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Abstract

We study in this paper the problem of whether a correct relational update translation can be found for a given update over an
XML view. For this, we propose a lightweight update checkingframework namedU-Filter. It first performs two steps of schema-
level (and thus very inexpensive) checks based on a view definition analysis. Only when necessary, a third checking step,requiring
base data access and thus more expensive, is employed. For the latter, we design aninternalstrategy as well as anexternalstrategy
(with respect to the DBMS). This three-step checking process is guaranteed to filter out all XML updates that cannot be translated.
Finally, the remaining updates are fed to the update translation engine, which generates the corresponding SQL update statements.
Our experiments illustrate the usefulness ofU-Filter and the performance impact achievable by the proposed algorithm.

1 Introduction

Both XML-relational systems such as [13, 25] and native XML systems such as [20] support creating XML wrapper views and
querying against them. However, update operations againstsuch virtual XML views in most cases are not supported yet.

Two problems concerning updating XML views need to be tackled. First, update translatabilityconcerns whether some
updates on the base data storage, which typically may be a relational database or a native XML document, can be made to effect
the given update to the view without causing any view-side-effect [3, 16, 18]. Second, we need to devise an appropriatetranslation
strategy. That is, assuming the view update is indeed translatable, how to map the updates on the XML view into the equivalent
tuple-based SQL updates or XML document updates on the base data.

The second issue, the translation strategy, has been studied in recent works [4, 7, 8, 15, 28, 29]. Under the assumption that
the given update is translatable, [7, 8] propose an approachto convert the XML view update problem into relational view update
problem. [29] studies the execution performance of translated updates. Commercial database systems such as SQL-Server2000
[28], Oracle [4] and DB2 [15] also provide system-specific solutions for restricted update types, again under the assumption of
the given updates always being translatable.

Based on the idea of data provenance (lineage) – the description of the origins of each piece of data in a view, recent works[10,
11, 17] indicate a loose connection between the concept of provenance and the view update problem. The distinction between
“why provenance” (the source data that had some influence on the existence of the data) and “where provenance” (the location(s)
in the source databases from which the data was extracted) isused to indicate the potential correct translation. However, these
works do not answer the questions important to update translatability such as (i) whether the why or where provenance is the
correct translation and (ii) if they are not, whether thereexistsat least another correct translation?

This update translatability issue is important in terms of both correctness and performance. Without translatabilitychecking,
blindly translating a given view update into relational updates can be dangerous. Such blind translation may result inview side
effects. To identify this, the view before the update and after the update would have to be compared as done in [28]. To adjust for
such an error, the view update would have to be rejected and the database would have to be recovered for example by rolling back.
This would be rather time consuming, depending on the size ofthe database. However, by performing an update translatability
analysis, such ill-behaved updates could instead be identified early on and rejected, and it would be less costly.

In this paper, we propose a general methodology to assess thetranslatability of an update over anarbitrary XML view of a
relational database, when various schema level conflicts and data level conflicts potentially exist.

XML view update translatability problem is more complex than that of pure relational view update translatability [3, 16, 18].
Not only do all the problems in the relational context still exist in XML semantics, but we also have to address the new update
issues introduced by the XML hierarchical data model and itsflexible update language. Especially, when duplications and
inconsistent constraints between the view and the databaseschema exist, the problem is further complicated as shown byexamples
below.
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CREATE TABLE publisher(
pubid VARCHAR2(10),
pubname VARCHAR2(100) UNIQUE NOT NULL ,
CONSTRAINTS PubPK

PRIMARYKEY (pubid))

CREATE TABLE book(
bookid VARCHAR2(20),
title VARCHAR2(100) NOT NULL ,
pubid VARCHAR2(10),
price DOUBLE CHECK (price > 0.00),
year  DATE,
CONSTRAINTS BookPK

PRIMARYKEY (bookid),
FOREIGNKEY (pubid) 

REFERENCESpublisher (pubid))

CREATE TABLE review(
bookid VARCHAR2(20),
reviewid VARCHAR2(3),
comment VARCHAR2(100),
reviewer VARCHAR2(10),
CONSTRAINTS BookPK

PRIMARYKEY (bookid,reviewid),
FOREIGNKEY (bookid) 

REFERENCESbook (bookid))

t1
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Figure 1: Relational Database of Running Example

<DB>
<publisher>

<row>
<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname>

</row> ...
</publisher>
<book>

<row>
<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<pubid>A01</pubid>
<price>37.00</price>
<year>1997</year>

</row> ...
</book>
<review>

<row>
<bookid>98001</bookid>
<reviewid>001</reviewid>
<comment>A good book on network.</comment>
<reviewer>William</reviewer>

</row> ...
</review>

<DB>

Figure 2: Default XML View of Database in Fig. 1

<BookView>
FOR $book IN document("default.xml")/book/row,

$publisher IN document("default.xml")/publisher/row
WHERE ($book/pubid = $publisher/pubid) 
AND ($book/price<50.00) AND ($book/year > 1990)
RETURN {

<book>
$book/bookid, $book/title, $book/price,
<publisher> 

$publisher/pubid, $publisher/pubname
</publisher>,
FOR $review IN document("default.xml")/review/row
WHERE ($book/bookid = $review/bookid)
RETURN{
<review> 

$review/reviewid, $review/comment
</review>}

</book>},
FOR $publisher IN document("default.xml")/publisher/row
RETURN{

<publisher> 
$publisher/pubid, $publisher/pubname

</publisher>}
</BookView>

<BookView>

<book>
<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<price>37.00</price>
<publisher>

<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname>

</publisher>
<review>

<reviewid> 001 </reviewid>
<comment>

A good book on network.
</comment>

</review >
<review>

<reviewid> 002 </reviewid>
<comment>

Useful for advanced user.
</comment>

</review >
</book>

<book>
<bookid>98003</bookid>
<title>Data on the Web</title>
<price>48.00</price>
<publisher>

<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname>

</publisher>
</book>

<publisher>
<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname>

</publisher>
<publisher>

<pubid>A02</pubid>
<pubname> Simon & Schuster Inc </pubname>

</publisher>
<publisher>

<pubid>B01</pubid>
<pubname> Simon & Schuster Inc </pubname>

</publisher>

<BookView>
(b)(a)

Figure 3: XML Views (b) defined by the View XQuery (a) over Relational Database in Fig. 1

1.1 Motivation Example

Fig. 1 shows a running example of a relational schema and sample data of a book database. Recent XML systems (XPERANTO
[13], SilkRoute [19]) use a basic XML view, calleddefault XML view, to define the one-to-one relational-to-XML mapping
(Fig. 2). On top of this default XML view, avirtual viewcan be introduced to define user-specific XML wrapper views. Such a
virtual view (Fig. 3b) can be specified by an XML query expression called aview query(Fig. 3a). Updates are specified in our
work by adopting the syntax from [29]. Fig. 4 shows several examples of view updates.

Example 1 In Fig. 4, u1 inserts a new book element into BookView. We notice that the title of the new book is empty and the
price is “0.00”. However, the underlying relational schemahas the constraints that the title of book tuples is NOT NULL,while
the price of the book tuple should be a positive number. Thus,u1 is not translatable since it directly conflicts with the check
constraints from the relational schema.

