future
expansion of the curriculum unit. Currently existing section types
include “Linear” (problems or sub-sections are presented in linear
order), “Random” (problems or sub-sections are presented in a
pseudo-random order), and “Experiment” (a single problem or
sub-section is selected pseudo-randomly from a list, the others are
ignored). The progress saves an individual student's state about a
given shared curriculum and its sections. Also contained within
the progress is metadata such as total number of problems
completed and the last updated time.

The problem component represents a problem to be tutored,
including questions and answers required to solve the problem.
Each of these questions are represented by a problem composed of
two main pieces: an interface and a behavior.

The interface definition is interpreted by the runtime and
displayed for viewing and interaction to the user. This display
follows a two-step process, allowing for easy customization of
platform and interface specification. The interface definition
consists of “high-level” interface elements (“widgets”), which can
have complex behavior (multimedia, spell-checking text fields,
algebra parsing text fields). These “high-level” widgets have a
representation in the runtime composed of “low-level” widgets.
“Low-level” widgets are widgets common to many possible
platforms of interface, and include text labels, text fields, images,
radio buttons, etc.

The behaviors for each problem define the results of actions on
the interface. An action might consist of pushing a button or
selecting a radio button. Examples of behavior definitions are
state graphs, cognitive model tracing, or constraint tutoring,
defining the interaction that a specific interface definition
possesses. Several types of behaviors presently exist (state graph
tutor, JESS cognitive model), but the interpretation and
programmatic response to the behaviors is up to the consuming
application, such as the runtime described below.

Behaviors interact with applications built on the CTOP by
producing and consuming actions. These actions are
representations of state changes in a specific problem interface.
The CTOP provides definitions of generic actions, as well as
actions for each type of interface widget. These actions form a
messaging layer that allows for communication between
components. To facilitate scalability and loose coupling of
components, these actions are XML based and can be passed over
a network connection.

Transfer models provide a metadata store of a network of
problems related to knowledge components. This mapping
provides a way to track student knowledge over time, as well as a
way to organize problems in a hierarchal fashion with regard to

the content of the problem. Transfer models can be used to
provide a rich model of student knowledge as well as a metric for
comparing the value of different problem organizational
structures.

Finally, there are generic component types, which can be
associated with virtually every other component in CTOP. These
include properties and preferences, which provide metadata, both
time and user specific about specific components or instantiated
objects.

2.2 Datalayer
The Datalayer’s function is to decouple the runtime system from
storing and retrieving our content objects. Previous
implementations of the Assistment system had embedded file
system calls buried within the code. Objects contained knowledge
of how they were stored and in what format. In the move
towards the component-based architecture, it was decided to
divorce objects from this knowledge. The philosophy of the
Datalayer is that objects should not directly know how to persist
themselves, but instead have access to all data that needs to be
persisted.

The Datalayer also provides a level of transparency to the CTOP.
Users of the CTOP easily access our core objects through the
simple Datalayer API, and never worry about storage
mechanisms. This allows for different Datalayers that all follow
the same API to be easily swapped and CTOP applications can
remain unawares. In fact, multiple data sources can be used at the
same time, allowing different types of components to be stored in
different mediums simultaneously. For instance, it may be
beneficial for some components to be serialized to a relational
database, whereas perhaps others would be more effectively
stored on a file system.

Each component’s interface contains methods that provide access

to the object’s persistable data. These persistence methods are
shared for every instance of that component. For example, every
behavior component persists a unique ID, a type, a description,
and a link to an interface. The Datalayer uses these methods to
create some storable media. Our current implementation creates
an XML file that represents the object, and then stores this in our
database. It is easily conceivable that this file could also be stored
directly onto a file system, or sent across the network to another
machine. A previous implementation of the Datalayer used
relational persistence to store our object structure a relational
database. It did this using the tool Hibernate [7]

2.3 Extensibility
The CTOP was designed with extensibility in mind. All of the
components described above provide interfaces for their
interaction and can thus be easily overridden by a developer.
There are also obvious points of coupling where other providers
can easily be swapped in and out, such as in the Datalayer, using a
variety of methods for persistence.

