
An Instance-Oriented Approach to Constructing Product Lines from Layers

George T. Heineman
WPI Computer Science Department

Worcester, MA 01609
heineman@cs.wpi.edu

Abstract

The Model/View/Controller (MVC) paradigm, and
its many variants, is a cornerstone of decoupling
within object-oriented design. MVC leads to clear
reuse benefits regarding the class hierarchies for the
model and view elements. In practice, however, the
controllers appear to defy reuse, most likely because
they encapsulate specialized business logic. Within an
effective product line, however, such specialized logic
must be reused. We combine the MVC paradigm with
feature-oriented programming (FOP) to produce a
novel instance-oriented design pattern for layers that
brings reusability back to controllers. We demonstrate
the effectiveness of our approach using a product-line
example of a solitaire game engine.

1. Introduction

A product line shares a common set of features
developed from a common set of software artifacts [4].
We assume that a feature is a unit of functionality
within a system that is visible to an end-user and can
be used to differentiate members of the product line.
One can specify (at the requirements level) that a
member of the product line should support a set of
features; however, the engineering of the resulting
system is complicated because one cannot cleanly
encapsulate features as modules to be simply linked
together, as with code libraries.

There is a tremendous amount of information in the
software engineering literature on features and feature
engineering (see [25] for a summary). We are focused
on ways to engineer software product lines by
synthesizing Model/View/Controller (MVC), feature-
based layers, and components. We assume components
are designed using an object-oriented language,
although the overall approach could still apply to other
programming languages, with some effort.

A member of a product line is assembled from a set
of components, each of which has been tailored from
template components within the software product line
[4]. We need to show (1) how to construct the template
components and (2) how to create the tailored
components. Our solution uses the same mechanism to
accomplish both tasks. We rely on existing techniques
to specify the overall architecture and assemble the
final tailored components into the actual member
application of the product line.

We chose to work on this problem because we had
developed dozens of plugin components for a card
solitaire game engine (described in Section 2.1) used
for an undergraduate software engineering course.
These solitaire plugins embraced the MVC design
pattern and were all members of a product line. While
the M/V classes showed excellent reusability and
extension via inheritance (30 subclasses within the
model hierarchy and 22 subclasses within the view
hierarchy), we found it nearly impossible to reuse
controllers. Since variation-specific logic was encoded
in the controllers, the lack of reusability meant that
seemingly similar solitaire variations had virtually no
code shared between them. This research effort is our
response to this lack of situation.

1.1. MVC and components

MVC is a pervasive technique that separates

responsibilities in software to avoid overly restrictive
coupling that otherwise might occur [8]. While MVC
has most commonly been associated with GUI
programming, it can also be applied to separately
manage the input, processing, and output of software
[14]. The primary benefit of MVC is the resulting
extensibility and ease of change. When partnering
MVC and product line components, a spectrum of
possibilities appears, as shown in Figure 1.

Figure 1. MVC/Component Spectrum.

In Figure 1, the enclosing boxes are units of

encapsulation within a component. On the left side,
members of the product line are strictly decomposed
into tiers, such as User Interface, Workflow & Process
Control, Business Services & Legacy Wrapping, and
Data & Operating System Services [16]. Components
are wholly contained within a given tier and their
responsibilities are restricted to those allowed within
the tier; for example, an exclusively view component
must belong to the User Interface tier. Alternatively,
on the right side, a component may be “self-
contained”, responsible for modeling and storing state
information, performing computations over this state,
and presenting an interface to the user. In between
there are distinct families of possibilities:
DocumentView [27] merges V/C to operate over a
model document; the JavaBeans component
architecture [20] effectively merges M/V using
properties; finally, Code-Behind refactoring [21]
separates the view from the M/C.

