WPI-CS-TR-05-11 July 2005

U-Filter: A Lightweight XML View Update Checker

by

Ling Wang
Elke A. Rundesnteiner and Murali Mani

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

U-Filter: A Lightweight XML View Update Checker

Ling Wang, Elke A. Rundensteiner and Murali Mani
Worcester Polytechnic Institute, Worcester, MA 01609, USA
{lingw|rundensimmani; @cs.wpi.edu

October 12, 2005

Abstract

We study in this paper the problem of whether a correct @iatiupdate translation can be found for a given update aver a
XML view. For this, we propose a lightweight update checkiragmework namedU-Filter. It first performs two steps of schema-
level (and thus very inexpensive) checks based on a viewitiefimnalysis. Only when necessary, a third checking stpyiring
base data access and thus more expensive, is employed eRafttéh, we design ainternal strategy as well as axternalstrategy
(with respect to the DBMS). This three-step checking precgeguaranteed to filter out all XML updates that cannot hesleded.
Finally, the remaining updates are fed to the update tréioslangine, which generates the corresponding SQL uptiztensents.
Our experiments illustrate the usefulnesdJeFilter and the performance impact achievable by the proposedithigor

1 Introduction

Both XML-relational systems such as [13, 25] and native XN&tems such as [20] support creating XML wrapper views and
guerying against them. However, update operations agaicstvirtual XML views in most cases are not supported yet.

Two problems concerning updating XML views need to be tatkl€irst, update translatabilityconcerns whether some
updates on the base data storage, which typically may batorehl database or a native XML document, can be made toteffe
the given update to the view without causing any view-siffeeg[3, 16, 18]. Second, we need to devise an appropriatslation
strategy That is, assuming the view update is indeed translatabie tbh map the updates on the XML view into the equivalent
tuple-based SQL updates or XML document updates on the laase d

The second issue, the translation strategy, has been dtindiecent works [4, 7, 8, 15, 28, 29]. Under the assumptiat th
the given update is translatable, [7, 8] propose an apprmactnvert the XML view update problem into relational viepdate
problem. [29] studies the execution performance of traedlapdates. Commercial database systems such as SQUZR€10e
[28], Oracle [4] and DB2 [15] also provide system-specifitu§ons for restricted update types, again under the assampf
the given updates always being translatable.

Based on the idea of data provenance (lineage) — the désaorgdthe origins of each piece of data in a view, recent wtks
11, 17] indicate a loose connection between the conceptavemiance and the view update problem. The distinction betwe
“why provenance” (the source data that had some influenckheaxistence of the data) and “where provenance” (the lorog)
in the source databases from which the data was extractededto indicate the potential correct translation. Howebese
works do not answer the questions important to update ataislity such as (i) whether the why or where provenancaés t
correct translation and (ii) if they are not, whether thexistsat least another correct translation?

This update translatability issue is important in termsathicorrectness and performance. Without translataliligcking,
blindly translating a given view update into relational apes can be dangerous. Such blind translation may resuikw side
effects To identify this, the view before the update and after théaip would have to be compared as done in [28]. To adjust for
such an error, the view update would have to be rejected amitabase would have to be recovered for example by roléiog.b
This would be rather time consuming, depending on the sizbeoflatabase. However, by performing an update trandigfabi
analysis, such ill-behaved updates could instead be foeh&arly on and rejected, and it would be less costly.

In this paper, we propose a general methodology to assesstistatability of an update over ambitrary XML view of a
relational database, when various schema level conflictslata level conflicts potentially exist.

XML view update translatability problem is more complexntthat of pure relational view update translatability [3, 18].
Not only do all the problems in the relational context stklst in XML semantics, but we also have to address the newtepda
issues introduced by the XML hierarchical data model andlésible update language. Especially, when duplication$ an
inconsistent constraints between the view and the dataichsena exist, the problem is further complicated as shovexamples
below.

CREATE TABLE publisher(

pubid VARCHAR2(10),

pubname VARCHAR2(100YNIQUE NOT NULL ,

CONSTRAINTS PubPK
PRIMARYKEY (pubid))

CREATE TABLE book(

bookid VARCHAR2(20),

titte VARCHAR2(100)NOT NULL ,

pubid VARCHAR2(10),

price DOUBLECHECK (price > 0.00),

year DATE,

CONSTRAINTS BookPK
PRIMARYKEY (bookid),

FOREIGNKEY (pubid)
REFERENCES publisher (pubid))

CREATE TABLE review(

bookid VARCHAR2(20),
reviewid VARCHAR2(3),
comment VARCHAR2(100),
reviewer VARCHAR2(10),
CONSTRAINTS BookPK

PRIMARYKEY (bookid,reviewid),

FOREIGNKEY (bookid)
REFERENCES book (bookid))

Running Example

publisher
pubid [pubname p—
t, |A01 McGraw-Hill Inc. q Primary
t,|A02 Simon & Schuster Inc. Key
t,{BOL__|Prentice-Hall Inc. [Non key
booII |
bookid | title pubid |price |year
198001 | TCP/IP lllustrated AO1 |37.00 |1997
t,]98002 | Programming in Unix AO2 |45.00 |1985
t3]98003 | Data on the Web AO1 [48.00 2004
review
bookid |reviewid [comment reviewer
t;]98001 |001 A good book on network] William
t,|98001 (002 Useful for advanced usef.John
Figure 1: Relational Database of
<BookView>

FOR $book IN document("default.xml")/book/row,

$publisher IN document("default.xml")/publisher/rg
WHERE ($book/pubid = $publisher/pubid)
AND ($book/price<50.00) AND ($book/year > 1990)
RETURN {

<book>
$book/bookid, $book/title, $book/price,
<publisher>
$publisher/pubid, $publisher/pubname

</publisher>,

FOR $review IN document("default.xml")/review/rd

WHERE ($hook/bookid = $review/bookid)

RETURN{

<review>

$review/reviewid, $review/comment
</review>}
</book>},

FOR $publisher IN document(“default.xml")/publisher/r
RETURN{

<publisher>

$publisher/pubid, $publisher/pubname

</BookView>

<book>

Figure 2:

<title>TCP/IP lllustrated</title>

<price>37.00</price>
<publisher>

<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname>

</publisher>
<review>

1
|
1
w
i <bookid>98001</bookid>
1
1
1
1
1
1
1
1
1
1
1
1

“ <reviewid> 001 </reviewid>

<comment>

A good book on network.

<[review >

1
1
1
1
g </comment>
1
1
! <review>
1

<reviewid> 002 </reviewid>

VY <comment>

</comment>
<[review >
</book>

</publisher>}
(@)

Useful for advanced user.

<DB>
<publisher>
<row>
<pubid>A01</pubid>
<pubname>McGraw-Hill Inc. </pubname>
</row> ...
</publisher>
<book>
<row>
<bookid>98001</bookid>
<title>TCP/IP lllustrated</title>
<pubid>A01</pubid>
<price>37.00</price>
<year>1997</year>
</row> ...
</book>
<review>
<row>
<bookid>98001</bookid>
<reviewid>001</reviewid>
<commentA good book on network/comment:
<reviewer>William</reviewer>
</row> ...
</review>
<DB>

Default XML View of Database in Fig. 1

<bookid>98003</bookid>
<title>Data on the Web</title>
<price>48.00</price>
<publisher>
<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname
</publisher>
</book>

1
1
1
1
1
1
1
1
1
1
1
>
1

1
1
i
1
<publisher> H
<pubid>A01</pubid> !
<pubname> McGraw-Hill Inc. </pubname> !
</publisher> 1
<publisher> i
<pubid>A02</pubid> i
<pubname> Simon & Schuster Inc </pubnarf
</publisher> !
<publisher> !
<pubid>B01</pubid> 1
th
1
1
1
1
1
1

</publisher>

<BookView>

Figure 3: XML Views (b) defined by the View XQuery (a) over R@aal Database in Fig. 1

1.1 Motivation Example

Fig. 1 shows a running example of a relational schema andlsatafa of a book database. Recent XML systems (XPERANTO
[13], SilkRoute [19]) use a basic XML view, calledefault XML view to define the one-to-one relational-to-XML mapping
(Fig. 2). On top of this default XML view, &irtual viewcan be introduced to define user-specific XML wrapper viewshS
virtual view (Fig. 3b) can be specified by an XML query expres<alled aview query(Fig. 3a). Updates are specified in our
work by adopting the syntax from [29]. Fig. 4 shows severalmegles of view updates.