CTOP provides a number of API’s to handle some lifecycle
functions, as well as interaction with various components. The
Datalayer described above provides an API that provides inflated
components of the various types to a consuming application. This
API also handles interaction with various component metadata
stores. A separate API is provided for interaction with transfer
models.

An additional API is created by the events generated by problems
as actions. The actions are generated by individual interface
components and thus are not located in a single entity; however
they follow a standard format and can be viewed as an XML
service of sorts.

3.0 APPLICATIONS

Figure 2 - Runtime

There are a number of applications that presently make up the
Assistments project, and a number of additional applications and
extensions in development. All of these reuse code from the
CTOP, some more than others. The most mature and complete
pieces of software are detailed here.

3.1 Runtime

The runtime application (see Figure 2) existed previously to the
creation of CTOP, as the eXtensible Tutor Architecture (XTA)
[14]. However, with the creation of CTOP, the runtime became
more modular, allowing it to interact easily with other
applications. The runtime serves as a content deployment
application. Its purpose is to guide a student through a curriculum
that consisting of problems. The CTOP objects comprise of the
majority of the runtimes behavior. First the curriculum and the
students progress must be retrieved from the Datalayer. The
runtime must retrieve the current problem from the curriculum
and output it to the student. After a student has performed
actions, the runtime must react to those actions and run through
the problem. In this sense the runtime also acts as an event
handler for the core component translating actions from the user
to the objects and representing this in the output.

There is also a set of important specialized componentized objects
that the runtime relies on. The agenda controls the ordering of
problems outside of the curriculum and the order of tutoring.
Problems contain strategies that can change the agenda. This
provides an innovative dynamic staging of problems. There is
also a logging unit that records every student action. This is
useful for the assessment of students, allowing us to provide
reporting to teachers. It is also used to detect student “off-task
behavior” and to replay through problems step-by-step if a student
reattempts an unfinished problem.

3.1.1 Runtime Architecture
The agenda is a critical element of the runtime application.
Contained within the agenda is a ordering of problems and
tutoring messages (hints or bug messages). The contents of the
agenda are operated upon by the various tutor strategies, selecting
new problems from sections (possibly within sections) within a
curriculum to append and choosing the next problem to travel to.
The agenda in conjunction with tutor strategies allows for high-

level control over problems and provides flow control between
problems. For instance, a scaffolding tutor strategy arranges a

number of problems in a tree structure, or scaffold. When the
student answers the root problem incorrectly, a sequence of other
problems associated with that incorrect answer is queued for
presentation to the student. These scaffolding problems can
continue to branch as the roots of their own tree

Other types of tutor strategies already developed include message
strategies, explain strategies, and forced scaffolding strategies.
The message strategy displays a sequence of messages, such as
hints or other feedback or instruction. The explain strategy
displays an explanation of the problem, rather than the problem
itself. This type of tutoring strategy would be used when it is
already assumed that the student knew how to solve the problem.
The forced scaffolding strategy forces the student into a particular
scaffolding branch, displaying but skipping over the root problem.

The logging unit receives detailed information from all the other
units relating to user actions and component interactions. These
messages include notification of events such as starting a new
curriculum, starting a new problem, a student answering a
question, evaluation of the students’ answer, and many other user-
level and framework-level events.

Capturing these events has given us an assortment of data to
analyze for a variety of needs. User action data captured allows
us to examine usage-patterns, including detection of system
gaming (superficially going through tutoring-content without
actually trying to learn) [20]. This data also enables us to quickly
build reports for teachers on their students, as well as giving a
complete trace of student work. This trace allows us to replay a
user’s session, which could be useful for quickly spotting
fundamental misunderstandings on the part of the user, as well as
debugging the content and the system itself (by attempting to
duplicate errors).

An emerging role of the runtime is to perform instructional
method comparisons. This is a new research topic for our system.
Early experiments use student log data in order to detect gaming
behavior such as quickly exhausting hints for questions without
giving an attempt at the problem. For example, we have also
provided a visual representation of a students gaming index on the
screen, to give visual cues to instructors to intervene (see Figure
3) [20].