Example 2 u2 in Fig. 4 deletes the publisher of the first book. In the underlying relational database, there is a foreign key from
book relation to publisher relation. So, when the publisheris deleted, the corresponding book tuple has to be either also deleted,
or the pubid of the book needs to be replaced with NULL, depending on the deletion policy defined by the foreign key constraints.
However, neither of these two are correct because they both would cause the side-effect of the corresponding book to no longer
appear in the view. We thus say thatu2 is not translatable since it causes a view side effect.
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FOR $root IN document(“BookView.xml")
UPDATE $root {

INSERT 
<book>

<bookid>"98004"<bookid>
<title> </title>
<price> 0.00 </price>
<publisher> … </publisher>

</book> }

u1

FOR $root IN document(“BookView.xml"),
$book IN $root/book

WHERE $book/bookid/text() = " 98001" 
UPDATE $root {

DELETE $book/publisher}

u2

FOR $book IN
document(“BookView.xml")/book
WHERE
$book/title/text() = “DB2 Universal Database" 
UPDATE $book {

INSERT 
<review>

<reviewid>001</reviewid>
<comment> 

Easy read and useful.
</comment>

</review>}

u3
FOR $root IN document(“BookView.xml")
UPDATE $root {

INSERT 
<book>

<bookid>"98001"<bookid>
<title>" Operating Systems "</title>
<price> 20.00 </price>
<publisher>

<pubid>A01</pubid>
<pubname> 

McGraw-Hill Inc.
</pubname>

</publisher>
</book> }

u4

Figure 4: Updates over View in Fig. 3

Example 3 The updateu3 in Fig. 4 inserts a review for the book “DB2 Universal Database”, while this book is not in the view.
Andu4 inserts a new book which conflicts with an existing book (book.t1), since they both have “bookid=98001”. Bothu3 and
u4 are said to be not translatable.

1.2 U-Filter: Our Approach for View Update Checking

We note from above examples that the potential conflicts in both schema or data level can affect the translatability of a given view
update. To address these factors we propose a lightweight view update checking framework calledU-Filter. It first performs two
steps of schema-level (and thus very inexpensive) checking. Only when necessary, more expensive checking requiring the base
data to be accessed is employed.

The first step, calledupdate validation, identifies whether the given view update is valid accordingto theview schema. This
can be pre-defined [6] or be inferred from the view definition query and the base relational schema knowledge. Given that lots of
work has already been done in the literature on schema validation [6, 26], here we focus only on questions closely relatedwith the
view update scenario, such as which constraints should the validation procedure consider. The problem in Example 1 is identified
by this step.

In the second step, calledschema-driven translatability reasoning, any update determined to be valid by Step 1 is further
examined. Here the potential view side effects are checked,which can be caused by different reasons such as (i) foreign key
constraints conflicting with the view structure or (ii) basedata duplication in the view. This compile-time check only utilizes the
view query and the relational schema. Example 2 is identifiedto be not translatable in this step.

Updates passed the previous two steps could potentially still conflict with the base data (Example 3). In our third step, the
run-timedata-driven translatability checking, such conflicts will be identified. This check can only be resolved by examining
actual base data. This is typically rather expensive. Henceit is practical to employ this only at the end, when the prior check steps
have already been considered and the update has successfully passed these filters.

Fig. 5 shows the framework of U-Filter. We present algorithms and optimizations for each step in U-Filter. This represents
a practical approach that could be applied by any existing view update system for analyzing the translatability of a given view
update before translation of it is attempted.

Contributions. Our contributions in this paper include: (1) We propose a lightweight three-step framework calledU-Filter as
a practical solution for XML view update translatability problem. (2) We identify the constraints existing in either the view or
relational base that need to be considered for theupdate validationand model them usingAnnotated Schema Graph. (3) We pro-
pose aSchema-driven TrAnslatability Reasoningalgorithm (STAR) to classify an XML view update into different translatability
categories. (4) We design severalData-driven Translatability Checkingapproaches to identify the untranslatable updates caused
by data level conflicts. (5) We conduct a variety of experiments to assess the performance and usefulness of ourU-Filter approach.

Outline. Section 2 formally defines the problem we are tackling in thispaper. Section 3 describe the internal query representation
in U-Filter named Annotated Schema Graph. Sections 4, 5 and 6describe each of the three checking steps respectively. Section
7 provides an evaluation of our solution. Section 8 reviews the related work while Section 9 concludes our work.
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Figure 5: Framework of U-Filter
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Figure 7: Correct transla-
tion of view update to re-
lational update

2 Problem Definition

The relational data model can be described as below. For a relationR, letA = {a1, a2, ..., am} be its attribute set. A relational
database is represented asD, and its schema as{(R1, R2, . . . , Rn),F}, whereR1, R2, . . . , Rn are the relations inD, andF is
the set of constraints. TheXML view V is defined by aview definition DEFV over a given relational databaseD. In our case,
DEFV is an XQuery expression [30] called aview query.

Let 0 be the domain of the update operation over the view. Letu ∈ 0 be an update on the viewV . An insertionadds while a
deletionremoves an element from the XML view. Areplacementreplaces an existing view element with a new one. Fig. 4 shows
several examples of view updates expressed in the “XQuery” like language [29].

A taxonomy of the view update domain0 is shown in Fig. 6. First of all, avalid view update is an insert, delete or replace
operation that satisfies all constraints in the view schema.Updatesu2, u3 andu4 in Fig. 4 are valid updates since they agree with
all constraints of the view schema. Updateu1, however, is an invalid update as shown by Example 1.

Definition 1 A relational update sequenceU on a relational databaseD is acorrect translation of a valid updateu on the view
V iff (i) u(DEFV (D)) = DEFV (U(D)) and (ii) if u(DEFV (D)) = DEFV (D) ⇒ U(D) = D.

A correct translation means the “rectangle” rule shown in Fig. 7 holds. Intuitively, this implies that the translated relational
updates exactly perform the view update, namely, without view side effects. In addition, if an update operation does notaffect the
view, then it should not affect the relational base either. This guarantees that any modification of the relational base is indeed done
for the sake of the view. For instance, the updateu3 is not translatable since it tries to insert a review into a book that is not in the
view. The second criterion is guaranteed if the translationis done by query composition, and hence generally can be achieved1.

For a valid update, if a correct translation does not exist,u is untranslatable. If additional conditions are required to be
satisfied for a correct translation to exist, thenu is said to beconditionally translatable. As we will show in later sections, this
additional condition includes for example translated update minimization and duplication consistency checking. Otherwise,u is
calledunconditionally translatable (Fig. 6)

1Note that some commercial databases (DB2) provides the viewcreator an option to update the data not visible through the view. Our solution can be easily
adjusted to this scenario by relaxing this restriction
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We now can define the problem ofXML view update translatability as the problem of first classifying an update as either
valid or invalid, then classifying avalid update as eitherunconditionally, conditionally translatableor untranslatable.

3 Annotated Schema Graph

U-Filter uses Annotated Schema Graph (ASG) to model the constraints from both the view query and the relational schema. ASG
is then extensively used by schema level checking steps.

