WPI-CS-TR-05-19 Nov. 2005

Wireless Sniffing by Example
How to Build and Use an IEEE 802.11 Wireless

Network Sniffer

by

Mingzhe Li
Mark Claypool
Robert Kinicki

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280




Wireless Sniffing by Example
How to Build and Use an IEEE 802.11 Wireless Network Sniffer

Mingzhe Li, Mark Claypool, and Robert Kinicki
{1mz,claypool,rek}@cs.wpi.edu

CS Department at Worcester Polytechnic Institute
Worcester, MA, 01609, USA

November 30, 2005

1 Introduction

IEEE 802.11 Wireless Sniffers have been widely used in research and network management communities
because of their capabilities to monitoring network traffic at the MAC layer and above. However, most
commercial wireless sniffers are costly and are complex to use and do not have the flexibility of an open
source solution. This document describes how to build and use a basic IEEE 802.11 wireless sniffer from
open source software and off-the-shelf wireless networking hardware. This “homemade” wireless sniffer
will still provide basic functionality for monitoring wireless 802.11 networks, but with a reduced cost. All
of the tools and packets included in this document were gathered from Internet sources. You can refer to
the links embedded in this document for more detailed information.

The document is organized as follows: Section 2 introduces related wireless measurement approaches
and other related works; Section 3 describes how to build the wireless sniffer; and Section 4 discusses what
can be done by using this homemade sniffer. Finally, have fun with your new sniffer, but use responsibly
and use at your own risk.

A technical report version [1] of this paper is also available at the Wireless Streaming Multimedia Lab
(WSML)! webpage.

2 Background and Related Work

Wireless measurements can be done either at the Access Point (AP), mobile host, or by a special designed
network monitoring/sniffing system. For instance, the research in [2] characterizes user behavior and wire-
less network performance in the public IEEE 802.11 network of a conference by collecting Simple Network
Management Protocol (SNMP) traces from wirless APs. Similarly, research in [3, 4, 5] analyzes either
metropolitan area or campus area wireless networks by collecting AP system log and SNMP information.
Additionally, Ho et al. [6] present VISUM, a scalable framework for wireless network monitoring based on
similar methodology. VISUM relies on a distributed set of agents within the network to monitor network
devices and therefore supports a much larger scale of networks.

Wireless measurement can be applied to the mobile host. Wireless Research API (WRAPI) [7] is a
software library that allows applications running in user-space on mobile hosts (and APs) to query/set
information in the IEEE 802.11 network. WRAPI provides an interface for applications to monitor the
WLAN in real time by interacting with Network Driver Interface Specification (NDIS) stack of Windows

Yhttp://perform.wpi.edu/wsml/


http://perform.wpi.edu/wsml/

XP. Since WRAPI does not make direct contact with the hardware driver, it is hardware independent and
supports all 802.11b and 802.11g compliant hardware in Windows XP systems. However, WRAPI cannot
provide detailed information, such as packet level statistical information and does not work in promiscuous
mode, which limits its capability as a network monitoring tool. Previous research [8] has used WRAPI to
capture the WLAN performance information, including wireless layer Received Signal Strength Indicator
(RSSI), MAC layer retry counts, multiple retry counts, ACK failure counts and duplicate frame counts.

To get MAC level frame information for a wireless network, a wireless sniffer system is usually used.
A wireless sniffer can be installed on a host under measurement, but in most cases, it is installed on an
independent device, such as a mobile computer or an PDA system. Therefore ,the sniffer can monitor the
wireless network in promiscuous mode without interfering with the stations under measurement. Wireless
sniffers can capture not only the data frames, but also management frames, such as beacon frames, and
RTS/CTS/ACK frames. However, a wireless sniffer requires special hardware and driver support. The
most popular wireless sniffer and analyzer software includes Ethereal?, Kismet® and some commercially
available wireless sniffers such as Sniffer Wireless* °, AiroPeek NX%, and more. Wireless sniffers have been
widely used in wireless performance research, such as independent sniffers used to measurement streaming
media over wireless [9, 10] and to measure a congested wireless LAN [11], and on the host as in the link
level measurement research for a wireless roof network [12]. Moreover, in the network monitor research
in [13], a complete wireless sniffer system is implemented and used to characterize a typical computer
science department WLAN traffic.