 Figure 3 - Visual Feedback on Student Actions

Figure 4 - Runtime Architecture

3.1.2 Use of CTOP objects in the Runtime
The runtime’s first use of the CTOP objects is through the
progress component, which saves a student’s work in relation to a
curriculum of problems. This is the main API available from
CTOP that the runtime uses to run problems. The progress
contains indexes into the curriculum and its sections and allows a

student to resume their work including partially completed items.
The curriculum and sections are one way that the CTOP provides
extensible flow of control. Each section that was previously
mentioned will behave differently in similar situations, such as a
random section will provide every student with a unique ordering
of problems. We are currently performing research on new
section types including a dynamic section, which will contain a
unique set of problems (not just order). These problems will be
chosen based on a set of skills that might be required to answer
the problem, and the student’s known strengths and weaknesses.

As described above, problems are composed of behaviors and
interfaces. A problem is the second API available to the runtime.
The runtime must worry about displaying the output provided by
the problem’s interface as well as translating student actions to the
problem’s behavior.

The runtime has an event model for handling incoming student
actions (see Figure 6). Student actions come in as primitive XML
messages that must be translated into a consumable (by the
various components) form. Each primitive action message is
associated with an interface element that produced the action.
The runtime must go to the agenda in order to retrieve the
associated interface element. This element translates the
primitive action into a realized object. The runtime then passes
this action to the problem’s behavior. The behavior object then
acts upon this action. If it is an incorrect answer it may use tutor
strategies to place scaffolding questions or buggy messages into
the agenda. If it is correct, the runtime will just move onto the
next agenda item.

Figure 5 - Builder

Figure 6 - Action Lifecycle

As described in earlier sections, interfaces contain “high-level”
interface elements. These interface elements can produce a “low-
level” output. This primitive output is sent to the runtime as an
XML message. It is the job of the runtime to pass this XML to an
interface display application, which produces interfaces for
specific platforms. At present we have implemented a Java Swing
and a HTML interface display application. The use of this low-
level output allows the runtime to be ported to many different
platforms.

3.2 Assistment Builder
The Assistment Builder (see Figure 5) was created as a web

application for rapid development of content for the Assistment
project [18]. The Assistment Builder operates on the problem
component, as well as on its behavior, interface, and properties.
The Assistment Builder also provides an interface for setting
application-specific preferences.

The primary responsibility of the Assistment Builder is providing
a user interface for modifying a problem’s behavior, interface, and
properties. It does this by presenting the user with pages
containing forms representing the relevant configurable parts of
each of these components. As explained above a problem’s
interface is displayed for viewing and interaction with the user
and is made of high level interface elements. The Assistment
Builder uses the Interface API to specify which high level widget
is used for interacting with the user. Another manner in which the
Assistment Builder uses the Interface API is by adding the
problem’s answers as a component of the interface. The
Assistment Builder uses the Behavior API for creating a state
graph linking states and strategies using actions produced by the
interface. The Assistment Builder allows a user to change a
problem’s behavior by specifying which strategy should be taken
upon an answer action. Message strategies are represented as hints
and “buggy messages” (messages presented if the user selects an
incorrect answer) or hints, and scaffolding strategies are
represented by questions nested in a tree structure. Furthermore,
the Assistment Builder maintains the coupling between the
behavior and the interface by modifying the interface whenever a
strategy is changed in the behavior.

3.3 Assistment Reports

The primary goal of the reporting tool [6] is to relevantly relate
each problem to a set of skills or concepts and then
communicating that information to teachers based on their

Figure 7 – Gradebook Report

individual students. These skills or concepts are then arranged in a
hierarchy of what has been termed knowledge components. This
hierarchy of knowledge component is a transfer model, and
provides a detailed cognitive model of the problems being
mapped to. At present, the project has completed a transfer model
for 8th grade MCAS items and leverages this knowledge slightly
in our reporting. However, the creation of larger and more
detailed transfer models such as 10th grade math, as well as
improved tools for utilizing these cognitive maps is an obvious
next step.

The reporting application is in fact a multitude of smaller
applications, many customized to their own specific report.
However, they have a common touch point in some of the CTOP
objects. Actions are of course the base component operated on by
the reporting application, they are the target of most of the
analysis of the myriad reports. Most of the reporting tools
available rely on the Transfer Model components to relate
problems to concepts. These mappings allow reports to be
organized and explored by concept, as well as teachers to evaluate
the knowledge of their students in this manner. Many reporting
sub-applications also use problem, curriculum, and behavior
components to further sort, categorize or otherwise organize
reporting information.