3.1 Classification of Constraints

The constraints, extracted from the relational schema or inferred from the view query2 will help us to decide whether a given
update is valid, and possibly even translatable. They are compiled once and reused thereafter for any future update checking
specified over this same view.

Let us first examine a predicatep of the forma θ b, whereθ ∈ {=, 6=, <,≤, >,≥}. We say thatp is anon-correlation predicate
if b is a literal (e.g.,$book/year = 1990). Otherwise,p is acorrelation predicate(e.g.,$book/pubid =$publisher/pubid).

We divide the constraints aslocal or global. Intuitively, constraints that affect only one tuple of a base relation or one view
element are calledlocal constraints. Otherwise, they are calledglobal constraints. Thenon-correlation predicatesin the view
query formlocal constraints, while the other constraints in the view query, such ascorrelation predicates, cardinality constraints
andhierarchical structureform global constraints.

In the relational schema, thelocal constraintsinclude all the constraints specified over one relation, such as domain constraints,
NOT NULL constraints and Check constraints for the domain. Theglobal constraintsinclude constraints specified over multiple
relations in the relational schema, such as foreign key constraints.

3.2 Annotated Schema Graphs

For each view, two ASGs are generated to represent the constraints described in Section 3.1. Thebase ASGincludes only the
global constraints from the relational schema, while all the rest constraints are captured in theview ASG.

Fig. 8 depicts the view ASG for BookView in Fig. 3. Theview ASG, denoted byGV , represents the hierarchical structure of
theXML view3. Let NGV

andEGV
respectively denote the nodes and edges ofGV .

NGV
includes four kinds of nodes: root, internal, tag and leaf nodes. NodevR in Fig. 8 is theroot node. Without loss of

generality, we assume there is always a root tag to enclose the FLWR expression in the view query. Otherwise, we would simply
add a “dummy” root node. Aleaf nodevL represents an atomic type. The parent of a leaf node, namedtag nodevS , identifies a
simple view element or an attribute. All the remaining nodesareinternal nodes(vC ), each of which identifying a complex view
element. In the rest of the paper, we also usev to indicate a node inGV without specifying its type.

Each node is associated with its annotation set as shown in theNode Annotation Tablein Fig. 8. The annotation of a leaf node
includes{name, type, property, check}. A leaf nodevL has its corresponding relational attribute nameR.a as itsnameannotation.
Thetypeof vL represents its domain constraints. Thepropertyof vL captures{Not Null} constraints, depending on the constraints
on its relational attributeR.a. For instance, the property of nodevL8 in Fig. 8 is marked asNot Null, sincepublisher.pubidis the
key of thepublisherrelation. Thecheckannotation ofvL represents the relational check constraints.

The annotation ofvR, vC or vS node includes thenamefield which corresponds to the tag name of the element it is modeling.
Moreover, thevR andvC nodes include theirUpdate Context Binding andUpdate Point Binding in their annotation. The
UCBinding(vC) extracts all the relations that have some influence on the existence ofvC in DEFV . TheUPBinding(vC) includes
all the relations referred in constructingvC . For example,UCBinding(vC1) = {book,publisher} since both relationsbookand
publisherare used to decide the existence ofbookelement (vC1). UPBinding(vC1) = {book,publisher,review} since (i) bothbook
andpublisherrelations are used to construct thebookelement and (ii)reviewrelation is used to constructreviewelements inside.
Readers familiar with SilkRoute [25] can consider the UCBinding as all relations in the FROM clauses of the SQL statements
generated for a nodev, while the UPBinding as all relations in the FROM clauses of all its descendent nodes.

Given two nodesv1, v2 ∈ NGV
, the edgee(v1, v2) ∈ EGV

represents thatv1 is a parent ofv2 in the view hierarchy. Each
edge is labeled by its end node pair(v1, v2). Its annotation includes its cardinality type (inferred from the view query) and its
condition (if any), extracted from the correlation predicate in the view query. The cardinality types are from the enumeration
domain{1, ?, +, ∗}, representing1 : 1, 1 : {0, 1} (at most one),1 : n+ (at least one) and1 : n (any) respectively. Note that
the incoming edge ofvL is either 1 or ?, depending on whether it can be Null. We also define a functionrel to extract the
relations inD referenced by the view queryDEFV . For example, in Fig. 3(a),rel(DEFV ) = {publisher,book,review}. Note that
rel(DEFV )=UPBinding(vR).

2We do not propagate relational constraints (such as Key) to the XML as done by [9], we merely use them to filter out ill-behaved updates. However, work
in [9] can be easily included to favor the checking procedurein general.

3ComputingGV is done similarly as in SilkRoute [25], for details please refer to [33].
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UContext: 

s-d Safe-delete s-i Safe-insert
u-dUnsafe-delete u-i Unsafe-insert

UPoint: dirty | clean

vL1: name = book.bookid
type = string
property = {Not Null}

vL2: name = book.title
type = string
property = {Not Null}

vL3: name = book.price
type = string
property = {}
check = {0.00<value<50.00}

vL4: name = publisher.pubid
type = string
property = {Not Null}

vL5: name = publisher.pubname
type = string
property = {Not Null}

vL6: name = review.reviewid
type = string
property = {Not Null}

vL7: name = review.comment
type = string

vL8: name = publisher.pubid
type = string
property = {Not Null}

vL9: name = publisher.pubname
type = string
property = {Not Null}

vR: name = BookView
UCBinding = {}
UPBinding = {book,publisher,review}

vC1: name = book
UCBinding = {book,publisher}
UPBinding = {book,publisher,review}

vC2: name = publisher
UCBinding = {book,publisher}
UPBinding = {publisher}

vC3: name = review
UCBinding = {book,publisher,review}
UPBinding = {review}

vC4: name = publisher
UCBinding = {publisher}
UPBinding = {publisher}

vS1: name = bookid
vS2: name = title
vS3: name = price
vS4: name = pubid
vS5: name = pubname
vS6: name = reviewid
vS7: name = comment
vS8: name = pubid
vS9: name = pubname

Node Annotation Table

(vR, vC1): type = * , condition = {book.pubid = publisher.pubid}
(vR, vC4): type = * 
(vC1, vC3): type = * , condition = {book.bookid = review.bookid}
(vC1, vC2): type = 1

Edge Annotation Table

Figure 8: View ASG ofBookViewin Fig. 3

TheBase ASGGD is a DAG that captures the hierarchical and cardinality constraints inferred from the key and foreign key
constraints of the relational database. LetNGD

denote the nodes andEGD
denote the edges.GD is computed as follows. For each

leaf node in the view ASG, there exists a corresponding relational attribute. The union of all these relational attributes forms the
leaf nodes ofGD. Each leaf node is annotated by{name,property}. Thenameis given by its corresponding attribute name. The
property(if any) captures{key} constraints. For a leaf nodenl with nameR.a, we introduce a noden corresponding toR and an
edge (n, nl). For any two nodesn1, n2 that correspond to relationsR, S respectively, we introduce an edge(n1, n2), if there is a
foreign key fromS to R. The base ASG of BookView is shown in Fig. 9.