Regardless of the way in which MVC and
components are integrated, we must consider how to
tailor a template component to support a particular
feature. The product line community has developed
numerous approaches [2][12][17][24][26]:

• Parameterization (either build-time via
compiler directives or run-time arguments)

• Inheritance and Polymorphism
• Delegation
• Extensions and Extension Points (built-in

Variability Mechanisms within the component)
• Component substitution
• Adaptable Software components [10]
• Code generation (when using a higher-level

language to define desired properties).
Most, if not all, of these mechanisms rely on the
language itself in which the components are
programmed. Many also rely on run-time testing of
designs that should have been validated at design-time.
We seek an approach that captures the higher-level
concept of features, scales to enable components to be

extended with multiple sets of features, and validates
the tailored component at design time.

While features may cross-cut numerous
components, one common characteristic is that the
feature implementation itself can be subdivided into its
effect on the MVC. New classes may need to be added
to the model, or existing models refined; new view
classes may compose information from one or more
models, or existing views refined. Most importantly,
we believe, new controller classes will need to be
defined to contain the specific unique business logic
required by individual features, or existing controllers
refined. Product line designers must simultaneously
manage the MVC artifacts within a template
component and the tailored components. Our
observation of the relationship between feature layers
and MVC was an important step in understanding how
to solve the problem.

Given the sheer number of possible members of a
product line, we need a way to rapidly and safely
assembly the tailored components to be used. This
paper proposes a model that defines this capability,
describes a prototype tool that builds on top of
Batory’s AHEAD tool suite [3] to perform the
approach, and presents and evaluates a case study
showing the practical application of the approach.

We first state the requirements that drive this
research followed by a detailed description of the
solitaire game engine product line. Section 3 presents
our formal model together with a full discussion of the
layered solution to the product line. Section 4
evaluates more fully the instance-oriented layered
design against more traditional OO solutions. We
conclude with related work and more information
about the AHEAD Component Development Kit
(ACDK). Section 6 describes lessons learned and
presents future work.

2. Requirements

A design method for a product line starts with the
definition of a common architecture and then captures
any variabilities; but then it needs to go further. It
must:
• Enable the assembly of a valid product line member

from primitive building blocks, paying special
attention to the interaction between these building
blocks. The definition of validity, its specification
and evaluation, is flexible.

Strict
Decomposition

Document
View

Java
Beans

Code-
Behind

Self-
Contained

Strict
Decomposition

Document
View

Java
Beans

Code-
Behind

Self-
Contained

Strict
Decomposition

Document
View

Java
Beans

Code-
Behind

Self-
Contained

• Provide traceability to bridge information captured
within use case scenarios that describe the variability
and the underlying design and implementation of the
resultant system.

• Incorporate an existing Feature-oriented model
instead of developing a new one.

In a product line system, one needs to organize the
design artifacts to better support at the implementation
level the allowable composition of PL features. We
also don’t want to force a major rewrite of the software
base, so we must show how to organize existing
object-oriented classes into feature-oriented layers.

2.1 Product Line Domain Example

Kombat Solitaire (KS) is a Java application that
enables head-to-head competition of solitaire
variations played simultaneously over the Internet. KS
was developed as part of an undergraduate software
engineering course. Each plugin represents a single
solitaire variation. KS is constructed from a set of
components – such as, userManager, pluginManager,
client, server – and the individual solitaire variations
can be loaded as plugins. We have accumulated nearly
twenty-five different solitaire variations. Because of
the commonality among variations, we knew there
must be a better way to design and implement these
plugins, which is why we investigated using AHEAD.
The solitaire game engine itself is an excellent case
study in product lines, since it offers four distinct
members (in addition to the plugin components that
remain the focus of this paper):

• PT – Solitaire Plugin Tester
• DA – Stand-alone Desktop application
• DS – Distributed Solitaire Repository
• KS – Head to Head competition over Internet

KS (version 2.2.1) contains about 67K lines of Java
code, of which 31K forms the core Solitaire playing
engine. To support KS, we also developed a small
application PT that simply enabled one to execute and
test a solitaire plugin DA and DS have not yet been
developed because of limited resources. However,
given the success of the product line approach
regarding the plugin variations, our future work
includes building these product line members from the
same set of software components.
2.1.1. Plugin Design. To enable the rapid development
of solitaire plugins, a rich set of model elements are
already provided, as shown in Table 1. Each model
element shown (except for abstract Stack) has a
corresponding view element that depicts the model
element within the solitaire playing field.