The reports themselves are all web based (see Figure 7), providing
teachers and educational researchers within the Assistments
project live access to student data. The reports are security
conscious, allowing no confidential material to be shared outside
of the classes they belong, but also allowing useful system wide
reports to be shared among teachers and researchers.

3.4 Transfer Model Constructor
The Transfer Model constructor is a application presently under
development by the Assistments project. It is a desktop
application, relying on the transfer model, problem, and interface
components of the CTOP. The constructor will be used to
assemble, view and manipulate entire transfer models as graphs.
While the Assistment Builder (see above) provides some means
for the manipulation of transfer models, this will provide a more
comprehensive tool. This application is undergoing rapid
development and a prototype is anticipated before the end of
2005.

3.5 Portal
The Assistment Portal is the gateway to the Assistment Project via
the World Wide Web and houses several smaller applications. The
Portal focuses on the systems users and provides a means of
accessing all aspects of the system. As a result security is an
important part of the Portal as well as enabling collaboration
among teachers. CTOP provides functionality to the Portal in the
form of curriculums, problems, and a preference engine.

Portal security is designed to prevent users for accessing part of
the system they are not allowed to use. Every user that wishes to
use our system is required to have a username/password in order
to login. Once logged in they are directed by the Portal to areas of

the system they have permission to view. In addition to this level
of security every application in the Portal and throughout the
system verifies that the user is allowed to access this application.
This is done to prevent users from simply logging into our system
and then entering the URL for an application instead of utilizing
the navigation provided by the Portal. System permissions are
determined by the groups to which a user belongs. If a user is a
member of multiple groups that conflict with each other the user’s
permission are derived from the group that provides them the
most access.

Collaboration is also an important focus of the Assistment Portal.
Users who can participate in a collaborative setting are content
creators and group owners (typically teacher users). Content
creators are able to collaborate by sharing created Assistments and
curriculums with other system users; while this collaboration
primarily takes place between users within a particular school it is
not limited to school level collaboration. When creating shares a
user can also specify access levels to that content. In addition
explicitly created shares there is a Released Assistment pool that
is, by default, shared with every content creator. This pool is
defined by the Assistment Project Team and consists of high
quality items; users have read-only access to this content. If
content is shared, regardless of permission level, it is then
available to be utilized by any user in the share for his/her
curriculums and assignments. Content that is shared as writable
may be modified by any member of the share. Collaboration
enables content creator to share their ideas and strategies, which
in turn allows authors to perfect their techniques and produces
increasingly better and more effective content.

The Preference Engine is not a particular tool but is usable by all
applications available in the Assistment System. This engine acts
as a central repository for all possible preferences for all
applications. Applications query the engine to obtain the users set
preferences for that particular application. It is the job of each
application to provide an interface to set permissions for that
application as well as define how the preferences affect the tool.

The smaller applications housed in the Assistment Portal are the
Assistment Browser, Curriculum Manager, Assistment Finder,
and Class Manager. Each of these applications provides a specific
function that enables users to effectively create content and
manage their classes.

3.5.1 Assistment Browser
The Assistment Browser provides a means for content creators to
view, edit, and share their developed content. The browser acts on
groups of problems, defined in CTOP, and allow users to markup
their content with metadata that provides meaningful relationships
among problems and Knowledge Components as well as
relationships between similar problems. From the browser it is
possible to evoke the Assistment Builder application to which the
problem is passed for editing. The ability to preview an item is
also provided to allow a user the ability to quickly review a
complete problem.

3.5.2 Curriculum Manager
The Curriculum manager is an application concerned with the
creation, modification, deployment, and sharing of curriculums.
Curriculum objects, provided by CTOP, are created by a user
from any problems they have access to which may include their
content, shared content, as well as released problems. In order for
a curriculum to be used by students in the system it must be
deployed and the Curriculum Manager provides an interface from
which that can be accomplished. Teachers can assign a curriculum
created by them or from a shared resource to one or more of their
classes. Once a curriculum is assigned the students in a particular
class can begin to work on that assignment. Results from the
students’ interactions with the curriculum can immediately be
seen in the Assistment Reporting [6] system. Sharing of
curriculums functions the same as sharing of problems from the
Assistment Browser.