4 Update Validation

The update validationstep identifies whether the given view update isvalid according to the local constraints captured in the
view ASG. Since the view schema has been extracted and represented as the view ASG in Section 3, we now only focus on the

n1 (publisher)

n2

(publisher.pubid)
n3

(publisher.pubname)

n5

(book.bookid)

n4

(book)

n6

(book.title)
n7

(book.price)

1 1 * con1

1 1 1

n9

(reviewid)

n8

(review)

n10

(comment)

1 1

* con2

Node Annotation Table

Edge Annotation Table

n6: name = book.title
n7: name = book.price
n8: name = review
n9: name = review.reviewid

property = {Key}
n10: name = review.comment

n1: name = publisher
n2: name = publisher.pubid

property = {Key}
n3: name = publisher.pubname
n4: name = book
n5: name = book.bookid

property = {Key}

(n1, n4):  type = *, condition = {book.pubid = publisher.pubid} 
(n4, n8):  type = *, condition = {book.bookid = review.bookid}

Figure 9: Base ASG ofBookViewin Fig. 3
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FOR $book IN document(“BookView.xml")/book 
WHERE $book/price/text() > 50.00 
UPDATE $book {

DELETE $book/review }

u5

FOR $book IN document(“BookView.xml")/book 
UPDATE $book {

DELETE $book/bookid/text() }

u6

FOR $root IN document(“BookView.xml")
UPDATE $root {

INSERT 
<book>

<bookid>"98004"</bookid>
<title>" Operating Systems "</title>
<price> 20.00 </price>

</book> }

u7

FOR $book IN document(“BookView.xml")/book 
WHERE $book/price < 40.00  
UPDATE $book {

DELETE $book/review }

u8

FOR $root IN document(“BookView.xml"),
$book =$root/book 

WHERE $book/price > 40.00  
UPDATE $root {

DELETE $book }

u9

FOR $bookIN document(“BookView.xml")/book 
WHERE $book/price > 40.00  
UPDATE $book {

DELETE $book/publisher }

u10

u11

FOR $bookIN document(“BookView.xml")/book
WHERE $book/title/text() = "Programming in Unix" 
UPDATE $book {

DELETE $book/review}

u12

FOR $bookIN document(“BookView.xml")/book
WHERE $book/title/text() = “Data on the Web" 
UPDATE $book {

DELETE $book/review}

FOR $bookIN document(“BookView.xml")/book 
WHERE book/title/text() = “Data on the Web" 
UPDATE $book {

INSERT 
<review>

<reviewid>001</reviewid>
<comment>Easy read and useful.</comment>

</review>}

u13

Figure 10: View Update Example

question: what kind of validation must be considered for different update types (delete, insert) respectively4?

Delete. Two checks must be considered in the delete case. (i) Does theelement to be deleted appear in the view? If an update
operation does not affect the view, then it should not affectthe relational base either (Definition 1). This means that the non-
correlation predicate specified in the user update must “overlap” with the check constraints captured in the view ASG leaf node.
For this, we examine thecheckannotation of the leaf node. For example,u5 in Fig. 10 tries to delete all the reviews from the book
that costs more than $50. However, the BookView in Fig. 3 onlyincludes those books that cost less than $50. Thusu5 is said to
be invalid.

(ii) For deletes over a node in the view ASG, is that node deletable? Since a relational delete always removes one or more
tuples, while an XML delete is more flexible, and could deleteeither just a single value or even a complete subtree. In general,
deletion of a node with the incoming edge as “1” is invalid. For example,u6 in Fig. 10 is invalid since leaf nodevL1 is required
to beNot Null in Fig. 8.

Insert. Assume that the insert happens on the schema nodev in the view ASG. We first examine whether the node to be inserted
conforms to the hierarchy specified in the view ASG, by examining the name annotation of the node and the type annotation of
the edges. For example,u7 in Fig. 10 is invalid since the type annotation of the edge (vC1, vC2) in Fig. 8 is “1”, that is, each book
must have exactly one publisher.

Second, we consider whether the values inside the element tobe inserted conform to the constraints captured in the view
ASG. (i) The leaf node value must be in the domain defined by itstypeannotation. (ii) The leaf node value must satisfy thecheck
annotation. (iii) The leaf node value cannot be empty if thepropertyannotation includesNot Null. For instance,u1 in Fig. 4 is
invalid since the node annotation table in Fig. 8 indicates that (i) thetitle cannot beNULL according to the property of the node
vL2 and (ii) theprice should be a positive number based on the check annotation of the nodevL3.

After Step 1, the view updates which directly conflict with any of the local constraints are rejected instantly. The rest are
passed to the next step for view side effect checking.

5 Schema-driven Translatability Reasoning

Using the global constraints captured in both view ASG and base ASG, this step classifies a valid view update asuntranslatable,
conditionally translatableor unconditionally translatable.

For example,u8 in Fig. 10 is unconditionally translatable, and a correct translation is to deletereview.t1 andreview.t2 from
review table. The updateu9 in Fig. 10 is said to be conditionally translatable. The direct translationU = {(delete from book
where rowid =t3),(delete from publisher where rowid =t1)} is not a correct translation, sincepublisher.t1 is still referenced by
the first book element in the view. Deleting it will cause a view side effect. Thus, in order for this update to be translatable, an
additional condition is associated with this update, namely “Apply update minimization in translation”. Such kind of minimization
is studied in [2, 21, 22]. The updateu10 in Fig. 10 is untranslatable. The direct translation isU = {delete from publisher where
rowid = t1}. Note that there is a foreign key from thebookrelation to thepublisherrelation. Therefore this deletion will cause
thebookto disappear also.

Our earlier work [32, 34] proposes aclean extended source theoryas criteria for determining whether a given translation
mapping is correct. A clean extended source represents a correct translation for the given view update, which achieves the desired
delete operation without causing any view side effect. An update translation is correct if and only if it deletes or inserts a clean
extended source of the view element. Based on this theoretical foundation, we now propose a concreteschema-driven update

4Currently we consider replace as a deletion followed by an insertion.
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translatability reasoning (STAR) algorithm. It utilizes a staticSTAR markingprocedure and a dynamicSTAR checkingprocedure
to decide the translatability of a valid update from the update validation step. The correctness proof of our STAR algorithm can
be found in [33].

In this paper, we consider only the internal nodesvC in our schema level update translatability checking. Thesenodes are
marked by a dashed line in Fig. 8. The treatment of other nodesis either trivial or similar to that ofvC nodes. For instance,
deleting the root nodevR is always translatable. Similarly any valid update of avL node will be translatable. Updates ofvS nodes
are handled similar to an update over avC node.

5.1 STAR Marking Procedure

We use a STAR marking procedure to encode each node inGV at compile time by itsupdate point typeandupdate context type,
labeled as(UPoint|UContext). This mark is then used to determine the translatability of updates specified on the nodes.