Example 1 In Fig. 4, u; inserts a new book element into BookView. We notice thaittheof the new book is empty and the
price is “0.00". However, the underlying relational scherhas the constraints that the title of book tuples is NOT NUAshile
the price of the book tuple should be a positive number. Thauss not translatable since it directly conflicts with the ckec

constraints from the relational schema.

Example 2 us in Fig. 4 deletes the publisher of the first book. In the unged relational database, there is a foreign key from
book relation to publisher relation. So, when the publisisaeteleted, the corresponding book tuple has to be eitherdddeted,
or the pubid of the book needs to be replaced with NULL, deipgrah the deletion policy defined by the foreign key constsai
However, neither of these two are correct because they bothidicause the side-effect of the corresponding book to mgelo
appear in the view. We thus say thatis not translatable since it causes a view side effect.

u,; u,

FOR $rootIN document(“BookView.xml") FOR $rootIN document(*BookView.xml"),

UFIE’;EE?FOON $bookIN $root/book
ook WHERE $book/bookid/text() = " 98001"
<book> UPDATE $root {

<bookid>"98004"<bookid> DELETE $book/publisher}
<title> </title>

<price> 0.00 </price>
<publisher> ... </publisher>

</book> } u4
U3 FOR $rootIN document(“BookView.xml")
UPDATE $root {
FOR $bookIN INSERT
document(“BookView.xml")/book <book>
WHERE <bookid>"98001"<bookid>
$bookititle/text() = “DB2 Universal Databasg' <title>" Operating Systems "</title:
UPDATE $book { <price> 20.00 </price>
INSERT <publisher>
<review> <pubid>A01</pubid>
<reviewid>001</reviewid> <pubname>
<comment> McGraw-Hill Inc.
Easy read and useful. </pubname>
</comment> </publisher>
</review>} </book>}

Figure 4: Updates over View in Fig. 3

Example 3 The update:s in Fig. 4 inserts a review for the book “DB2 Universal Dataledswhile this book is not in the view.
Anduy inserts a new book which conflicts with an existing bdekk.t,), since they both have “bookid=98001". Both, and
uy4 are said to be not translatable.

1.2 U-Filter: Our Approach for View Update Checking

We note from above examples that the potential conflicts th bchema or data level can affect the translatability ofargiview
update. To address these factors we propose a lightweightypdate checking framework calledFilter. It first performs two
steps of schema-level (and thus very inexpensive) checkdmly when necessary, more expensive checking requiriadpése
data to be accessed is employed.

The first step, calledpdate validationidentifies whether the given view update is valid accordmtheview schemaThis
can be pre-defined [6] or be inferred from the view definitioexy and the base relational schema knowledge. Given ttsabio
work has already been done in the literature on schema valid®, 26], here we focus only on questions closely relatét the
view update scenario, such as which constraints shoulddligation procedure consider. The problem in Example 1astified
by this step.

In the second step, callesthema-driven translatability reasoningny update determined to be valid by Step 1 is further
examined. Here the potential view side effects are cheokbith can be caused by different reasons such as (i) foresgn k
constraints conflicting with the view structure or (ii) batsta duplication in the view. This compile-time check ont§izes the
view query and the relational schema. Example 2 is identifidze not translatable in this step.

Updates passed the previous two steps could potentidligaiiflict with the base data (Example 3). In our third sty t
run-timedata-driven translatability checkinguch conflicts will be identified. This check can only be hesd by examining
actual base data. This is typically rather expensive. Héne@ractical to employ this only at the end, when the priveck steps
have already been considered and the update has sucgepafiged these filters.

Fig. 5 shows the framework of U-Filter. We present algorishend optimizations for each step in U-Filter. This représen
a practical approach that could be applied by any existieg/wipdate system for analyzing the translatability of a giview
update before translation of it is attempted.

Contributions. Our contributions in this paper include: (1) We propose atligeight three-step framework calléétFilter as
a practical solution for XML view update translatabilitygiem. (2) We identify the constraints existing in eithes thew or
relational base that need to be considered fouthgate validatiorand model them usingnnotated Schema Grap{8) We pro-
pose aSchema-driven TrAnslatability Reasonelgorithm (STAR) to classify an XML view update into differetranslatability
categories. (4) We design sevebata-driven Translatability Checkingpproaches to identify the untranslatable updates caused
by data level conflicts. (5) We conduct a variety of experita¢gmassess the performance and usefulness a-gtilter approach.

Outline. Section 2 formally defines the problem we are tackling inplaiper. Section 3 describe the internal query representatio
in U-Filter named Annotated Schema Graph. Sections 4, 5 ateséribe each of the three checking steps respectiveljioBec
7 provides an evaluation of our solution. Section 8 revidvesrelated work while Section 9 concludes our work.

View Query/Fl’re-defined View Schema User Update Query Error message
1

1
| "
ﬁ Update Validation Invalid

Annotated |ASG -
Schema Graph|~ | lValnd

Generator |
ﬁ Schema-driven Translatability Reasonir1%J—n"""m"’“""ble

XML/RDB Unconditionally Conditionally translatable
Schema Translatable

Unsatisfied

Condition Analysis

]
Data-driven Translatability Checking ‘ Data Conflicts

U-Filter

Translatable Update Que&y .Il Error message

Update Translation Engine

SQL Update Quety T Error message

A
1
1
1
1
1
:
| Satisfied
1
1
1
1
1
1
1
1
1
1
1
|
I

Data Storage

Figure 5: Framework of U-Filter

View Update v @Qu u(v)
@ @
Valid Invalid DEF, DEF,
uD
@u (D)

Untranslatable Conditionally ~ Unconditional
Translatable Translatable

Figure 7: Correct transla-
Figure 6: The partition of view tion of view update to re-
update domairy lational update

2 Problem Definition

The relational data model can be described as below. FoatiaeR, let A = {a1, as, ..., a,, } be its attribute set. A relational
database is represented/@sand its schema ag R1, Rs, . .., R,), F }, whereR;, Ro, ..., R, are the relations itD, andF is
the set of constraints. THEML view V is defined by asiew definition D E Fy- over a given relational databask In our case,
DEFy is an XQuery expression [30] calledraew query

Let U be the domain of the update operation over the viewaletl be an update on the vieW. An insertionadds while a
deletionremoves an element from the XML view. rBplacementeplaces an existing view element with a new one. Fig. 4 shows
several examples of view updates expressed in the “XQuikg/'language [29].

A taxonomy of the view update domaihis shown in Fig. 6. First of all, &alid view update is an insert, delete or replace
operation that satisfies all constraints in the view schadpalates:s, us andu, in Fig. 4 are valid updates since they agree with
all constraints of the view schema. Update however, is an invalid update as shown by Example 1.

Definition 1 A relational update sequenééon a relational databas@® is acorrect translation of a valid update: on the view
Viff () w(DEFy (D)) = DEFy(U(D)) and (i) if u(DEFy (D)) = DEFy (D) = U(D) = D.

A correct translation means the “rectangle” rule shown . Fiholds. Intuitively, this implies that the translatethti®nal
updates exactly perform the view update, namely, withoaunsgide effects. In addition, if an update operation doesffett the
view, then it should not affect the relational base eithéisGuarantees that any modification of the relational beseleed done
for the sake of the view. For instance, the updatés not translatable since it tries to insert a review into albthat is not in the
view. The second criterion is guaranteed if the translaatone by query composition, and hence generally can be\zasdfi.

For a valid update, if a correct translation does not exid untranslatable. If additional conditions are required to be
satisfied for a correct translation to exist, thers said to beconditionally translatable. As we will show in later sections, this
additional condition includes for example translated apdainimization and duplication consistency checking. édtise,u is
calledunconditionally translatable (Fig. 6)

INote that some commercial databases (DB2) provides the arieator an option to update the data not visible through igag.\Our solution can be easily
adjusted to this scenario by relaxing this restriction

We now can define the problem ¥ML view update translatability as the problem of first classifying an update as either
valid or invalid, then classifying aalid update as eithamconditionally, conditionally translatabler untranslatable

3 Annotated Schema Graph

U-Filter uses Annotated Schema Graph (ASG) to model the constreamisfoth the view query and the relational schema. ASG
is then extensively used by schema level checking steps.