3.5.3 Assistment Finder
The Assistment Finder is a simple search tool that is available for
users to search over the vast amounts of materials for which they
have access. The finder is able to locate problems, curriculums,
users, and groups/classes. This tool is especially effective if a user
only remembers or knows only a small amount of information
about some viewable content. Permissions are strictly enforced in
the finder to ensure users only are able to search over materials to
which they have access. The finder presents results to users such
that they can be loaded into the associated application.

3.5.4 Class Manager
The Class Manager is provided primarily as a means from which
teachers can administer their classes. From the class manager
users are able to view all their classes, view shared classes, share
their classes, add classes, add students, drop students, and markup
students. The idea behind shared classes is primarily for sharing
of data and student results. However it also allows for users to be
able to administer other user’s classes. This functionality allows
for teacher aids and supervisors to better interact with classes
under their control. Additionally it allows schools to mimic their
department hierarchies in the system allowing for a
synchronization of classes.

4.0 RESULTS

4.1 Framework Use
It is difficult to empirically assess the impact of the CTOP
framework on development time and ease. However, there is
abundant anecdotal evidence that this component framework
assists in the development of new ITS applications.

The CTOP framework was developed specifically for the three
applications mentioned above, the runtime, reporting, and builder.
These applications had existing versions before the inception of
CTOP [14][6][18], but understandably required significant
revision to operate on the new framework. The respective
developers accomplished this revision in a relatively short period
of time, a matter of weeks. It is also important to note that the
developers accomplishing the revisions were not the original

developers of most of the applications. Given the size and
complexity of these applications, this is an encouraging anecdotal
result on the developer usability of the framework.

In terms of CTOP maintenance and extensibility, the Datalayer
provides a strong example of how the component nature allows
extension. During scalability testing, the Datalayer component
employed a backend relational database via Hibernate for
persistence of CTOP components. As testing was scaled upward,
this configuration proved unstable, and it was deemed unusable in
the long term. We then replaced the Datalayer with a custom
persistence scheme to improve performance. This replacement
was done seamlessly, in the span of days, and required virtually
no rewrite of existing applications.

Problem definitions and interface element extensions are prime
targets for extension within CTOP. Developers on the Assistments
project have already extended new interface elements, making
them available to the myriad of applications. This includes a “fill-
in-the-blank” multi-answer widget, as well as a ranged answer
field.

4.2 Runtime Scalability
One of the goals of the Assistments project is to provide its
instructional content to many students across Massachusetts and
eventually other states. To this end, the content deployment or
runtime (as well as other applications) must be scalable. Since the
runtime application is perhaps the application with the most
existing dependencies on the CTOP, this is a prime target to test
the scalability of CTOP itself.

4.2.1 Methods
To test scalability, the current production servers of the
Assistments Project were used during off-peak hours (few or no
other users). A simulation of a student logging into the Portal
application, selecting a curriculum, and proceeding through a
sequence of problems was recorded via JMeter [4]. This
simulation was then conditioned on bounded randomized timing
between student actions and requests, to more closely
approximate reality. This recorded simulation was then run back,
again using the JMeter software, with another bounded random
start time (a few seconds). This simulation could then be scaled
up via JMeter to simulate hundreds of users replicating the actions
of students using the runtime.

The servers being used were both 3-gigahertz dual Xenon
processors with 4 gigabytes of RAM. The application server being
used was Apache Tomcat 5.0.28 with 2 gigabytes allocated to its
Java virtual machine. The Tomcat thread limit was pushed to
1000, and max spare threads were increased to 100. The database
server was of the same hardware specification, and running a
relational database optimized for transaction processing. The
runtime and CTOP software was all installed on the application
server machine, which is a possible bottleneck.