5.1.1 Update Context Type

Theupdate context type(UContext) of a node inGV determines whether a view side effect might arise when deleting or inserting
an instance of this node. A node is said to besafe-deleteif for the operation of deleting any of its instance, there exists a translation
which is guaranteed to not cause any view side effect. Otherwise it is said to beunsafe-delete. Similarly, a node is said to be
safe-insertif for the operation of inserting a new instance, there exists a translation which will not cause any view side effect.
Otherwise, it is said to beunsafe-insert.

The intuition for update context type is that duplication inthe view is the major cause of view side effects. Duplicationappears
in different forms: (i) two instances of the same view ASG node might be duplicated, and thus map to the same relational data
and (ii) two instances of different view ASG nodes could alsoinclude duplicate sub-elements.

The following rules are used to determine the UContext of a node using the view ASGGV . Rule 1 identifies the unsafe internal
nodes caused by duplication (i). Rules 2 and 3 identify the unsafevC nodes caused by duplication (ii).

Recall theUCBindingdefined in Section 3. Given an internal nodevC ∈ NGV
and its parent nodev ∈ NGV

. We define
theCurrent Relationsof vC asCR(vC) = UCBinding(vC) − UCBinding(v). We say a Join conditionRi.a = Rj .b on an edge
e = (vC1, vC2) is a proper Join if (i) Rj ∈ CR(vC2) and (ii) Ri.a is a unique identifier ofRi ∈ CR(vC1). A proper Join
ensures no duplicates are introduced forvC2 by this Join.

Rule 1: Lete = (vC1, vC2) be an edge inGV with type “*”. UContext of any node in the subtree rooted atvC2 is unsafe-delete
and unsafe-insert ife is not associated with a proper Join condition (as describedabove).

Rule 1 can be used to identify “missing” Join conditions. Forexample, assume that we removed the second WHERE clause
in BookView in Fig. 3. That is, the edge(vC1, vC3) in Fig. 8 were not annotated with any condition. All the nodesin the subtree
of vC3 are unsafe now since the whole review table is now nested inside of each individual book, even if unrelated.

On the other hand, this rule can also identify “improper” Join conditions (a Join condition causing duplicates). As an
example, assume the second WHERE clause in BookView in Fig. 3is replaced by a correlated predicate “$book/title =
$review/comment”. Then the edge(vC1, vC3) in Fig. 8 is annotated with a Join conditionbook.title = review.comment.
Since neitherbook.title norreview.comment is UNIQUE, we will then mark all the nodes in the subtree ofvC3 asunsafe-delete
andunsafe-insert.

Now assume all * edges between the internal nodes ofGV are annotated with a proper Join condition. Is it possible for
duplication to exist? The answer is yes.

Rule 2 below is used to identify unsafe internal nodes for thedelete operation, which could cause other nodes, which are not
its descendants, to disappear. As an example, again consider vC2 in Fig. 8. Rule 2 below will markvC2 node asunsafe-delete,
because it affects the appearance of the wholebooknode. Given a relationR, we defineextend(R) ⊆ rel(DEFV ) as a set of
relations that refer toR through foreign key constraint(s).

Rule 2: UContext(vC) = unsafe-delete if¬∃R ∈ CR(vC) such that∀v′C ∈ NGV
being a non-descendant node ofvC ,

extend(R) ∩ UCBinding(v′C) = ∅.

TheUCBindingdifference between the node to be deleted and its parent, denoted byCR(vC) in Rule 2, indicates the smallest
search space for aclean extended source[32]. If none of the relations inCR(vC) is a clean extended source, then deleting an
instance of nodevC will cause a view side effect.

As an example, considervC4 in Fig. 8. We haveUCBinding(vC4)={publisher}andUCBinding(vR)={}. ThusCR(vC4)={publisher}.
For R = publisher, extend(R) = {publisher,book,review}. Note thatUCBinding(vC1) = {book,publisher} and extend(R)∩
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UCBinding(vC1) 6= ∅. Deleting an instance ofvC4
will potentially cause a view side effect onvC1 – the book might also disap-

pear. ThusUContext(vC4) = unsafe-delete, as marked in Fig. 8.

Similarly, Rule 3 below is used to identify unsafe internal nodes for an insert operation, which could cause the appearance
of other nodes, which are not its descendants, as view side effect. For example, Rule 3 below will markvC2 node in Fig. 8 as
unsafe-insert, because it will cause the appearance ofvC4 as view side effect. TheUPBinding()defined in Section 3 is utilized to
identify this case.

Rule 3: UContext(vC)=unsafe-insert if∃ v′C ∈ GV that is a non-descendant node ofvC such that (i)UPBinding(vC) ∩
CR(v′C) 6= ∅ and (ii) UContext(v′C)=unsafe-delete hold.

Intuitively, if (i) does not hold in Rule 3, then inserting aninstance ofvC will insert to those relations only referred to by
vC itself. It will not cause view side effects on any other schema nodes. However, if (i) holds, then insertingvC indicates the
potential appearance of an instance ofv′C as side effect sincev′C “shares” some common relation withvC . But if (ii) does not
hold, that is the update context type ofv′C is safe-delete, then at least we can alway eliminate the potential side effect by deleting
the clean source ofv′C . Thus only (i) and (ii) hold together denote the appearance of an unsafe-insert situation.

ConsidervC1 in Fig. 8. We haveUPBinding(vC1) = {book, publisher, review} andCR(vC4
) = {publisher}. Thus (i) holds.

SinceUContext(vC4) = unsafe-delete, thus we say thatUContext(vC1) = unsafe-insert. Inserting a book might cause the insertion
of an instance ofvC4 as a view side effect, if the publisher does not exist in thepublisherrelation before.

The following lemmas propose the correctness of above rules. For proofs please refer to [33].

Lemma 1 Let v ∈ GV ande ∈ I(v), whereI(v) denotes the set of instances inV of v. There exists a correct translation for
deletinge that does not cause any view side-effects ifUContext(v) = safe-delete.

Lemma 2 Let v ∈ GV ande be a new instance ofv. There exists a correct translation for insertinge, that does not cause any
view side-effects ifUContext(v) = safe-insert.

5.1.2 Update Point Type

Theupdate context typeof a schema nodev ∈ GV introduced above determines whether there exists at least oneclean extended
source[32]. If the answer is yes (UContext(v) = safe-delete or safe-insert), then the next question is how to find it? As sug-
gested by [10, 11], the “where-provenance” (refers to the location(s) in the source databases from which the data was extracted)
is a good candidate to start the search for a clean extended source in the relational context. Below, we enhance the notionof
the where-provenance by themapping closureconcept to also consider the effect of constraints from the relational database and
XQuery’s nested query syntax. We use theupdate point type(UPoint) to indicate whether the mapping closure is a clean extended
source ofv.

Closure. We use the concept of closure inGV andGD to indicate the effect of an update on the view and on the relational database
respectively. Theclosure of a nodev in GV , denoted byv+, is defined as follows. (1)v+

L = {vL}. (2) Otherwise,v+ is the
union of its children’s closures grouped by their hierarchical relationship and marked by their cardinality. For simplicity, in the
closure the cardinality of+ and∗ are both represented as∗, and the cardinality of1 and? are omitted. For example, in Fig. 8,
v+

L1 = {vL1} while v+
C2 = {vL4, vL5} andv+

C1={vL1, vL2, vL3, vL4, vL5, (vL6, vL7)
∗con2}.