Each KS plugin is responsible for constructing a
model of the game, which may include a deck,
columns where cards are stacked, a running score, and
waste piles. The plugin then defines the views for these
model elements over a 2-dimensional playing field
such that no two views intersect each other. Finally, a
controller is registered with each view to manage
mouse events (press, release, click) and perform moves
as allowed by the solitaire variation. The sum total of
all the controllers enforces the rules of a solitaire
variation.

Table 1. Classes within KS Model Hierarchy

Stack abstract representation of cards in
sequence from bottom to top

BuildablePile

pile of cards face down on top of which a
column can be built (as in Klondike)

Card single card
Column stack of cards that reveals cards lower in

the column
Deck deck of playing cards
MutableInteger integer that can change during play (such

as the score)
MutableString string that can change during play
Pile stack whose topmost card is visible

2.1.2. Object-oriented Support for MVC. The
object-oriented paradigm rapidly converged on use
cases during analysis to identify the desired objects.
Use cases capture a slice of functionality in a system
that is initiated by an actor and involves interactions
with specific elements within the system. As designers
develop use cases, there are two common modeling
relationships:

• «extend» – When a use case adds behavior to a
use case without changing the original use case.

• «include» – When a use case contains behavior
that is shared by multiple use cases.

Once captured in the analysis model, these
relationships can be used to identify reuse possibilities
in the underlying object model [1], though many
advise against trying to transfer these relationships into
class inheritance [13][15]. Jacobson also advises to
“never extend an extension” of an existing use case to
avoid complexity [13]. Layers provide a more
amenable artifact to the relationships between use
cases; we return to this point in Section 3.1.

Both Jacobson [10] and Cockburn [5] describe an
approach to identify objects from use cases by defining
three overall divisions – Entity, Boundary (or Interface
to Jacobson), and Control. Entity objects represent the
persistent data used by an application. Boundary
objects provide the functionality to interact with the

environment and receive requests from system actors.
Control objects contain functionality “not contained in
any other object” and encapsulate business logic.
These divisions are reflective of the MVC division that
appeared quite early in the evolution of object-
orientation, starting with SmallTalk.

The premise of this paper is that using MVC
naturally leads to the inability to reuse controllers.
Domain experts have considerable expertise in using
inheritance to capture the rich information to be stored
in a model. HCI experts show how to build user
interfaces that decouple the model from the view
presented to the users. But the complex logic found in
controllers can quickly be unmanageable because of
the inherent limitations of the basic extension
constructs in OO programming languages. Since
business logic is encapsulated within controllers, MVC
may actually be an impediment to the proper reuse or
extension of business logic.

Rather quickly one sees the limitations of using
inheritance (a typing mechanism) as a means of
capturing the way that one (complex) behavior is
related to, or extends, another; this is especially true
when one requires multiple sets of simultaneous
extensions. To manage the multiple tailoring of several
components within a product line, we must provide a
more rigorous foundation.

3. Formal Model

When a product line member exhibits a set of n
features, we say that mpl = {FE1, FE2, …, FEn}. mpl is
constructed from a set of components {C1, C2, …, Ck}
according to the architectural definition of the product
line. Because features can cross-cut multiple
components, we define a feature implementation FEi to
be a k-sized vector whose elements are fei,j, fragments
of feature FEi that are composed into component Cj.
When a feature is located entirely within a component,
its vector contains only one non-empty element. The
definition of mpl is thus a set of k equations, one for
each component Cj, of the form fe1,j ● fe2,j ● … ● fen,j.

The compose operator ● is as defined by Batory,
thus each fei,j is an AHEAD layer [3]. Each layer l (a1,
a2, …, am) contains a set of m Jak artifacts that are
composed together to produce a set of Java classes.
Each artifact ai is either a refinement of an existing
class or a newly defined class. The equation [h (a1, a3)
● j(a2, a3)] will result in three artifacts and the order of
the composition shows that design artifact a3 in h
refines the existing design artifact a3 in j.