4.2.2 Results
The results from the JMeter simulations were encouraging. Up to
200 concurrent users simulated without an end-user performance
decrease. This is indicated by an average of 2.5 second request
response time. At approximately 400 concurrent users, some

operations, such as problem inflation on a student proceeding to
the next problem, suffered from a slightly decreased response time
(averaging nearly 5 seconds). This is likely due to a bottleneck at
the connection pool for inflating problems from the Datalayer. At
600 concurrent users, the same operation continued to be the most
significant bottleneck (average at approximately 7 seconds
overall, but spiking up to 30 seconds for some requests), but some
other operations also had increased response time, though not to
that extent. Memory and processing consumption on the
application server were not a significant concern. As one might
expect, the database instance and its server machine were reliable
and unstressed by the concurrence.

 These observations imply that the only bottleneck seems to be the
application server connection pool, which is easily overcome with
a cluster of application servers. Even given these limitations, our
current dual server setup could support a large quantity of
students, perhaps as many as a quarter of the active students in
Massachusetts. This estimate is achieved via the number of
eligible students in Massachusetts (100,000) using the system
every 10 days, students spread over 7 periods yields roughly 1500
users at any given time. To support this, we would need (given
present scaling), four pairs of application server/database
machines. In terms of current usage, the Assistment system
presently supports over one thousand students, spread across six
schools and three towns. These students are under the instruction
of twenty teachers who use our reporting application to monitor
student progress and activity. Given these results, we are highly
encouraged about the scaling potential of the runtime and CTOP
in the present and the long term.

4.3 Content Development Results
The Assistment Builder collects log data associated with content
that is created by authors. This data is then analyzed and the
results are used, in part, to determine the total cost of content
creation and deployment in the Assistment System. While the
analysis is ongoing the current results are promising. These results
reflect the usage of the CTOP.

Previously log data was collected on fourteen problems [18]. The
data suggested an approximate time of 90 minutes to create an
problems ready for use. Currently there is log data for 271
completed problems. While these data are still being analyzed our
initial findings suggest similar numbers. Of the 271 logged
problems, not all are considered release quality. Work is currently
being done to extract information from these logs about creating
problems of release quality. This would include time spent
outside of the actual builder application performing tasks such as
planning and editing images, as well as organizing problems into
curriculums for class assignment.

5.0 CONCLUSIONS
With the development of the CTOP, the Assistments Project
continues to move forward, providing useful tools to teachers and
students. As this project continues to be the driving force behind
the CTOP, we are quite pleased with the development and
scalability success of the platform.

We will continue to adopt and revise the CTOP as a means to
extend the Assistments project, but are looking to provide it to the
larger ITS and e-Learning community as well. The CTOP itself is
a very flexible platform, and as though it does not seek to provide
all the services a full component framework does, we feel it is
quite powerful.

5.1 Future Work

As mentioned previously, there are other applications and
extensions presently being developed with the Assistments
project. These include extensions to support Bayesian inference
for problem selection within the runtime, additional reports, as
well as an integrated curriculum development and reporting tool.
Additional collaborative tools are also forthcoming, allowing
content authors who use the Assistment Builder to easily manage
and deploy their work while collaborating with other authors.

Yet another future possibility is the ability to offload the
evaluation of a problem. This will enable the Assistment System
to send the users answer to a remote server for evaluation taking
the load off of the main web servers. In addition we will be able to
support the evaluation of questions that the Assistment System is
not capable of evaluating. One can imagine a scenario under
which an author has a working Java code verification system that
can be used to evaluate the student’s response to a particular Java
question. The author will be able to specify the remote server to
send the students response to, the remote server will evaluate the
code entered by the user, and a response will be sent back to the
Assistment System. The response is then simply displayed to the
user or directs the Assistment System to the next course of action.

6.0 ACKNOWLEDGEMENTS

We would like to acknowledge the US Department of Education,
National Science Foundation, Office of Naval Research, and the
Worcester Public School System for providing the means to
accomplish this research.

7.0 REFERENCES

[1] Anderson, J.R., (1993). Rules of the Mind. Hillsdale, NJ:

Erlbaum.
[2] Anderson, J. R., Corbett, A. T., Koedinger, K. R., &

Pelletier, R. (1995). Cognitive tutors: Lessons learned. The
Journal of the Learning Sciences, 4 (2), 167-207.

[3] Anderson, J.R., & Pelletier, R. (1991). A development
system for model-tracing tutors. In Proceedings of the
International Conference of the Learning Sciences, 1-8.