3.1 Classification of Constraints

The constraints, extracted from the relational schemaferried from the view query will help us to decide whether a given
update is valid, and possibly even translatable. They angpded once and reused thereafter for any future updatekaigec
specified over this same view.

Let us first examine a predicgt®f the forma 0 b, whered € {=, #, <, <, >, >}. We say thap is anon-correlation predicate
if b is a literal (e.g.$book/year = 199) Otherwisep is acorrelation predicatde.g.,$book/pubid =$publisher/pubid.

We divide the constraints dscal or global. Intuitively, constraints that affect only one tuple of asbaelation or one view
element are calletbcal constraints Otherwise, they are callgglobal constraints The non-correlation predicatem the view
guery formlocal constraintswhile the other constraints in the view query, sucle@selation predicatescardinality constraints
andhierarchical structureform global constraints

Inthe relational schema, thacal constraintsnclude all the constraints specified over one relationh sigoddomain constraints,
NOT NULL constraints and Check constraints for the domaime dlobal constraintsnclude constraints specified over multiple
relations in the relational schema, such as foreign keytcainss.

3.2 Annotated Schema Graphs

For each view, two ASGs are generated to represent the aortstdescribed in Section 3.1. Thase ASGncludes only the
global constraints from the relational schema, while al st constraints are captured in thew ASG

Fig. 8 depicts the view ASG for BookView in Fig. 3. Thieew ASG, denoted by, represents the hierarchical structure of
the XML view?. Let Ng,, andEg,, respectively denote the nodes and edgegaf

Ng, includes four kinds of nodes: root, internal, tag and leade® Nodevy in Fig. 8 is theroot node Without loss of
generality, we assume there is always a root tag to encledeltWR expression in the view query. Otherwise, we would §mp
add a “dummy” root node. Aeaf nodevy, represents an atomic type. The parent of a leaf node, ntagetbdevg, identifies a
simple view element or an attribute. All the remaining nodesinternal nodegv¢), each of which identifying a complex view
element. In the rest of the paper, we also use indicate a node igy without specifying its type.

Each node is associated with its annotation set as showr Mdtie Annotation Tabli Fig. 8. The annotation of a leaf node
includes{name, type, property, chekkA leaf nodev;, has its corresponding relational attribute nafie as itsnameannotation.
Thetypeof vy, represents its domain constraints. Fhepertyof v;, captureq Not Null} constraints, depending on the constraints
on its relational attributé?.a. For instance, the property of nodgs in Fig. 8 is marked abdlot Null, sincepublisher.pubids the
key of thepublisherrelation. Thecheckannotation ofv;, represents the relational check constraints.

The annotation ofz, vo or vs node includes theamefield which corresponds to the tag name of the element it isatiragl
Moreover, thevy andve nodes include theidpdate Context Binding and Update Point Binding in their annotation. The
UCBInding@¢) extracts all the relations that have some influence on ttetemée ofo in DE Fy,. TheUPBInding(¢) includes
all the relations referred in constructimg.. For examplelJCBinding@c1) = {book,publishef since both relationbookand
publisherare used to decide the existencdobkelement (¢1). UPBinding@c1) = {book,publisher,reviepsince (i) bothbook
andpublisherrelations are used to construct th@okelement and (iiyeviewrelation is used to construrtviewelements inside.
Readers familiar with SilkRoute [25] can consider the UGBy as all relations in the FROM clauses of the SQL statement
generated for a nodg while the UPBIinding as all relations in the FROM clausesliofsadescendent nodes.

Given two nodes;, v € Ng,, the edge(v1,v2) € Eg, represents that; is a parent of; in the view hierarchy. Each
edge is labeled by its end node péir, v2). Its annotation includes its cardinality type (inferredrfr the view query) and its
condition (if any), extracted from the correlation predean the view query. The cardinality types are from the enatien
domain{1,? +, «}, representind : 1,1 : {0,1} (at most one)l : n+ (at least one) and : n (any) respectively. Note that
the incoming edge of, is either 1 or ?, depending on whether it can be Null. We aldméle functionrel to extract the
relations inD referenced by the view quefy EFy, . For example, in Fig. 3(ajel(D E Fy) = {publisher,book,reviejv Note that
rel(DE Fy)=UPBindingg).

2We do not propagate relational constraints (such as KeyjeXML as done by [9], we merely use them to filter out ill-betéwupdates. However, work
in [9] can be easily included to favor the checking procedorgeneral.
3ComputingGy is done similarly as in SilkRoute [25], for details pleasterdo [33].

Legend
UContext:

s-d Safe-delete s-i
u-dUnsafe-delete u-i
UPoint: dirty | clean

Safe-insert

*con 5
Unsafe-inseft

YSZ
title

1

Vio
text()

AN
~ book -

VR
BookView

FAAN
.~ publisher

1 X con2
Vss /”\,/c\;\ PAN Vsg
price . publisher 7 review . pubid
o L (dirty | u-dJu-i), (clean | s-dJs-i) 1

v,
v v, V, S6 s7 L8
te;?() puf;id pubﬁsame reviewid comment text()

1 1 1 2

Vig Vis Vie Vig

text() text() text() text()

VSQ
pubname
1

VL9
text()

Node Annotation Table

Vg name = BookView V,,: name = book.bookid
UCBInding = {} type = string
UPBInding = {book,publisher,review} property = {Not Null}

V¢,: Name = book V,,. name = book.title
UCBInding = {book,publisher} type = string
UPBInding = {book,publisher,review} property = {Not Null}

Vc,. name = publisher V3. hame = book.price
UCBInding = {book,publisher} type = string
UPBInding = {publisher} property = {}

Vg hame = review check = {0.00<value<50.00}
UCBInding = {book,publisher,reviewV, ,. name = publisher.pubid
UPBInding = {review} type = string

V¢, hame = publisher property = {Not Null}
UCBInding = {publisher} V5. name = publisher.pubname
UPBInding = {publisher} type = string

property = {Not Null}

Vs, name = bookid V. Name = review.reviewid

Vg, name = title type = string

Vg, Name = price property = {Not Null}

V., name = pubid Vi hame = review.comment

Vgs.Name = pubname type —_strlng_ h

Vgg. Name = reviewid Vie: ?y%rge——st;:il.:]tglsher.publd

Vs7.Name = comment property = {Not Null}

Vsg;Name = pubid V,g. Name = publisher.pubname

Vg, NAamMe = pubname type = string

property = {Not Null}

Edge Annotation Table

(Vg Vep): type =*, condition = {book.pubid = publisher.pubid}
(Vrs Vca): type =*
(Vew Vea): type = *, condition = {book.bookid = review.bookid}
(Vey, Vo) type = 1

Figure 8: View ASG oBookViewin Fig. 3

TheBase ASGGp is a DAG that captures the hierarchical and cardinality trairss inferred from the key and foreign key
constraints of the relational database. Mgt denote the nodes arid;,, denote the edge§,p is computed as follows. For each
leaf node in the view ASG, there exists a correspondingioglat attribute. The union of all these relational attrémiforms the
leaf nodes ofjp. Each leaf node is annotated byame,property. Thenameis given by its corresponding attribute name. The
property(if any) capturegkey} constraints. For a leaf node with nameR.qa, we introduce a node corresponding td&? and an
edge , n;). For any two nodes,, n» that correspond to relatiori®, .S respectively, we introduce an edge , n»), if there is a
foreign key fromS to R. The base ASG of BookView is shown in Fig. 9.

4 Update Validation

The update validatiorstep identifies whether the given view updaterddid according to the local constraints captured in the
view ASG. Since the view schema has been extracted and espeglsas the view ASG in Section 3, we now only focus on the

n, (publisher)
1

Lgonl

n, Ny Ny
(publisher.pubid) (publisher.pubnamejbook)

ng ng
(book.bookid) (book.title)

Node Annotation Table

1 & con2

n, ng
(book.price) (review)

Ny Ny .
(reviewid) (comment

ng:
n,

ng
n,
ng:

name = publisher

name = publisher.pubid
property = {Key}

name = publisher.pubnam
name = book

name = book.bookid

property = {Key}

: name = book.title

: name = book.price

. name = review

: name = review.reviewid
property = {Key}

n,e: hame = review.commen

Edge Annotation Table

(n,, n,): type =*, condition = {book.pubid = publisher.pubid}
(ny, ng): type =*, condition = {book.bookid = review.bookid}

Figure 9: Base ASG dBookViewin Fig.