Theclosureof an internal node inGD is defined as the union of its children leaf nodes and the closure of its non-leaf direct
children nodes. For example,n+

1 = {n2, n3, (n+
4 )∗con1}={n2, n3, (n5, n6, n7, (n+

8 )∗con2)∗con1}={n2, n3, (n5, n6, n7, (n9,
n10)

∗con2)∗con1}. The closure of a leaf node is the same as the closure of its parent node. For instance, in Fig. 9,(n9)
+ = (n8)

+

= {n9, n10}. Note that this closure definition inGD is based on the pre-selected update policy:same typeanddelete cascade.
When a different update policy is used, the definition has to be adjusted accordingly. However, the policy used affects only the
closure definitions of the base ASG, while the remaining steps for translatability checking remain the same [33].

Given two closuresC1 andC2, we defineC1 ⊆ C2, if C1 appears inC2. In Fig. 9,n+
8 = {n9,n10} andn+

4 = {n5,n6,n7,(n9, n10)
∗con2},

thusn+
8 ⊆ n+

4 . Two closuresC1 andC2 areequal, denoted byC1 ≡ C2, if C1 ⊆ C2 andC1 ⊇ C2. In Fig. 9, we haven+
5 ≡ n+

6 .
Moreover, we define the closure of a set of nodesN ∈ NGD

, denoted byN+, asN+ =
⊔

(ni∈N) n+
i , where

⊔
is a “Union-

like” operation that combines the nodes but eliminates duplicates. That is,∀nk, nj ∈ N , if n+
k ⊆ n+

j , N+ =
⊔

(ni∈N,i6=k) n+
i .

For instance, in Fig. 9,(n4, n8)
+ = (n4)

+
⊔

(n8)
+ = (n4)

+ = {n5,n6,n7,(n9, n10)
∗con2}.

Mapping Closure. Intuitively, the relationship between the closure of an internal nodevC in GV , denoted byCV , and its mapping
closureCD defined below, answers the following question. If an instance ofvC is deleted or inserted, what will be affected in the
relational database?
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Themapping closureof vC is defined as follows. First we computeCV = v+
C in GV . Let T=Distinct(getNodes(CV )), where

getNodes() is a function to extract all the nodes from a givenclosure, while Distinct() removes duplicates by node identification.
For each nodevLi ∈ T , we define itsmapping leaf nodeni in GD to be the one with the samenamein its annotation. LetN denote
the set of mapping nodes fromT . Let CD = N+ in GD. We callCD themapping closureof vC . For example,v+

C2 = {vL4,vL5}
andT = {vL4,vL5}. Then the mapping nodes inGV is N={n2,n3} andN+ = {n2,n3,(n5,n6,n7,(n9, n10)

∗con2)∗con1}. This is
the mapping closureCD we are looking for.

Definition 2 UPoint(vC) = clean if CV ≡ CD. Otherwise,UPoint(vC) = dirty .

It is only necessary to consider the update point type when the update context type is safe. For example, in Fig. 8,vC1 is
marked as(dirty|safe-delete,unsafe-insert). In this case, inserting a book might cause a view side effectas we explained before.
Deleting a book is safe, but since the UPoint mark is dirty, wehave to examine whether its publisher is referenced by otherbooks.

Algorithm 1 Mark GV with (UPoint |UContext) pair
/*Mark (UPoint|UContext) forGV */
PROCEDURE markViewASG (GV , GD)
computeClosure(GV , GD )
markUContext(GV , GD )
markUPoint(GV , GD)

/* Mark UContext(vC) as safe or unsafe for deletion and insertion*/
PROCEDURE markUContext (GV , GD )
/* First mark unsafe nodes*/
Initiate rules setS for update context checking
Add rules 1 to 3 intoS in order
while Shas more rules to be evaluateddo

Get the next ruler from S
evaluateRule(r,GV , GD)

end while
/* Mark the rest of them as safe */
while NGV

has more unmarkedvC nodesdo
Get the next noden ∈ NGV

UContext(vC) = safe-delete∧safe-insert
end while

/* Mark UPoint(vC ) as clean or dirty*/
PROCEDURE markUPoint(GV , GD )
while NGV

has more unmarked nodesdo
Get the next nodevC ∈ NGV

CV = getClosure( vC , GV )
CD = getClosure( Distinct(getNodes(CV )), GD)
if CV ≡ CD then

UPoint(vC ) = clean

else
UPoint(vC ) = dirty

end if
end while

5.2 STAR Checking Procedure

Once the ASGs are analyzed and marked by(UPoint|UContext)labels using Algorithm 1, theSTAR checking procedureis used
to decide the update translatability and additional conditions required (if any). Observations 1 and 2 serve this purpose.

Observation 1 A deletion on anunsafe-deletenode is un-translatable. A deletion on a(clean| safe-delete)node is uncondition-
ally translatable. A deletion on a(dirty | safe-delete)node is conditionally translatable. The condition required is translation
minimization. This refers back to the source-side-effect-minimization defined in [12], and studied in [2, 21, 22]. Thiscondition
guarantees that the translated update sequence avoids the view side effect from duplication.

Observation 2 A insertion on anunsafe-insert node is un-translatable. A insertion on a(clean | safe-insert) node is un-
conditionally translatable. A insertion on a(dirty | safe-insert)node is conditionally translatable. The required condition is
duplication consistency. That is, the duplicate parts inside the element to be inserted should have consistent values.

For example,u8 in Fig. 10 is unconditionally translatable sincevC3 in Fig. 8 is a(clean| safe-delete)node.u10 is untrans-
latable sinceUContext(vC2) = unsafe-deletein Fig. 8. The updateu9 is conditionally translatable by Observation 1. While
deleting the book, we will not delete its corresponding publisher, if another book references this publisher.

6 Data-driven Translatability Checking

As motivated by Example 3 in Section 1, any update operation which passes through all schema level checks (Steps 1 and 2)
might still be untranslatable. This can only be detected by examining the actual data, as described below.
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6.1 Data-driven Update Context Check

The update context check focuses on thecontextof the update operation. It aims to answer the question whether the view element
that the user update is inserting into or deleting from exists in the view content. For instance, in Example 3 (u3 in Fig. 4), thebook
into which thereview is to be inserted is not in the view. Thusu3 is not translatable. Similarly,u11 in Fig. 10 will be rejected
since it is trying to delete the reviews of the book “Programming in Unix”, which does not appear in the view.

We can address this by composing the view query with the user update query into aprobe queryas done by most XML data
management systems which support queries over views [13, 25]. This probe queryis then evaluated over the relational engine.
Foru3, the probe queryPQ1 will be:
PQ1: SELECT bookid FROM publisher,book,review

WHERE book.title=“Programming in Unix” AND book.price< 50.00
AND book.year>1990 AND book.pubid= publisher.pubid

The result of this query can be used for two different purposes. First, if the result set is empty, this means the qualifiedbook
does not exist in the view. Thus the given insert operation isnot translatable, and hence rejected. For example, the probe query
used byu11, which is the same asPQ1, returns empty result.u11 will also be rejected.