Each layer can define whether it is constant (i.e.,
forms a base artifact) and if it is single (i.e., can only

appear once in an equation). Layers can declare their
requirements and their provisions. Provisions and
requirements are directional; for example, if an
equation composes a layer Li with a flowleft
requirement, then that requirement is satisfied if some
layer Lj to the right of Li has a flowleft provision.
Given a layer h in an equation, layers to the left of h
are “downstream”, since they are being composed after
h, while “upstream” layers are to the right of h.

The use of MVC was critical in our understanding
of constructing components from composed behaviors.
The essential point is that we show how to build
complex component behaviors by assembling reusable
primitive behaviors defined in layers.

3.1 Extensions to Batory’s AHEAD

While we use Batory’s AHEAD tool suite “as is”,

we make three novel contributions. (1) jak2java
composes layers “in place”, which makes it hard to
reuse layers. ACDK transparently manages layers in an
equation by reference, copying all layers into a
temporary location when composition is required; (2)
ACDK provides a developer interface that enables the
GUI construction of layers, supports arbitrary search
through all layers (both Jak files and composed Java
files). ACDK enables the rapid prototyping of layer
compositions; (3) we developed the instance-oriented
layered style of design.

In instance-oriented layered design, we partner
MVC with layers. Layers can introduce new “types”
which are like object factories [8]; as “instance” layers
are composed downstream, refining the type layer,
objects of that type are constructed. Using the chain of
responsibility pattern [8], each layer performs its task,
and then invokes the appropriate logic on the upstream
layer (similar to the way subclasses should invoke
super() in constructors).

Use cases “roughly” (by our experience) map into
layers. Each use case that «extends» a use case
becomes a layer that refines an existing upstream layer;
use cases that «include» a base use case translate
into layers that have a flowleft requirement provided
by the layer representing that base use case. When
features can be described as extensions or additions to
existing use cases, our methodology quite nicely
bridges the gap between requirements and code as it
appears in layers.

3.2 Visitor Pattern Example
To provide a complete example, consider the set of

classes shown in Figure 2 where a Layer is composed
of a set of Concerns (these classes are selected from
ACDK itself). Assume that the white classes form the
base of a piece of software, where there are six
subclasses of Concerns, five of which are directed.

Figure 2. Visitor Pattern Example.
Starting from this base, assume a designer wished to

add the visitor pattern [8] because processing over the
Concerns using an Iterator returned by Layer was too
complex. We construct an aggregate layer containing
these nine classes; this layer is constant, to use
AHEAD terminology. To add the visitor design pattern
in Java requires changes to each class. Using ACDK,
we construct a new visitor layer that refines each class
(by adding the method void accept
(ConcernVisitor cv)) and adds two new classes
(shaded in the upper left corner of Figure 2). Our
equation is now [visitor ● aggregate].

Next, the designer adds a new subclass, PAE, to the
AE class. A new specialization layer is composed,
requiring refinements to both visitor classes, as well as
defining the new PAE subclass. The final equation is:

[specialization (ConcernVisitor, PureConcernVisitor, PAE) ●
 visitor (Concern, AE, Ex, FL, FR, P, R, Layer, ConcernVisitor,
 PureConcernVisitor) ●
aggregate (Concern, DirectedConcern, AE, Ex, FL,
 FR, P, R, Layer)]

3.3 Solitaire Domain Revisited as Layers
We now describe how we developed a set of layers

that can be assembled to form solitaire variation
plugins. The game layer describes the empty solitaire
plugin; it is analogous to an abstract base class except
it can be instantiated and it generates a working plugin
(albeit with no real behavior). game (Game, Layout)
is shown in Figure 3 (all details of the actual
implementation are omitted unless relevant). Note that
the equation [game] is invalid because of the
unsatisfied flowright requirements.