Us ug U,

FOR $bookIN document(“BookView.xml")/book FOR $bookIN document(“BookView.xml")/book FOR $bookIN document(*BookView.xmlI")/book
WHERE $book/price/text() > 50.00 WHERE $book/price < 40.00 WHERE $book/title/text() = "Programming in Unix'
UPDATE $hook { UPDATE $book { UPDATE $book {)
DELETE $book/review } DELETE $bookireview } DELETE $book/review}
Ug Ug U,
FOR $bookIN document(“BookView.xml")/book FOR $rootIN document(“BookView.xml") FOR $bookiN document(*BookView.xml")/book
! WHERE $book/title/text() = “Data on the Web
UPDATE $book { _ $book =$root/book UPDATE $book {
DELETE $book/bookid/text() } WHERE $book/price > 40.00 DELETE $hook/review}
u UPDATE $root { U
“ . " DELETE $book } 13
FOR $rootIN document(*BookView.xml") u FOR $bookIN document(*BookView.xml")/book
UPDATE $root { 10 WHERE bookftitle/text() = “Data on the Web"
INSERT FOR $bookIN document(“BookView.xml")/book UPDATE $book {
<book> _ WHERE $book/price > 40.00 INSERT
<bookid>"98004"</bookid> UPDATE $hook { <review>
<title>" Operating Systems "</title> ; <reviewid>001</reviewid>
<price> 20.00 </price> DELETE $bookipublisher } <comment>Easy read and useful.</commen|
</book> } </review>}

Figure 10: View Update Example

question: what kind of validation must be considered fofedént update types (delete, insert) respectitely

Delete. Two checks must be considered in the delete case. (i) Doexdeh®ent to be deleted appear in the view? If an update
operation does not affect the view, then it should not affeetrelational base either (Definition 1). This means thatrtn-
correlation predicate specified in the user update mustrlapéwith the check constraints captured in the view ASG reade.

For this, we examine theheckannotation of the leaf node. For examplg.in Fig. 10 tries to delete all the reviews from the book
that costs more than $50. However, the BookView in Fig. 3 amjudes those books that cost less than $50. Thus said to

be invalid.

(i) For deletes over a node in the view ASG, is that node délef? Since a relational delete always removes one or more
tuples, while an XML delete is more flexible, and could deksther just a single value or even a complete subtree. Inrgkne
deletion of a node with the incoming edge as “1” is invalidr Emampleug in Fig. 10 is invalid since leaf node.; is required
to beNot Nullin Fig. 8.

Insert. Assume that the insert happens on the schema nadthe view ASG. We first examine whether the node to be inderte
conforms to the hierarchy specified in the view ASG, by exangiithe name annotation of the node and the type annotation of
the edges. For example; in Fig. 10 is invalid since the type annotation of the edge (vc2) in Fig. 8 is “1”, that is, each book
must have exactly one publisher.

Second, we consider whether the values inside the elemdrg toserted conform to the constraints captured in the view
ASG. (i) The leaf node value must be in the domain defined hyjtsannotation. (ii) The leaf node value must satisfy theck
annotation. (iii) The leaf node value cannot be empty if phgpertyannotation includeBlot Null. For instancey; in Fig. 4 is
invalid since the node annotation table in Fig. 8 indicalkes i) thetitle cannot beNULL according to the property of the node
v and (i) theprice should be a positive number based on the check annotatitwe ofddey 5.

After Step 1, the view updates which directly conflict withyasf the local constraints are rejected instantly. The rest a
passed to the next step for view side effect checking.

5 Schema-driven Translatability Reasoning

Using the global constraints captured in both view ASG argel#SG, this step classifies a valid view updateisanslatable
conditionally translatabler unconditionally translatable

For exampleyus in Fig. 10 is unconditionally translatable, and a corremb$iation is to deletecview.t; andreview.t, from
review table. The updatey in Fig. 10 is said to be conditionally translatable. The cliteanslationU = {(delete from book
where rowid =t3),(delete from publisher where rowid#s)} is not a correct translation, sinpablisher.t, is still referenced by
the first book element in the view. Deleting it will cause awigide effect. Thus, in order for this update to be translatedm
additional condition is associated with this update, ngri¥fgbply update minimization in translation”. Such kind ofmmization
is studied in [2, 21, 22]. The updatg, in Fig. 10 is untranslatable. The direct translatioblis {delete from publisher where
rowid = ¢, }. Note that there is a foreign key from theokrelation to thepublisherrelation. Therefore this deletion will cause
thebookto disappear also.

Our earlier work [32, 34] proposesciean extended source theaag criteria for determining whether a given translation
mapping is correct. A clean extended source representsecttnanslation for the given view update, which achiebhedesired
delete operation without causing any view side effect. Adaip translation is correct if and only if it deletes or insexr clean
extended source of the view element. Based on this thealébiendation, we now propose a concrsthema-driven update

4Currently we consider replace as a deletion followed by agriion.

translatability reasoning (STAR) algorithm. It utilizes a statiSTAR markingrocedure and a dynan®&TAR checkingrocedure
to decide the translatability of a valid update from the updealidation step. The correctness proof of our STAR athaorican
be found in [33].

In this paper, we consider only the internal nodesin our schema level update translatability checking. Thesdes are
marked by a dashed line in Fig. 8. The treatment of other n@degher trivial or similar to that ob~ nodes. For instance,
deleting the root nodey, is always translatable. Similarly any valid update ef.anode will be translatable. Updatesgf nodes
are handled similar to an update ovar@anode.

5.1 STAR Marking Procedure

We use a STAR marking procedure to encode each no@e iat compile time by itaipdate point typ@ndupdate context type
labeled agUPoiniUContext) This mark is then used to determine the translatabilitypafaies specified on the nodes.

5.1.1 Update Context Type

Theupdate context type(UContext) of a node iy determines whether a view side effect might arise whenidgler inserting
an instance of this node. A node is said teshée-deletdf for the operation of deleting any of its instance, theristsxa translation
which is guaranteed to not cause any view side effect. OfBerivis said to bainsafe-deleteSimilarly, a node is said to be
safe-insertf for the operation of inserting a new instance, there exéstranslation which will not cause any view side effect.
Otherwise, it is said to bensafe-insert

The intuition for update context type is that duplicatiothie view is the major cause of view side effects. Duplicatippears
in different forms: (i) two instances of the same view ASG aadight be duplicated, and thus map to the same relational dat
and (ii) two instances of different view ASG nodes could afsdude duplicate sub-elements.

The following rules are used to determine the UContext ofdenssing the view AS@y,. Rule 1 identifies the unsafe internal
nodes caused by duplication (i). Rules 2 and 3 identify treafev- nodes caused by duplication (ii).

Recall theUCBindingdefined in Section 3. Given an internal node € Ng, and its parent node € Ng,. We define
the Current Relation®f v asCR(v¢) = UCBinding(c) — UCBinding@). We say a Join conditioR®;.a = R;.b on an edge
e = (ve1,ve2) is aproper Join if (i) R; € CR(vez) and (i) R;.a is a unique identifier oR; € CR(vc1). A proper Join
ensures no duplicates are introducedifes by this Join.

Rule 1: Lete = (vc1,ve2) be an edge iy with type “*”. UContext of any node in the subtree rootedwts is unsafe-delete
and unsafe-insert if is not associated with a proper Join condition (as descriabdve).

Rule 1 can be used to identify “missing” Join conditions. Example, assume that we removed the second WHERE clause
in BookView in Fig. 3. That s, the eddec1, vcs) in Fig. 8 were not annotated with any condition. All the notfethe subtree
of vo3 are unsafe now since the whole review table is now nestedardieach individual book, even if unrelated.