Second, in some cases the results of the probe query are required by the translated SQL update statements. For example,u13

in Fig. 10 is similar tou3 in Fig. 4, except that thereviewis now inserted into the book named “Data on the Web”. The result of the
probe queryPQ2 now includes one qualified book. Further, thebookidfromPQ2 will be used in the translated SQL statementU1.

PQ2: SELECT bookid FROM publisher,book,review
WHERE book.title=“Data on the Web” AND book.price< 50.00
AND book.year>1990 AND book.pubid= publisher.pubid

U1 = {INSERT INTO review VALUES “98003”, “001”, “easy read and useful”}

As we will see later, the results of the probe queries can alsobe materialized and re-used to generate the full insert tuple or to
eliminate redundant joins.

6.2 Data-driven Update Point Check

The updateu4 in Fig. 4 is determined to be not translatable. The reason is that abookwith the key(bookid,pubid)=(98001,A01)
already exists in thebook relation. A data conflict thus exists. However, this data conflict is different from that described in
Section 6.1. That is, the data conflict exists in the updated data itself (update point) instead of its context. Several approaches can
be used to solve this problem.

6.2.1 Internal Approach

As proposed by [7, 8], the XML view can be mapped into a set of relational views. The update over the XML view can then be
mapped into an update over this set of relational views. We thus would convert the XML view update problem into a relational
view update problem. For example, Fig. 11 shows the mapping relational view of theBookViewin Fig. 3. The updateu13 on
BookView will now be translated intoUV onRelationalBookView.

null

002

001

reviewid

null

Useful for advanced user.

A good book on network.

comment

A01

A01

A01

pubid

McGraw-Hill Inc.

McGraw-Hill Inc.

McGraw-Hill Inc.

pubname

48.00

37.00

37.00

price

98003

98001

98001

bookid

Data on the Web

TCP/IP Illustrated

TCP/IP Illustrated

title

RelationalBookView

CREATE VIEW RelationalBookView AS
SELECT p.pubid, p.pubname, b.bookid, b.title, b.price, r.reviewid, r.comment
FROM ( Publisher AS p LEFT JOIN ( Book AS b LEFT JOIN Review AS r 

ON b.bookid = r.bookid ) ON p.pubid = b.pubid );

Figure 11:The Mapping Relational View of BookView in Fig. 3

However, this approach has several shortcomings. First of all, this approach is rather limited since many current commercial
relational database systems such as [24] support update operations over SelectProject-views, but are limited on supporting updates
over Join-views.

Second, for performance reasons, this approach would causeunnecessarily expensive data queries. The updateu13 only
specified(title, reviewid, comment). Thus we need to find thebookid. However, in this inside approach, the translated relational
view updateUV above also has to find(pubid,pubname,price). The latter is not really needed. Our experimental studies in
Section 7 also illustrate this inefficiency.

6.2.2 External Approach

To avoid the shortcomings of the inside approach, we now introduce other more practical approaches to handle theupdate
decompositionoutside the relational engine. Here each resulting SQL update statement from the update translation engine will
be specified over only a single table. Two alternative strategies can be useful, namelyhybridstrategy oroutsidestrategy.

11



UV = {INSERT INTO RelationalBookView
(pubid,pubname,bookid,title,price,reviewid,comment)
VALUES (“A01”, “McGraw-Hill Inc”, “98003”,
“Data on the Web”, 48.00, “001”,“easy read and useful”)}

In thehybrid strategy, checking data conflicts is done by the relational engine, namely, the view update is decomposed and
translated into a sequence of SQL updates without any data conflict checking. This update sequence is then fed into the relational
engine, and we wait for its error or success response.

As an example, let us consider both insert and delete cases. In the insert case, the updateu4 in Fig. 4 maps intoU2 below.
The relational engine executesU2 and generates an error message since this insert conflicts with the Key constraint. In the delete
case,u12 in Fig. 10 is translated toU3 below. Note thatU3 accesses the tableTAB book, which is the materialized view from
PQ2 in Section 6.1. The relational engine executesU3 and generates a warning message that zero tuples are deleted.

U2 = {INSERT INTO book VALUES “98001”,“Operating Systems”,“A01”,20.00,1994}
U3 = {DELETE FROM review

WHERE review.bookid IN SELECT bookid FROM TABbook}

Alternatively, theoutside strategyissues a probe query to check whether a data conflict exists for each of the relations we
will insert into or delete from. For example,u4 in Fig. 4 can be checked using the probe queryPQ3. Since its result is not empty,
we conclude that there is a data conflict.u4 is not translatable. Updateu12 in Fig. 10 can be checked using the probe queryPQ4.
Since the result set is empty, we conclude that the tuple to bedeleted does not exist.

PQ3 = { SELECT bookid FROM book
WHERE book.bookid = “98001” AND book.pubid =“A01”}

PQ4 = {SELECT ROWID FROM review
WHERE review.bookid IN SELECT bookid FROM TABbook}

We notice that the probe query used in the outside approach isvery similar with the update query used in the hybrid approach.
A natural question is if it is worthwhile to probe before update translation? The answer to this question depends on several factors,
such as the shape of the view and the indices of the relationaldatabases, as we illustrate in our experimental studies.

7 Evaluation of U-Filter

7.1 Views Handled by U-Filter

The view ASG used in our solution has the same limitations as the view forest from SilkRoute [19]. ASG also does not express
if/then/else expressions; order functions, user-defined and aggregate functions, such as max(), count(), etc. We conduct an
evaluation on the expressiveness of our view ASG model for W3C use cases. The evaluation result is shown in Figure 12.

In [12], the authors study the complexity of the update translatability problem in the case of deletion over relational SPJU
views. They show that this problem is poly-time solvable with respect to the size of the database for SPU and SJ views, whereas
it is NP-hard for PJ and JU views. Note that Project here implicitly eliminates the duplicates. since we restrict the viewquery
handled by our ASGs, our views are actually a combination of SPJ views (in XML format), where we do not consider distinct op-
erations in Project. Our STAR marking procedure is a schema-level check that runs in poly-time in the size of the view query. The
STAR checking procedure takes only a hash operation time. Step 3 uses SQL engine, and runs in poly-time over the database size.

7.2 Performance Evaluation

Below we evaluate the performance of Step2 and Step3. The test system used is a dual Intel(R) PentiumIII(TM) 1GHz processor,
1G memory, running SuSe Linux and Oracle 10g. The relationaldatabase is built using TPC-H benchmark [1].

Performance of STAR Algorithm. Consider an XML viewVsuccess where the five relations (REGION, NATION, CUSTOMER,
ORDER, LINEITEM) are nested following the key and foreign key constraints. Updates over any internal node of this view are
unconditionally translatable. As shown by Fig. 13, even fora tiny database (1M), the STARChecking time is almost negligible in
a successful execution.