3 Build the Sniffer

The wireless sniffers used in our research are built on computers with Linux operating systems and prism
GT-based wireless interface cards. The operating systems we’ve tested are SUSE (Novell) Linux release
9.0/9.1/9.2/10.0 and Linux Fedora Core 3 where the kernel version can be either 2.4.x or 2.6.x. The
wireless network interface cards tested are Netgear WG 511 version 1 PCMCIA card and Allnet ALLO0271
54Mbit Wireless PCI adapter. Both of these cards are built on prism GT chip set”. The following steps
describe how to build a wireless sniffer with SUSE Linux operating system.

1. Install the SUSE Linux system with your prism GT PCI/PCMCIA card plugged in the system.

The prism GT card will be automatically detected during the installation. However, the firmware
is not installed by default. The system tool yast2 must be run manually to perform online update
and select to download the firmware. To make the next step easier, the Linux kernel source needs to
be installed when the Linux operating system is installed. Refer to the SUSE Linux® for a detailed
installation guide.

2. Update the driver (prism54 kernel module) to the latest version.

If the Linux version is SUSE 9.2 or later, the driver version does not need to be updated, unless you
want to rebuild the driver to modify the functionality.

Before the driver is updated (kernel module prism54), make sure that the wireless interface card
works well under the default prismb54 module provide by SUSE release. The general Linux com-
mands for testing the card status include iwconfig, iwlist and iwpriv. Assume the wireless

*http://www.ethereal.com

3http://www.kismetwireless.net/index.shtml

*http://www.sniffer.com

*Which used to be Network Associates Sniffer
Shttp://www.wildpackets.com/products/airopeek/airopeek_nx/overview
"http://www.prism54.org/

8http://www.novell.com/linux/SUSE/


http://www.novell.com/linux/SUSE/
http://www.prism54.org/
http://www.wildpackets.com/products/airopeek/airopeekprotect global let unhbox voidb@x kern .06emvbox {hrule width.3em}nx/overview
http://www.sniffer.com
http://www.kismetwireless.net/index.shtml
http://www.ethereal.com

interface card is bound to interface name ethl. Then the commands iwconfig ethl and iwlist
ethl scan will show the configuration of the wireless interface and the currently available wire-
less networks, respectively. For more information about wireless tools under Linux, refer to the
wireless tools for Linux?. However, it is not necessary to install these tools because they are already
included by default in the SUSE Linux release.

The latest stable release of the prism54 kernel module at the time of this document (December
2005) is version rel-1-2, which can be downloaded from the Prism54 Project webpage'?. Detailed
installation steps of the prism54 is included in the README file included in the rel-1-2 tarball.

3. Create an interface configuration file.

After the prism54 module is installed, modify the interface configure file that will be used to bring
the interface up. For SUSE Linux, use either the configure tool yast2, or manually modify the
configuration file under the default location /etc/sysconfig/network/ifcfg-ethl. There are few
lines that need to be changed:

ONBOOT=’no’
WIRELESS=’yes’
WIRELESS_MODE=’Monitor’

Applying sudo ifup ethl; sudo iwpriv ethl set_prismhdr 1 will bring the interface up in the
monitor mode, with AVS!! header dump (which dumps the extra PHY/MAC layer information into
a emulated header of the wireless frames) option enabled. The AVS header is discussed in Section 4
in detail.

4. Use network sniffing tools to capture frames.

After bringing the network interface up, you may use popular network sniffing tools to capture and
analyze the frames, such as tcpdump'?, Ethereal'®, or Kismet'*. To select the channel on which to
sniff, use sudo iwconfig ethl channel x to setup the channel you want to monitor, where x is in
integer number from 1 to 11 (in the USA) of the channel.

4 Use the Sniffer

As discussed in Section 2, network sniffing is one method for monitoring wireless networks. It comes with
advantages and disadvantages:

e Advantages. Sniffing from an independent sniffer will not cause any interference with the hosts
under test in wireless experiment. Plus, sniffing can provide frame level information and wire-
less network conditions, such as the RSSI and sending capacity. Wireless sniffers can also capture
wireless management frames, such as RTS/CTS, Authentication/Deauthentication, and Associa-
tion/Disassociation. Thus, sniffers can be used as wireless network diagnostic tools.