On the other hand, this rule can also identify “improper’nJoonditions (a Join condition causing duplicates). As an
example, assume the second WHERE clause in BookView in Fig.r@8placed by a correlated predicatthdok /title =
$review/comment”. Then the edgévcy,ves) in Fig. 8 is annotated with a Join conditidnok.title = review.comment.
Since neithebook title norreview.comment is UNIQUE, we will then mark all the nodes in the subtreegf asunsafe-delete
andunsafe-insert

Now assume all * edges between the internal node§yofare annotated with a proper Join condition. Is it possibte fo
duplication to exist? The answer is yes.

Rule 2 below is used to identify unsafe internal nodes fordtslete operation, which could cause other nodes, whichare n
its descendants, to disappear. As an example, again congiglén Fig. 8. Rule 2 below will markco node asunsafe-delete
because it affects the appearance of the wholgknode. Given a relatio®, we defineextend(R) C rel(DEFy/) as a set of
relations that refer t@ through foreign key constraint(s).

Rule 2 UContext(vc) = unsafe-delete iF3R € CR(vc) such thatvu, € Ng, being a non-descendant node @f,
extend(R) N UCBinding(vy) = 0.

TheUCBindingdifference between the node to be deleted and its pareratetthyC R(v¢) in Rule 2, indicates the smallest
search space for @ean extended sourd82]. If none of the relations i R(v¢) is a clean extended source, then deleting an
instance of node- will cause a view side effect.

As an example, consideg in Fig. 8. We hav&JCBinding@c4)={publishet andUCBIinding@z)={}. ThusC R(vc4)={publishet.
For R = publisher extend(R) = {publisher,book,reviejy Note thatUCBinding@c1) = {book,publishey and extend(R)"

UCBInding@c1) # 0. Deleting an instance afc, will potentially cause a view side effect a1 — the book might also disap-
pear. Thud/ Context(vcq) = unsafe-deleteas marked in Fig. 8.

Similarly, Rule 3 below is used to identify unsafe internatles for an insert operation, which could cause the appearan
of other nodes, which are not its descendants, as view sidetefor example, Rule 3 below will mark:»> node in Fig. 8 as
unsafe-insertbecause it will cause the appearance®f as view side effect. ThePBinding()defined in Section 3 is utilized to
identify this case.

Rule 3: UContext(vc)=unsafe-insert i3 v, € Gy that is a non-descendant node@f such that (i)U PBinding(vc) N
CR(vg) # 0 and (i) U Context (v,)=unsafe-delete hold.

Intuitively, if (i) does not hold in Rule 3, then inserting é&rstance ofuc will insert to those relations only referred to by
ve itself. It will not cause view side effects on any other schemodes. However, if (i) holds, then inserting indicates the
potential appearance of an instancevpfas side effect since,, “shares” some common relation witly:. But if (ii) does not
hold, that is the update context typewf is safe-delete, then at least we can alway eliminate thenpatside effect by deleting
the clean source af,. Thus only (i) and (ii) hold together denote the appearafiemansafe-insert situation.

Considervcy in Fig. 8. We havaJPBinding@c1) = {book, publisher, reviewandCR(v¢,) = {publisher. Thus (i) holds.
SinceUContext{¢4) = unsafe-deletghus we say thdt)Context{<1) = unsafe-insertinserting a book might cause the insertion
of an instance of¢4 as a view side effect, if the publisher does not exist inghklisherrelation before.

The following lemmas propose the correctness of above.rit@sproofs please refer to [33].

Lemmal Letv € Gy ande € I(v), wherelI(v) denotes the set of instanceslinof v. There exists a correct translation for
deletinge that does not cause any view side-effectéfontext(v) = safe-delete.

Lemma 2 Letv € Gy ande be a new instance af. There exists a correct translation for insertiagthat does not cause any
view side-effects 7 Context(v) = safe-insert.

5.1.2 Update Point Type

Theupdate context typef a schema node € Gy introduced above determines whether there exists at leasi®an extended
source[32]. If the answer is yesl{Context(v) = safe-delete or safe-insgrtthen the next question is how to find it? As sug-
gested by [10, 11], the “where-provenance” (refers to tlsation(s) in the source databases from which the data weesctad)

is a good candidate to start the search for a clean extendedesin the relational context. Below, we enhance the nation
the where-provenance by tih@apping closureoncept to also consider the effect of constraints from ¢fetional database and
XQuery’s nested query syntax. We use tipglate point typ€UPoint) to indicate whether the mapping closure is a cledereled
source ofv.

Closure. We use the concept of closuregiy andGp to indicate the effect of an update on the view and on theioglatdatabase
respectively. Thelosure of a nodev in Gy, denoted by, is defined as follows. (11)2r = {vr}. (2) Otherwisep™ is the
union of its children’s closures grouped by their hieracehrelationship and marked by their cardinality. For siipl, in the
closure the cardinality of and* are both represented asand the cardinality of and? are omitted. For example, in Fig. 8,
UZ’I = {vr1} while UgQ = {vr4,vr5} andva:{vm, VL2, VL3, VL4, VL5, (Vpe, vL7)*0"2).

Theclosure of an internal node g/ p is defined as the union of its children leaf nodes and the pdostits non-leaf direct
children nodes. For example,” = {ns, ns, (n})*°"}={na, n3, (ns, ng, nz, (ng)*c°r2) e i=lny, ns, (ns, ng, n7, (N9,
nip)*eon2)*eonll The closure of a leaf node is the same as the closure of gmpaode. For instance, in Fig. @)™ = (ng)™
= {ng, n10}. Note that this closure definition iip is based on the pre-selected update pol&gme typenddelete cascade
When a different update policy is used, the definition hasstadijusted accordingly. However, the policy used affecty the
closure definitions of the base ASG, while the remainingssteptranslatability checking remain the same [33].

Given two closure€’; andC», we defineC; C Cs, if C; appearsir®y. In Fig. 9,nd = {ng,n10} andn; = {ns,ne,n7,(ng, n1g)*°"},
thusng C nj. Two closure€”; andC, areequal, denoted by, = Cs, if C; C Cy andC; 2 Cs. InFig. 9, we haver; = n/.

Moreover, we define the closure of a set of nodes Ng,,, denoted byV*, asN* = |, 7/, where | is a “Union-
like” operation that combines the nodes but eliminatesidafels. That isyny.,n; € N, if nj C nf, N =, cniny 77 -
For instance, in Flg Q,n4, ’ng)+ = (n4)+ Ll(ng)Jr = (n4)+ = {n5,n6,n7,(ng, ’nlo)*wnz}.

Mapping Closure. Intuitively, the relationship between the closure of aeinal node: in Gy, denoted by, and its mapping
closureCp defined below, answers the following question. If an instamfa - is deleted or inserted, what will be affected in the
relational database?

Themapping closuref v¢ is defined as follows. First we computs, = v, in Gy. Let T=Distinct(getNodes(y)), where
getNodes() is a function to extract all the nodes from a galesure, while Distinct() removes duplicates by node idiation.
For each nodey; € T, we define itanapping leaf node; in Gp to be the one with the sanmamein its annotation. LeV denote
the set of mapping nodes frain LetCp = N+ in Gp. We callCp themapping closur®f vc. For examplepg2 ={vr4,vrs}
andT = {vr4,vz5}. Then the mapping nodes &, is N={na,n3} and Nt = {ny,n3,(ns,n6,n7,(ng, n19)*°"?)*<°"1}, This is
the mapping closur€'p we are looking for.

Definition 2 U Point(vc) = clean if Cyy = Cp. Otherwise[J Point(ve) = dirty .

It is only necessary to consider the update point type wherupidate context type is safe. For example, in Fig:8, is
marked agdirty|safe-delete,unsafe-insertp this case, inserting a book might cause a view side effeete explained before.
Deleting a book is safe, but since the UPoint mark is dirtyhaee to examine whether its publisher is referenced by dtbeks.