game layer
flowright flowleft

 requires scoreDefined
 requires numCardsLeftDefined

 provides pluginBase

Game

public class Game extends Solitaire
 + Game ()
 + Layout getLayout() // return object that places widgets
 + boolean hasWon() // has variation been won?
 + String getName() // name of variation
 + void initialize() // build controllers for playingArea
 + void setDefaultControllers (Widget) // … for widget

Layout

public class Layout {
 + Layout (CardImages ci) // Layout needs card images
 + CardImages getCards() // return card images
 + void setLocation (Widget) // refined by other layers

integer layer

flowright flowleft
 provides integerDefined
Game

refines class Game
 + void resetHand() // clean up
 + void initialize() // as needed for integer
 + IntegerManager getIntegerManager() //
expose

IntegerManager

refines class IntegerManager
 + void setLocation (Widget) //place widget
 + void createInteger() //create model
 + void createIntegerView() //create view

numLeft layer

flowright flowleft
 provides numCardsLeftDefined requires integerDefined

IntegerManager

refines class IntegerManager
 + void createInteger () // add
to Model
 + void createIntegerView() // add to View

score layer

flowright flowleft
 provides scoreDefined requires integerDefined

IntegerManager

refines class IntegerManager
 + void createInteger () // add to Model
 + void createIntegerView() // add to View

layout layer

flowright flowleft
 requires pluginBase
IntegerManager

refines class IntegerManager
 + void setLocation (Widget) //place widget

Figure 3. Definition of layers.
The Game artifact is part of the model while the
Layout artifact belongs to the view. Given the existing
layers defined for the solitaire product line family, the
first valid equation E1 is [score ● numLeft ● integer
● game]. Reading from right to left (as we must with
equation compositions) this composes with game the
integer layer (which introduces the type of integer)
and then two instance layers (which add the elements
of the number of cards left together with the score of a

Concern

Ex FL FR P R

Directed ConcernAE

LayerConcern
Visitor

PureConcern
Visitor

PAE

Concern

Ex FL FR P R

Directed ConcernAE

LayerConcern
Visitor

PureConcern
Visitor

PAE

solitaire game). This equation, while correct, produces
a solitaire plugin whose playingArea is empty; we
need to compose a specialized layout layer that knows
how to place the integer widgets on the screen. The
final equation is [layout ● E1].

To see how these layers interact, consider the
initialize method. The integer layer refines game,
which means that it will first receive control when
initialize is invoked; it performs its task by calling
createInteger and createIntegerView. Within
integer these methods are empty, but numLeft and
score refine the methods to create a chain of
responsibilities [8] where score M/V elements are first
created, and then numberCardsLeft M/V elements. As
each IntegerView element is created, setLocation is
invoked. The integer layer provides the definition of
this method, but it only has meaning when the layout
layer refines the method to properly layout the score
and numCardsLeft widgets. The interactions between
the layers show how (1) decisions are deferred to
downstream layers; and (2) layers refine behaviors of
upstream layers.

4. Evaluation

Table 2 compares the reusability factor for ACDK-
generated layers of four solitaire plugin components
against their hand-coded counterparts. Note that we
omit references to “core” classes provided by the KS
model and view hierarchy, since these are used as is by
both solutions; we are interested in identifying
opportunities for reuse across the solitaire variations.

Table 2. Reusability Comparison

 Java ACDK
 #Classes (#reused) # Layers (#reused) %
Idiot 6 (0) 16 (13) 81%
Narcotic 7 (0) 17 (13) 76%
GrandFatherClock 6 (0) 31 (29) 93%
Klondike 11 (0) 31 (25) 80%

The ACDK equations for these plugin components are
as follows (* means unique to the variation, a number
means the number of times the layer is composed):

Idiot: [stacktostack ● layout* ● solve* ● rules* ●
decktostacks ● aCol4 ● column ● aDeck ● deck ●
numCardsLeft ● score ● integer ● game]

Narcotic: [solve* ● rules* ● stacktostack ●
reassembleDeck* ● layout* ● decktostacks ● aPile4 ● pile
● aDeck ● deck ● numCardsLeft ● score ● integer ●
game]