Now consider another viewVfail, where the five relations are first joined linearly as above, then the relation to be updated
(e.g.,REGION) is published again under the root tag. According to our STAR algorithm, deleting a region element from the
view is not translatable, thus should be rejected. If the STAR checking procedure is not utilized, the system would submit the
update. After the side effect has been identified, the transaction has to rollback to undo all the changes. Fig. 14 shows that this
undo procedure is very expensive. On the other hand, our STARchecking algorithm can identify it early and thus remains very
efficient, even if the DBsize increases.

For both views, our experiments also show that the STAR marking procedure stays cheap. The time forVsuccess is 0.12s,
while markingVfail takes 0.15s.
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View Query Included Reason
XMP-{Q1-Q3, Q5,
Q7-Q9, Q11, Q12} √
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√
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{Q3,Q4,Q5,Q6}
R-{Q1,Q3,

√
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count()
R-Q18 × Distinct()

Figure 12:Evaluation of W3C User Case
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update (DBsize=1Mb)

About Data-driven Translatability Checking. We consider two views, namely,Vlinear where the five relations are joined
linearly orVbush where they are joined “evenly”. First, let’s assume that therelational database supports updates over relational
Join-views. We compare the performance of the internal approach and the external approach usingVlinear . Fig. 15 shows that the
internal approach is more expensive than the external approach (hybrid strategy) for inserting a newlineiteminto the view. This is
because the internal approach issues a probe query to retrieve “all” attributes from “all” other four relations in orderto construct
a complete relational view tuple, which is inserted into thecorresponding relational view (as explained in Section 6.2.1). While
the External approach only retrieves the necessary information to form alineitemtuple, that is theL ORDERKEY .

The performance comparison between two strategies of the external approach is shown in Figures 16 and 17. Fig. 16 shows
that the hybrid strategy performs better in theVbush case. The reason is that both strategies include similar amount of join
operations, but the hybrid strategy generates simplified updates, which does not materialize the intermediate result.Further, the
relatively “big” gap between the hybrid and outside strategies is due to the indices defined. Oracle builds indices over the primary
keys and foreign keys, which is used by the Join condition in the hybrid strategy. The outside strategy, however, performs joins
over the materialized view, where indices do not exist.

Fig. 17 shows that the outside strategy performs better in different failed cases ofVlinear . Fail2 means no qualified tuples in
LINEITEM exist, but tuples in CUSTOMER and ORDER are deleted. While inFail1 there are no deletes over all three tables. As
we can see, forFail2, in the hybrid strategy, the delete queries over LINEITEM will still be executed and they return a warning
message “zero tuples deleted”. In the outside strategy, theprobe query will identify it and the delete statement is not issued on
LINEITEM. This is another advantage of the outside strategysince the failed case is detected early.
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7.3 Practical Application of U-Filter Approach

To examine the practicality of our approach, we studied the Protein Sequence Database (PSD) from [27]. From typical user
studies over this domain [27] gained by discussion with biologist (Ryder, Elizabeth F) at WPI, we observed the following: (i)
Thewell-nested viewassumed by [7, 8], where the nesting “follows” the key and foreign key constraints, is not often the case in
this domain. (ii) The delete SET NULL policy is typically used in this domain as opposed to the delete cascade policy. U-Filter
approach hence provides a practical solution to this domain, because it supports even non-well-nested views as well as flexible
update policies.

8 Related Work

[2, 21, 22] study the view update translation mechanism for SPJ queries on relations that are in BCNF. These works have been
further extended for object-based views in [5]. Commercialdatabase systems, such as Oracle [4], DB2 [15] and SQL-Server [28],

13



also provide XML support. [29] presents an XQuery update grammar. Assuming that the update is indeed translatable and has in
fact already been translated into updates over a relationaldatabase. [29] also studies the performance of executing the translated
updates by using relational techniques, such as triggers orindices. Our work addresses a different aspect of the view update
problem, namely,view update translatabilityinstead ofupdate translation strategy.

An abstract formulation of the update translatability problem is given by theview complementary theoryin [3, 16]. It uses the
invariance of the complement of a view, namelydatabase side-effect free, to decide the translatability of a given update. However,
by requiring thedatabase side-effect freeproperty, the complementary theory is too restrictive to bepractical. In [18], the authors
relax the criteria for a correct translation as only requiringview side-effect free. Based on the notion of aclean source, it presents
an approach in the relational context for determining the existence of update translations by performing a syntax analysis of the
view definition.

Our earlier work [31] studies the update translatability ofXML views over the relational database in the “round-trip” case,
which is characterized by a pair of reversible lossless mappings for (i) loading the XML documents into the relational database,
and (ii) extracting an XML view identical to the original XMLdocument back out of it. We prove that the view updates in thiscase
are always translatable according to theview complementary theory[3, 16]. Recent works [7, 8] study the update overwell-nested
XML views. They assume joins are through keys and foreign keys, and nesting is controlled to agree with the integrity constraints
and to avoid duplication. As our work on updates shows, an update over such a view is thus always translatable. [23] develops a
theory within the framework of the ER approach to characterize the conditions under which mappings exist. It is further extended
in [14] to guide the design of valid XML views. Valid views based on this design approach are a proper subset of general XML
views studied in this paper. [14] avoids the duplication from both joins as well as multiple references to the relations.Our work
in this paper isorthogonalto these works by addressing new challenges related to the decision of translation existence when no
particular restrictions have been placed on the defined viewfor the update translatability. That is, in general, conflicts are possible
and a view cannot always be guaranteed to be revert-able [31], well-nested [7, 8] or valid [14] (as assumed by these prior works).

In [32] we first extend [18] into aclean-extended source theoryfor XML views to serve as a criteria of determining whether a
given translation is correct. [34] focuses on identifying the factors deciding the translatability of deletions over XML views (part
of Step 2). Our work in this paper now provides a general framework consisting of three steps based on the factors identified
previously. Further, as part of our data-level check we are able to analyze the performance of existing work [8]; we are able to
suggest alternative approaches that can work with existingDBMS without imposing additional requirements, and that yield better
performance.

Recent works [10, 11, 17] indicate a loose connection between data provenance[10, 11] orlineage[17] and the view update
problem. The distinction between “why provenance” and “where provenance” is used to guide the view update process to find
an appropriate update translation. Their work has several similarities with ours, e.g., try to find the data trace (provenance) at the
query syntax level. However, we utilize this data trace or provenance for a different purpose. The question that [10, 11]tries to
answer is: given two equivalent queries that are rewritingsof each other, when are the provenances guaranteed to be identical?
Instead, we use the provenance to find a correct translation,if one exists, for a given update query.

9 Conclusions

In this paper, we have proposed a lightweight frameworkU-Filter to address the XML view update translatability problem. A
three-step translatability checking process is used to guarantee that only translatable updates are fed into the actual translation
system to obtain the corresponding SQL statements.

Our solution ispractical since it does not require any additional update capability from the relational database. It can be
applied by any existing view update system for analyzing thetranslatability of a given update before its translation isattempted.
Our solution is alsoefficientsince we perform schema-level (thus very inexpensive) checks first, while utilizing the data-level
checking only at the last step. Even when data has to be accessed, we issue probe queries whose results can be reused for later
update translation.

In the future, we would like to study how our solution can be adapted to XML views published over native XML documents,
in particular XML-specific issues, such as order handling.
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