“http://www.hpl.hp.com/personal /Jean_Tourrilhes/Linux/Tools.html
http:/ /www.prism54.org/
Yhttp://www.ethereal.com/docs/dfref/w/wlancap.html
2http:/ /www.tcpdump.org/
3http:/ /www.ethereal.com
Y“http://www.kismetwireless.net /index.shtml


http://www.kismetwireless.net/index.shtml
http://www.ethereal.com
http://www.tcpdump.org/
http://www.ethereal.com/docs/dfref/w/wlancap.html
http://www.prism54.org/
http://www.hpl.hp.com/personal/Jeanprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Tourrilhes/Linux/Tools.html

e Disadvantages. Wireless sniffers cannot record all the frames that are tranmitted over the net-
work [14, 11] since the sniffer is only capturing the frames at its own location. Therfore, the packets
lost due to a hidden terminal and bit errors are not captured. Additionally, RSSI (Received Sig-
nal Strength Indicator) is measured relative to the location where the sniffer is installed, but not
necessarily the same as the AP or the clients that are distant from the sniffer. And the location of
the sniffer is an important issue related to the purpose of the sniffing. For example, a location very
close to an AP is helpful when studying the AP behavior, but may miss some traffic sent from a
distant client due to signal attenuation.

Beside the basic frame capturing functionality of a sniffer, this sections briefly reviews some additional
features of this homemade sniffer.

First, the wireless sniffer can provide extra PHY /MAC layer information by an extra emulated header,
the AVS header. The AVS header includes the RSSI, rate, channel, PHY and other important information
for each frame. The command to enable wireless AVS header capture is sudo iwpriv set_prismhdr 1.
The following example of AVS header is captured from an IEEE 802.11g network using Ethereal:

AVS WLAN Monitoring Header
Header revision: 1
Header length: 64
MAC timestamp: 4046472034
Host timestamp: 1040663
PHY type: OFDM 802.11g (6)
Channel: 11
Data Rate: 54000 Kb/s
Antenna: 0O
Priority: O
SSI Type: Raw RSSI (3)
SSI Signal: 99
SSI Noise: 97
Preamble: Unknown (0)
Encoding Type: Unknown (0)

The data shows that the type of PHY layer is OFDM 802.11 and current channel is 11. It also indicates
that the sending rate of this frame is 54 Mbps, the Raw RSSI at the sniffing location is 99 and the noise
level is 97. However, the signal-to-noise ratio (SNR) cannot be computed by “99-97” in this case, because
the noise in AVS usually is captured as the background noise level when no packet is transmitted. Thus,
the SSI Noise can be interpreted as link quality but cannot be used to properly compute the SNR.

Second, each captured frame has an IEEE 802.11 header section, which provides frame information,
such as MAC layer retry, power management and WEP. For example, the following header section is
captured from an IEEE 802.11g network by Ethereal. It shows that this frame is a retry of the previous
frame, and the network has WEP enabled:

IEEE 802.11
Type/Subtype: Data (32)
Frame Control: 0x4908 (Normal)
Version: 0O
Type: Data frame (2)
Subtype: 0
Flags: 0x49



DS status: Frame is entering DS (To DS: 1 From DS: 0) (0x01)

. = Retry: Frame is being retransmitted

. = PWR MGT: STA will stay up
. = More Data: No data buffered

. = WEP flag: WEP is enabled
. = Order flag: Not strictly ordered

Duration: 213

BSS Id: SSS_77:88:

99 (00:0b:85:77:88:99)

Source address: XXX_11:22:33 (00:90:4b:11:22:33)
Destination address: YYY_22:33:44 (00:00:5e:22:33:44)
Fragment number: O
Sequence number: 1127
TKIP/CCMP parameters
TKIP Ext. Initialization Vector: 0x000000000013
Key: O

.0.. = More Fragments: This is the last fragment

The retry behavior can also be traced at the frame level. For example, the following trace shows that
the data frame had been sent three times (i.e, two retries) before the receiver successfully receives the
frame. An Acknowledgment frame sent from the receiver indicates the data frame is received:

No.

2458
2459
2460
2461
2462
2463
2464

55.
55.
55.
55.
55.
55.
55.

Time

951347
951553
951831
952174
952847
953895
954070

Source Destination
XXX_1a:97:ab
XXX_1a:97:ab YYY_11:30:a8
XXX_1a:97:ab
XXX_1a:97:ab YYY_11:30:a8
XXX_1a:97:ab
XXX_1a:97:ab YYY_11:30:a8
XXX_1a:97:ab

(RA)

(RA)

(RA)

(RA)

IEEE
IEEE
IEEE
IEEE
IEEE
IEEE
IEEE

Protocol Info

802.
802.
802.
802.
802,
802.
802.