GrandfatherClock: [layout* ● aDeck ● rules* ●
stacktostack ● aPile12 ● aCol8 ● numCardsLeft ● score ●
deck ● pile ● column ● integer ● game]

Klondike: [rules* ● buildablePileMoves* ● pileMoves*
● restockDeck ● flipCard ● stacktostack ● deckMoves* ●
deal* ● klondikeLayout ● aFanPile ● fanpile ● aPile4 ●
pile ● aBuildablePile8 ● buildablepile ● aDeck ● deck ●
numCardsLeft ● score ● integer ● game]

As the reader can verify, the ACDK solutions
showed tremendous gains in reusability.

4.1 Comparison with other OO Solitaire
Engine

The lack of reusability within KS could simply have
been poor design and/or programming. To determine
whether this was the case, we compare KS with an
open source object-oriented solitaire game engine,
PySol [22]. PySol is written in Python, an interpreted
object-oriented programming language [23] that uses
an easy-to-read syntax. PySol has an extensible
solitaire engine and supports features such as multi-
level undo/redo, loading and saving games, storing
statistics, help, and hints for next moves.

In PySol, each solitaire Game has a talon that holds
the initial deck, a waste pile of cards dealt from the
talon, a set of foundation piles where cards are placed
for the final solution, a set of row piles to hold
intermediate storage as allowed by the solitaire
variation being, a set of additional reserve piles for
holding cards, and a set of internal piles that are
invisible during game play and are used to simplify the
coding of a particular variation. The Game class thus
provides a rich set of primitive objects that the PySol
designers expected would be in any variation.

The definition of Klondike as an extension to the
base Game class is shown in Figure 4. The behavior
for the Klondike variation is encoded in several ways:
(a) By fixing the class for an object to determine
allowable moves (i.e., in Klondike the foundation piles
are Same Suit piles of increasing card rank, and the
row piles must be Alternating Color and start with a
King if empty). The definitions of
SS_FoundationStack and KingAC_RowStack are
provided by the PySol infrastructure, and are
themselves extensions of abstract base classes.

It is clear that PySol satisfies its main objective of
providing an extensible engine for solitaire games
(with over 200 variations). Yet the design has flaws:
• In PySol, there is no separation of Model, View,

and Controller. In fact, it supports what it calls a
“pseudo MVC scheme” by creating three class
variables model, view, and controller that are
all set to self, the python version of this! The
Stack class has 23 methods that access/update the
model, 15 that access/update the view, and 31

methods that access/update a controller.
OBSERVATION: the design is complex.

• If a new variation requires a specialized layout, the
Layout class must be modified to include a method
written for the new variation. For example, the
freeCellLayout method in Layout exists only for
use by the FreeCell variation. OBSERVATION: avoid
changes to core classes just to encode a variation.

• Often logic for a variation is spread throughout
multiple Python modules. In PySol, one can use an
integer seed to select a random game. If the same
seed is used, the deck will be shuffled identically.
Because FreeCell is so popular, the base Game
class in PySol has a sub-case (used only by
FreeCell) that will shuffle the deck to appear
exactly as it would have if played on Windows.
OBSERVATION: avoid intermingling specific with
generic functionality.

• Much of the logic is embedded within the objects
themselves. In Klondike in Figure 4, for example,
the WasteTalonStack knows that the cards dealt
from the talon end up in the waste pile.
OBSERVATION: separate model from view.

The KS and PySol approaches offer similar solutions:
Reuse existing classes “as is” where possible to
construct the solitaire game, and extend hierarchy
classes with specialized logic to encode variations.
Two variations of Klondike allow for 1 or 3 cards to be
dealt from the talon, and for multiple re-deals once the
talon is exhausted. To realize all four possible
variations, KS and PySol would do the following:
• In PySol, Klondike offers pre-defined flexibility

by the createGame method, where the invoker
can specify the number of cards dealt
(num_deal) and the number of allowed rounds
(max_rounds). Each subclass of Klondike
would be required to have its own createGame
method to define the proper values.