Algorithm 1 Mark Gy with (UPaint|UContext) pair

[*Mark (UPoint/UContext) forGy */
PROCEDURE markViewASG (Gv, Gp)
computeClosur€fy, Gp)
markUContextGy, Gp)

markUPointGyv, Gp)

[* Mark UContext(vc) as safe or unsafe for deletion and insertion*/

PROCEDURE markUContext (Gv, Gp)

[* First mark unsafe nodes*/

Initiate rules se§for update context checking

Add rules 1 to 3 intSin order

while Shas more rules to be evaluatea
Get the next rule from S
evaluateRule(§v, Gp)

end while

/* Mark the rest of them as safe */

while Ng,, has more unmarked~ nodesdo
Get the next node € Ng
UContext(vc) = safe-deletasafe-insert

end while

[* Mark U Point(vc) as clean or dirty*/
PROCEDURE markUPoint(Gv, Gp)
while Ng,, has more unmarked nodee
Get the next nodec € Ng,,
Cvy =getClosurg v, Gv)
C'p = getClosure(Distinct(getNodesC'v')), Gp)
if Cyvy = Cp then
UPoint(vc) = clean
else
UPoint(vc) = dirty
end if
end while

5.2 STAR Checking Procedure

Once the ASGs are analyzed and markedWyoinjUContext)labels using Algorithm 1, th8 TAR checking proceduig used
to decide the update translatability and additional comlitrequired (if any). Observations 1 and 2 serve this mepo

Observation 1 A deletion on aunsafe-deletenode is un-translatable. A deletion orfeean| safe-deletehode is uncondition-
ally translatable. A deletion on &irty | safe-delete)node is conditionally translatable. The condition requdiis translation
minimization. This refers back to the source-side-effeictimization defined in [12], and studied in [2, 21, 22]. Thkindition
guarantees that the translated update sequence avoidsateside effect from duplication.

Observation 2 A insertion on anunsafe-insertnode is un-translatable. A insertion on(alean | safe-insert) node is un-
conditionally translatable. A insertion on @irty | safe-insert)node is conditionally translatable. The required conditis
duplication consistency. That is, the duplicate partsdeghe element to be inserted should have consistent values.

For exampleys in Fig. 10 is unconditionally translatable sinces in Fig. 8 is a(clean| safe-deletejode. u,¢ is untrans-
latable since/ Context(ves) = unsafe-deletén Fig. 8. The updatey is conditionally translatable by Observation 1. While
deleting the book, we will not delete its corresponding itdr, if another book references this publisher.

6 Data-driven Translatability Checking

As motivated by Example 3 in Section 1, any update operatibichwpasses through all schema level checks (Steps 1 and 2)
might still be untranslatable. This can only be detected{ayening the actual data, as described below.

10

6.1 Data-driven Update Context Check

The update context check focuses ondbatextof the update operation. It aims to answer the question ven¢tie view element
that the user update is inserting into or deleting from existhe view content. For instance, in Example:3if Fig. 4), thebook
into which thereviewis to be inserted is not in the view. Thusg is not translatable. Similarly,; in Fig. 10 will be rejected
since it is trying to delete the reviews of the book “Prograimgnn Unix”, which does not appear in the view.

We can address this by composing the view query with the ysgaite query into @robe queryas done by most XML data
management systems which support queries over views [13,TPis probe quenyis then evaluated over the relational engine.
Forus, the probe query’Q; will be:

PQ1: SELECT bookid FROM publisher,book,review
WHERE book.title="Programming in Unix” AND book.price< 50.00
AND book.year-1990 AND book.pubid= publisher.pubid

The result of this query can be used for two different purpo§érst, if the result set is empty, this means the qualifiedk
does not exist in the view. Thus the given insert operatioristranslatable, and hence rejected. For example, theegobry
used byuy1, which is the same aBQ, returns empty resulti;; will also be rejected.

Second, in some cases the results of the probe query aregédpyithe translated SQL update statements. For example,
in Fig. 10 is similar taus in Fig. 4, except that theeviewis now inserted into the book named “Data on the Web”. Thelre$the
probe quenyP@-, now includes one qualified book. Further, ieokidfrom PQ- will be used in the translated SQL statem&nt
PQ2: SELECT bookid FROM publisher,book,review

WHERE book.title="Data on the Web” AND book.price< 50.00

AND book.year>1990 AND book.pubid= publisher.pubid i Lo .
As we will see later, the results of the probe queries cank@smaterialized and re-used to generate the full inserétopto

eliminate redundant joins.

Uy = {INSERT INTO review VALUES “98003", “001", “easy read and dsg }

6.2 Data-driven Update Point Check

The update:, in Fig. 4 is determined to be not translatable. The reasdmisabookwith the key(bookid,pubid)=(98001,A01)
already exists in théookrelation. A data conflict thus exists. However, this dataflictnis different from that described in
Section 6.1. That is, the data conflict exists in the updastd idself (update point) instead of its context. Severplaaches can
be used to solve this problem.

6.2.1 Internal Approach

As proposed by [7, 8], the XML view can be mapped into a set latti@nal views. The update over the XML view can then be
mapped into an update over this set of relational views. Ws ttould convert the XML view update problem into a relationa
view update problem. For example, Fig. 11 shows the mapgilagional view of theBookViewin Fig. 3. The update;3 on
BookView will now be translated int6/y; on RelationalBookView

CREATE VIEW RelationalBookViewAS
SELECT p.pubid, p.pubname, b.bookid, b.title, le@yir.reviewid, r.comment
FROM (Publisher AS p LEFT JOIN (Book AS b LEFTIBOReview AS r

ON b.bookid = r.bookid) ON p.pubid = b.pubid);

RelationalBookView

pubid [pubname bookid |title price |reviewid |comment :
i|A0L |McGraw-Hill Inc.| 98001 | TCP/IP lllustrated 37.00 | 001 A good book on networl
AO01 |McGraw-Hill Inc.|98001 | TCP/IP lllustrated 37.00 | 002 Useful for advanced usg r
A01 |McGraw-Hill Inc.|98003 | Data on the Web|48.00 | null null i

Figure 11:The Mapping Relational View of BookView in Fig. 3

However, this approach has several shortcomings. Firdt,ahs approach is rather limited since many current conuiaé
relational database systems such as [24] support updatatioms over SelectProject-views, but are limited on sufipgupdates
over Join-views.

Second, for performance reasons, this approach would eausecessarily expensive data queries. The updatenly
specified(title, reviewid, comment)Thus we need to find theookid However, in this inside approach, the translated relation
view updatel/yy above also has to fingpubid,pubname,price)The latter is not really needed. Our experimental studies i
Section 7 also illustrate this inefficiency.

6.2.2 External Approach

To avoid the shortcomings of the inside approach, we novodhtce other more practical approaches to handleutidate
decompositiomutside the relational engine. Here each resulting SQL tepstatement from the update translation engine will
be specified over only a single table. Two alternative sfiiatecan be useful, namehybrid strategy ooutsidestrategy.

11

Uy = {INSERT INTO RelationalBookView
(pubid,pubname,bookid,title, price,reviewid,comment)
VALUES (“A01”, “McGraw-Hill Inc”, “98003”,

“Data on the Web”, 48.00, “001”,“easy read and usefhl”)

In the hybrid strategy, checking data conflicts is done by the relational enginmelg, the view update is decomposed and
translated into a sequence of SQL updates without any datiat@hecking. This update sequence is then fed into treiozlal
engine, and we wait for its error or success response.

As an example, let us consider both insert and delete caséke linsert case, the updaig in Fig. 4 maps intd/, below.
The relational engine executEs and generates an error message since this insert conflittth&iKey constraint. In the delete
caseuo in Fig. 10 is translated t&/; below. Note thal/; accesses the tableA B_book, which is the materialized view from
PQ- in Section 6.1. The relational engine executgsand generates a warning message that zero tuples are deleted

U, = {INSERT INTO book VALUES “98001",“Operating Systems”,“”A020.00,1994
Us = {DELETE FROM review
WHERE review.bookid IN SELECT bookid FROM TABook}

Alternatively, theoutside strategyissues a probe query to check whether a data conflict existsafth of the relations we
will insert into or delete from. For example, in Fig. 4 can be checked using the probe quB€ys. Since its result is not empty,
we conclude that there is a data confligt.is not translatable. Updatg in Fig. 10 can be checked using the probe que€y.
Since the result set is empty, we conclude that the tuple ttelsted does not exist.