11
11
11
11
11
11
11

Clear-to-send
Data
Clear-to-send
Data
Clear-to-send
Data
Acknowledgement

Finally, the sniffer can also be used for security purposes. For example, it can be used to detect
intrusions and spoof attacks. However, since our focus is on performance studies, security functionality
is not discussed further in this document.

References

[1] Mingzhe Li, Mark Claypool, and Bob Kinicki,
build and use an ieee 802.11 wireless network sniffer,”
partment of Computer Science at Worcester Polytechnic Institute, Nov. 2005, Online:

ftp://ftp.cs.wpi.edu/pub/techreports/pdf/05-19.pdf. 1

“Wireless sniffing by example — how to

Tech. Rep. WPI-CS-TR-05-19, De-

[2] Anand Balachandran, Geoffrey M. Voelker, Paramvir Bahl, and P. Venkat Rangan, “Characterizing
user behavior and network performance in a public wireless lan,” in SIGMETRICS ’02: Proceedings
of the 2002 ACM SIGMETRICS international conference on Measurement and modeling of computer
systems, 2002, pp. 195-205. 1


ftp://ftp.cs.wpi.edu/pub/techreports/pdf/05-19.pdf

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Diane Tang and Mary Baker, “Analysis of a metropolitan-area wireless network,” in MobiCom
’99: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and
networking, 1999, pp. 13-23. 1

Diane Tang and Mary Baker, “Analysis of a local-area wireless network,” in MobiCom ’00: Pro-
ceedings of the 6th annual international conference on Mobile computing and networking, 2000, pp.

1-10. 1

David Kotz and Kobby Essien, “Analysis of a campus-wide wireless network,” in MobiCom ’'02:
Proceedings of the 8th annual international conference on Mobile computing and networking, 2002,
pp- 107-118. 1

Camden C. Ho, Krishna N. Ramachandran, Kevin C. Almeroth, and Elizabeth M. Belding-Royer,
“A scalable framework for wireless network monitoring,” in WMASH ’0j: Proceedings of the 2nd
ACM international workshop on Wireless mobile applications and services on WLAN hotspots, 2004,
pp- 93-101. 1

A. Balachandran and G. Voelker, “WRAPI - Real-time Monitoring and Control of an 802.11 Wireless
LAN,” Tech. Rep., CS at UCSD, 2004. 1

Feng Li, Jae Chung, Mingzhe Li, Huahui Wu, Mark Claypool, and Robert Kinicki, “Application,
Network and Link Layer Measurements of Streaming Video over a Wireless Campus Network,” in
Proceedings of the 6th Passive and Active Measurement Workshop (PAM), Boston, Massachusetts,
USA, Apr. 2005. 2

Tianbo Kuang and Carey Williamson, “RealMedia Streaming Performance on an IEEE 802.11b
Wireless LAN,” in Proceedings of IASTED Wireless and Optical Communications (WOC), July
2002, pp. 306-311. 2

Guangwei Bai and Carey Williamson, “The Effects of Mobility on Wireless Media Streaming Perfor-
mance,” in Proceedings of Wireless Networks and Emerging Technologies (WNET), July 2004, pp.
596-601. 2

Amit P. Jardosh, Krishna N. Ramachandran, Kevin C. Almeroth, and Elizabeth M. Belding-Royer,
“Understanding Congestion in IEEE 802.11b Wireless Networks,” in Proceedings of the Internet
Measurement Conference (IMC), Berkeley, CA, USA, Oct. 2005. 2,4

Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Morris, “Link-level measure-
ments from an 802.11b mesh network,” in SIGCOMM ’04: Proceedings of the 2004 conference
on Applications, technologies, architectures, and protocols for computer communications, Portland,
Oregon, USA, 2004, pp. 121-132. 2

Jihwang Yeo, Moustafa Youssef, and Ashok Agrawala, “A framework for wireless lan monitoring and
its applications,” in ACM Workshop on Wireless Security (WiSe 2004) in conjunction with ACM
MobiCom 2004, Philadelphia, PA, USA, Oct. 2004. 2

Mark Claypool, “On the 802.11 turbulence of nintendo ds and sony psp hand-held network games,”
in Proceedings of the 4th ACM Network and System Support for Games (NetGames), Hawthorne,
NY, USA, Oct. 2005. 4



	Introduction
	Background and Related Work
	Build the Sniffer
	Use the Sniffer
	References