[4] Apache JMeter. (2005). http://jakarta.apache.org/jmeter/
[5] Feng, M., Heffernan, N.T, Koedinger, K.R. Addressing the

Testing Challenge with a Web-Based E-Assessment System
that Tutors as it Assesses . Submitted to WWW2006,
Edinburgh, Scotland (2005)

[6] Feng, Mingyu, Heffernan, N.T. (2005). Informing Teachers
Live about Student Learning: Reporting in the Assistment

System. Submitted to the 12th Annual Conference on
Artificial Intelligence in Education 2005, Amsterdam

[7] Hibernate Relational Mapping Tool. (2005).
http://www.hibernate.org/

[8] Jackson, G.T., Person, N.K., and Graesser, A.C. (2004)
Adaptive Tutorial Dialogue in AutoTutor. Proceedings of the
workshop on Dialog-based Intelligent Tutoring Systems at
the 7th International conference on Intelligent Tutoring
Systems. Universidade Federal de Alagoas, Brazil, 9-13.

[9] Koedinger, K. R., Aleven, V., Heffernan. T., McLaren, B. &
Hockenberry, M. (2004) Opening the Door to Non-
Programmers: Authoring Intelligent Tutor Behavior by
Demonstration. Proceedings of 7th Annual Intelligent
Tutoring Systems Conference, Maceio, Brazil. pg.162-173

[10] Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark,
M. A.(1997). Intelligent tutoring goes to school in the big
city.International Journal of Artificial Intelligence in
Education, 8,30-43.

[11] Mitrovic, A., & Ohlsson, S. (1999) Evaluation of a
Constraint-Based Tutor for a Database Language. Int. J. on
Artificial Intelligence in Education 10 (3-4), pp. 238-256.

[12] Mostow, J., Beck, J., Chalasani, R., Cuneo, A., & Jia, P.
(2002c, October 14-16). Viewing and Analyzing
Multimodal Human-computer Tutorial Dialogue: A
Database Approach. Proceedings of the Fourth IEEE
International Conference on Multimodal Interfaces (ICMI
2002), Pittsburgh, PA, 129-134.

[13] Murray, T. (1999). Authoring Intelligent Tutoring Systems:
An Analysis of the State of the Art. International Journal of
Artificial Intelligence in Education, 8, 30-43.

[14] Nuzzo-Jones, G., Walonoski, J.A., Heffernan, N.T., Livak, T.
(2005). The eXtensible Tutor Architecture: A New
Foundation for ITS. In Proceedings of the 12th Annual
Conference on Artificial Intelligence in Education 2005

Workshop on Adaptive Systems for Web-Based Education:
Tools and Reusability, Amsterdam

[15] Published by Carnegie Mellon University (2003), Open
Learning Initiative (OLI), http://www.cmu.edu/oli/

[16] Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N.T.,
Aniszczyk, C., Choksey, S., Livak, T., Mercado, E., Turner,
T.E., Upalekar. R, Walonoski, J.A., Macasek. M.A.,
Rasmussen, K.P. (2005) The Assistment Project: Blending
Assessment and Assisting. 12th Annual Conference on
Artificial Intelligence in Education 2005, Amsterdam

[17] Rose, C. P. Gaydos, , A., Hall, B. S., Roque, A., K.
VanLehn, (2003), Overcoming the Knowledge Engineering
Bottleneck for Understanding Student Language Input ,
Proceedings of AI in Education.

[18] Turner, T.E., Macasek, M.A., Nuzzo-Jones, G., Heffernan,
N..T, Koedinger, K. (2005). The Assistment Builder: A
Rapid Development Tool for ITS. Poster in the 12th Annual
Conference on Artificial Intelligence in Education 2005
Workshop on Adaptive Systems for Web-Based Education:
Tools and Reusability, Amsterdam

[19] Vendlinski, T., Niemi, D., Wang, J., Monempour, S., Lee, J.
(2005).Improving Formative Assessment Practice with
Educational InformationTechnology. American Educational
Rsearch Association 2005 Annual Meeting.

[20] Walonski, J.A. & Heffernan, N. T. (2005) Towards
Improving the Assistment System by Tracking Student Off-
Task Behavior. In preparation for publication.