PQs = { SELECT bookid FROM book

WHERE book.bookid = “98001" AND book.pubid ="A03}"
PQ4 = {SELECT ROWID FROM review

WHERE review.bookid IN SELECT bookid FROM TABook}

We notice that the probe query used in the outside approaehnyssimilar with the update query used in the hybrid apphoac
A natural question is if it is worthwhile to probe before upaltranslation? The answer to this question depends onaéaetors,
such as the shape of the view and the indices of the relatitatabases, as we illustrate in our experimental studies.

7 Evaluation of U-Filter

7.1 Views Handled by U-Filter

The view ASG used in our solution has the same limitationfawview forest from SilkRoute [19]. ASG also does not express
if/fthen/else expressions; order functions, user-defimet aggregate functions, such as max(), count(), etc. We uzmrah
evaluation on the expressiveness of our view ASG model foEWSe cases. The evaluation result is shown in Figure 12.

In [12], the authors study the complexity of the update tiaability problem in the case of deletion over relation&lJg
views. They show that this problem is poly-time solvablewgspect to the size of the database for SPU and SJ viewsgeagher
it is NP-hard for PJ and JU views. Note that Project here iaithfieliminates the duplicates. since we restrict the vipvery
handled by our ASGs, our views are actually a combinatiorR¥#ews (in XML format), where we do not consider distinct op
erations in Project. Our STAR marking procedure is a schiewal-check that runs in poly-time in the size of the view quédihe
STAR checking procedure takes only a hash operation tinep Btises SQL engine, and runs in poly-time over the datalzse s

7.2 Performance Evaluation

Below we evaluate the performance of Step2 and Step3. Theyetem used is a dual Intel(R) Pentiumlll(TM) 1GHz prooess
1G memory, running SuSe Linux and Oracle 10g. The relatidatbase is built using TPC-H benchmark [1].

Performance of STAR Algorithm. Consider an XML viewy,,...ss Where the five relations (REGION, NATION, CUSTOMER,
ORDER, LINEITEM) are nested following the key and foreigrylemnstraints. Updates over any internal node of this view ar
unconditionally translatable. As shown by Fig. 13, evereftiny database (1M), the STARChecking time is almost nédgégn

a successful execution.

Now consider another view,;;, where the five relations are first joined linearly as abaventthe relation to be updated
(e.g.,REGION) is published again under the root tag. Acogrdo our STAR algorithm, deleting a region element from the
view is not translatable, thus should be rejected. If the BThecking procedure is not utilized, the system would stitimei
update. After the side effect has been identified, the titgahas to rollback to undo all the changes. Fig. 14 showastttis
undo procedure is very expensive. On the other hand, our SH&Rking algorithm can identify it early and thus remainsg/ve
efficient, even if the DBsize increases.

For both views, our experiments also show that the STAR mgrkRrocedure stays cheap. The time ¥QJ,cc.ss is 0.12s,
while markingVs,;; takes 0.15s.

12

Time(s)

80.263 Time(s)

View Query Included | Reason g | 802518 sL61

XMP-{Q1-Q3, Q5, 804 [

S;S?Qalél(él? g Distinct() N mUpdate 01 Eﬁpgg::ee With STARChecking

XMP-Q6 : X Count) 60 1 mUpdate With STARChecking 60 J

TREE-O1L V4 50 1 .

TREE-Q2 V 0 ol

TREE- X Count()

{Q3,04,Q5,Q8 %07 %01 154

R-{Ql,Q3, \/ 20 - 20 + -

Q4,Q16,Q1% 1

R-{Q2,05,06-Q1 X max(),av 104 . 0.9486 . il 021 00214 _0.0212
{Q2,Q5,Q6-Q15 coun(z() 90 Nl N T . . pouz || poas 14287 008752 o707

R-Q18 X Distinct() Region Nation Customer Order Lineitem Relation Region Nation Customer Order Lineitem Relation

Figure 14: performance of a untranslatable view

F|gure 13:Performance of a translatable view up- update (DBsize=1Mb)

Figure 12:Evaluation of W3C User Case date (DBsize=1Mb)

About Data-driven Translatability Checking. We consider two views, namely};,.. where the five relations are joined
linearly or V1, where they are joined “evenly”. First, let's assume thatréilational database supports updates over relational
Join-views. We compare the performance of the internal@gagr and the external approach usifg..... Fig. 15 shows that the
internal approach is more expensive than the external apprdybrid strategy) for inserting a ndweiteminto the view. This is
because the internal approach issues a probe query tovectal’ attributes from “all” other four relations in ordéo construct

a complete relational view tuple, which is inserted into tberesponding relational view (as explained in Sectionl§.2Nhile

the External approach only retrieves the necessary infiiom#o form alineitemtuple, that is thde. ORDERKEY .

The performance comparison between two strategies of tieernet approach is shown in Figures 16 and 17. Fig. 16 shows
that the hybrid strategy performs better in thig,;, case. The reason is that both strategies include similauatraf join
operations, but the hybrid strategy generates simplifiethtgs, which does not materialize the intermediate reBulther, the
relatively “big” gap between the hybrid and outside strageds due to the indices defined. Oracle builds indices dneeptimary
keys and foreign keys, which is used by the Join conditioméhybrid strategy. The outside strategy, however, peiggoins
over the materialized view, where indices do not exist.

Fig. 17 shows that the outside strategy performs betteffierdit failed cases df};,..,-. Fail2 means no qualified tuples in
LINEITEM exist, but tuples in CUSTOMER and ORDER are delet@thile in Faill there are no deletes over all three tables. As
we can see, foFail2, in the hybrid strategy, the delete queries over LINEITEM wiill be executed and they return a warning
message “zero tuples deleted”. In the outside strategypribige query will identify it and the delete statement is 1sgtied on
LINEITEM. This is another advantage of the outside stratgigge the failed case is detected early.

Execution Execution Execution
Time (s)

Time (s)
7 Time (s) 200 » » »)
600 —&— hybrid-Fail2 —=—outside-Fail2
—o—Internal 175 4
—=—External 500 —=— hybrid
—H8-outside

—a—hybrid-Faill —a—outside-Faill

150 4
125
100
754

400

300

200

o kN w & a o

- 100 %01
. M/ 25 |
DEMsl\jze 0 T T T T T T T T T 'DB size 0 : . T T T T T B size
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 (mb) 50 100 150 200 250 300 350 400 450 500 (mp)
Figure 15:internal vs. External fot, over Vi, cqr Figure 16:outside vs. Hybrid for over Vy.. Figure 17:outside vs. Hybrid for over Viipcqr in

failed cases

7.3 Practical Application of U-Filter Approach

To examine the practicality of our approach, we studied ttiteih Sequence Database (PSD) from [27]. From typical user
studies over this domain [27] gained by discussion withdgadt (Ryder, Elizabeth F) at WPI, we observed the followifiyy
Thewell-nested vievassumed by [7, 8], where the nesting “follows” the key aneifgm key constraints, is not often the case in
this domain. (ii) The delete SET NULL policy is typically wben this domain as opposed to the delete cascade policylter-Fi
approach hence provides a practical solution to this donteoause it supports even non-well-nested views as wekkxibli
update policies.

8 Related Work

[2, 21, 22] study the view update translation mechanism fF §ueries on relations that are in BCNF. These works have bee
further extended for object-based views in [5]. Commerd#hbase systems, such as Oracle [4], DB2 [15] and SQL-5&8je

13

also provide XML support. [29] presents an XQuery updatemgnar. Assuming that the update is indeed translatable anthha
fact already been translated into updates over a relatdatabase. [29] also studies the performance of executeggahslated
updates by using relational techniques, such as triggeirsdarzes. Our work addresses a different aspect of the viedaigp
problem, namelyiew update translatabilitinstead ofupdate translation strategy

An abstract formulation of the update translatability genivis given by theview complementary theony [3, 16]. It uses the
invariance of the complement of a view, name§tabase side-effect fre® decide the translatability of a given update. However,
by requiring thedatabase side-effect frggoperty, the complementary theory is too restrictive tptaetical. In [18], the authors
relax the criteria for a correct translation as only requjriiew side-effect freeBased on the notion of@ean sourceit presents
an approach in the relational context for determining thisterce of update translations by performing a syntax aisbf the
view definition.

Our earlier work [31] studies the update translatabilityXéiL views over the relational database in the “round-triglse,
which is characterized by a pair of reversible lossless imgsfor (i) loading the XML documents into the relationatalzase,
and (ii) extracting an XML view identical to the original XMdlocument back out of it. We prove that the view updates indhse
are always translatable according to #iew complementary theof$, 16]. Recent works [7, 8] study the update owell-nested
XML views. They assume joins are through keys and foreigrskagd nesting is controlled to agree with the integrity t@ists
and to avoid duplication. As our work on updates shows, amatgaver such a view is thus always translatable. [23] d@gsdo
theory within the framework of the ER approach to charaeésttie conditions under which mappings exist. It is furtheerded
in [14] to guide the design of valid XML views. Valid views ke on this design approach are a proper subset of general XML
views studied in this paper. [14] avoids the duplicatiomrboth joins as well as multiple references to the relati@ns: work
in this paper isorthogonalto these works by addressing new challenges related to ttisiae of translation existence when no
particular restrictions have been placed on the defined faetthe update translatability. That is, in general, cotslare possible
and a view cannot always be guaranteed to be revert-ablgf@llinested [7, 8] or valid [14] (as assumed by these priorks).

In [32] we first extend [18] into alean-extended source thedoy XML views to serve as a criteria of determining whether a
given translation is correct. [34] focuses on identifyihg factors deciding the translatability of deletions ovétlXviews (part
of Step 2). Our work in this paper now provides a general fraamnk consisting of three steps based on the factors idetifie
previously. Further, as part of our data-level check we ate t analyze the performance of existing work [8]; we arke &b
suggest alternative approaches that can work with exifBiglS without imposing additional requirements, and thatgbetter
performance.

Recent works [10, 11, 17] indicate a loose connection betwleéa provenancgl0, 11] orlineage[17] and the view update
problem. The distinction between “why provenance” and “rehgrovenance” is used to guide the view update process to find
an appropriate update translation. Their work has sevendksities with ours, e.g., try to find the data trace (proaace) at the
guery syntax level. However, we utilize this data trace @vpnance for a different purpose. The question that [10tri€lg to
answer is: given two equivalent queries that are rewritimigsach other, when are the provenances guaranteed to de#en
Instead, we use the provenance to find a correct transléttiome exists, for a given update query.

9 Conclusions

In this paper, we have proposed a lightweight framewd+kilter to address the XML view update translatability problem. A
three-step translatability checking process is used toagee that only translatable updates are fed into the lacareslation
system to obtain the corresponding SQL statements.

Our solution ispractical since it does not require any additional update capabitiynfthe relational database. It can be
applied by any existing view update system for analyzingtheslatability of a given update before its translatioattempted.
Our solution is alseefficientsince we perform schema-level (thus very inexpensive)lchécst, while utilizing the data-level
checking only at the last step. Even when data has to be @&thegss issue probe queries whose results can be reuseddor lat
update translation.

In the future, we would like to study how our solution can baatéd to XML views published over native XML documents,
in particular XML-specific issues, such as order handling.

References

[1] TPC Benchmark H (TPC-H). http://www.tpc.org/informai/benchmarks.asp.

[2] A. M. Keller. The Role of Semantics in Translating View tigtes.IEEE Transactions on Computersd(1):63—73, 1986.

[3] F. Bancilhon and N. Spyratos. Update Semantics of RelatiViews. INnACM Transactions on Database Systepeges 557-575, Dec 1981.

[4] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and/Rrthy. Oracle8i - The XML Enabled Data Management SystemiCDE, pages 561-568, 2000.
[5] T.Barsalou, N. Siambela, A. M. Keller, and G. Wiederholépdating Relational Databases through Object-Based&/i¢wSIGMOD, pages 248-257, 1991.

[6] M. Benedikt, C. Y. Chan, W. Fan, and R. Rastogi. DTD-DisgtPublishing with Attribute Translation Grammars.MhDB, pages 838-849, 2002.

14

(7]
8l
(9]
[10]
[11]
[12]

[13]

[14]
(18]
[16]

[17]

(18]

[19]
[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

V. P. Braganholo, S. B. Davidson, and C. A. Heuser. On theafability of XML Views over Relational Databases.WEBDB pages 31-36, 2003.

V. P. Braganholo, S. B. Davidson, and C. A. Heuser. FromXiNew updates to relational view updates: old solutions t@a problem. InVLDB, pages 276-287, 2004.
P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C. Tams&g&ng about keys for xml. limformation Systen2003.

P. Buneman, S. Khanna, and W.-C. Tan. Data provenarareedasic issues. FFoundations of Software Technology and Theoretical Coargitience2000.

P. Buneman, S. Khanna, and W.-C. Tan. Why and where: Aacierization of data provenance.|(®DT, 2001.

P. Buneman, S. Khanna, and W. C. Tan. On Propagation letioes and Annotations Through Views. RODS pages 150-158, 2002.

M. J. Carey, J. Kiernan, J.Shanmugasundaram, E. Jitdhakd S. N. Subramanian. XPERANTO: Middleware for Putilig Object-Relational Data as XML Documents. In
The VLDB Journalpages 646—648, 2000.

Y. B. Chen, T. W. Ling, and M.-L. Lee. Designing Valid XMViews. INER, pages 463—-478, 2002.
J. M. Cheng and J. Xu. XML and DB2. I€DE, pages 569-573, 2000.
S. S. Cosmadakis and C. H. Papadimitriou. Updates dtielal Views.Journal of the Association for Computing Machingpgges 742—760, Oct 1984.

Y. Cui, J. Widom, and J. L. Wienner. Tracing the lineadeiew data in a warehousing environment. AGM Transactions on Database Systemdume 25(2), pages 179-227,
June 2000.

U. Dayal and P. A. Bernstein. On the Correct Translatblpdate Operations on Relational Views. A€M Transactions on Database Systesmume 7(3), pages 381-416,
Sept 1982.

M. F. Fernandez, A. Morishima, D. Suciu, and W. C. TanblRhing Relational Data in XML: the SilkRoute ApproadiEEE Data Engineering Bulletir24(2):12-19, 2001.
H. Jagadish, S. Al-Khalifa, L. Lakshmanan, A. Nierm&nPaparizos, J. Patel, D. Srivastava, and Y. Wu. Timber:tkeaml database. IWLDB, 2002.

A. M. Keller. Algorithms for Translating View Updates Database Updates for View Involving Selections, Progextiand Joins. Ifourth ACM SIGACT-SIGMOD Symposium
on Principles of Database Systermpages 154-163, 1985.

A. M. Keller. Choosing a View Update Translator by Diglat View Definition Time. InVLDB, pages 467—-474, 1986.

T. W. Ling and M.-L. Lee. A Theory for Entity-RelationghView Updates. IrER, pages 262—-279, 1992.

K. Loney. Oracle Database 10g : The Complete ReferedeGraw-Hill, 2004.

M. Fernandez et al. SilkRoute: A Framework for PublighRelational Data in XMLACM Transactions on Database Syste@¥4):438-493, 2002.
M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomyxwfil schema languages using formal language theorpdRl TOIT, 2005.

P. I. Resource. Protein Sequence Database. httpgépigetown.edu/.

M. Rys. Bringing the Internet to Your Database: UsingLS&erver 2000 and XML to Build Loosely-Coupled SystemsVIrDB, pages 465-472, 2001.
I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Ugithg XML. In SIGMOD, pages 413-424, May 2001.

W3C. XQuery: A Query Language for XML. http://www.w3@TR/xquery/, February 2001.

L. Wang, M. Mulchandani, and E. A. Rundensteiner. UptapXQuery Views Published over Relational Data: A Rourig-€ase Study. I’XML Database Symposiyrmpages
223-237, 2003.

L. Wang and E. A. Rundensteiner. On the Updatability @fuéry Views Publised over Relational Data.HR, pages 795-809, 2004.

L. Wang, E. A. Rundensteiner, and M. Mani. U-Filter: AlFledged XML-to-Relational Update Translatability Chémmg Framework. Technical Report WPI-CS-TR-05-11,
Computer Science Department, WPI, 2005.

L. Wang, E. A. Rundensteiner, and M. Mani. Updating XMleWs Published Over Relational Databases: Towards theefxis of a Correct Update Mapping. IKE Journal
2005 to appear.

15