• In KS, the controllers encode the logic for the
variations and would be parameterized with
num_deal and max_rounds information to
prevent illegal moves.

These solutions are indeed serviceable, yet the
concepts of multiple-card deals, or multiple rounds, is
more general and would likely appear in lots of other
solitaire variations. For example, PySol, has three
classes, FreeCell_AC_RowStack, Spider_AC_RowStack,
Yukon_AC_RowStack; all ensure that cards are in
alternating colors/decreasing rank, but additional
variation-specific logic is woven together. In addition,
the PySol designers have “fixed in concrete” the
possible variation points through parameters.

class Klondike(Game):
 Layout_Method = Layout.klondikeLayout
 Talon_Class = WasteTalonStack
 Foundation_Class = SS_FoundationStack
 RowStack_Class = KingAC_RowStack
 Hint_Class = KlondikeType_Hint

 def createGame(self, max_rounds=-1,
 num_deal=1, **layout):
 # create layout
 l, s = Layout(self), self.s
 kwdefault(layout, rows=7, waste=1,
 texts=1, playcards=16)
 apply(self.Layout_Method, (l,), layout)
 self.setSize(l.size[0], l.size[1])

 # create stacks
 s.talon = self.Talon_Class(l.s.talon.x,
 l.s.talon.y, self,
 max_rounds=max_rounds,
 num_deal=num_deal)

 if l.s.waste:
 s.waste = WasteStack(l.s.waste.x,
 l.s.waste.y, self)
 for r in l.s.foundations:
 s.foundations.append
 (self.Foundation_Class(r.x, r.y, self,
 suit=r.suit))
 for r in l.s.rows:
 s.rows.append(self.RowStack_Class(r.x,
 r.y, self))
 # default
 l.defaultAll()
 return l

 def startGame(self, flip=0, reverse=1):
 for i in range(1, len(self.s.rows)):
 self.s.talon.dealRow
 (rows=self.s.rows[i:], flip=flip,
 frames=0, reverse=reverse)
 self.startDealSample()
 self.s.talon.dealRow(reverse=reverse)

 # deal first card to WasteStack (if exists)
 if self.s.waste:
 self.s.talon.dealCards()

 def shallHighlightMatch(self, stack1, card1,
 stack2, card2):
 return (card1.color != card2.color and
 (card1.rank + 1 == card2.rank or
 card2.rank + 1 == card1.rank))

Figure 4. Klondike PySol Implementation.

It is inappropriate to localize variation-specific
logic in Klondike, but it is equally incorrect to
“pollute” Game or Layout with arbitrary logic that
appears only within a few (or even one) variations. We
find that instance-oriented layered design enables us to
assemble a valid component variation from primitive
building blocks, paying special attention to the
interaction between these building blocks.
4.2 LOC Comparison between KS and ACDK

The complete Klondike assembly consists of 31
layers and 17 Jak entities consisting of 2,879 lines of
Jak. The total composed Java files account for 3,089
lines of code. This implementation compares against a

Klondike implementation created manually within KS
that consisted of 12 Java classes and 1,632 LOC.

4.3 Extending to Full KS Component Set

The majority of this work was focused on

constructing solitaire plugin components using ACDK.
The template component, in this case, was the set of
base MVC classes and the tailored component was the
resulting plugin. We now briefly show how the
approach extends to the “core” components that make
up the KS application. The userManager component
within KS is responsible for storing statistical
information for each user about games played (such as
number of games lost or won). If we wanted to store
variation-specific information (in Klondike, for
example, how many cards remained face down) we
would compose a new feature FEi = fei,1 ● fei,2 ● fei,3
where fei,1 represents the feature fragment layer
composed with userManager, fei,2 represents the layer
composed with the Klondike plugin, and fei,3
represents the layer composed with the pluginManager
that ensures at run-time that only the Klondike plugin
can be loaded.

The more routine form of layered equations within
KS would relate to the core features visible to the users
– creating virtual tables for solitaire games to be
played over the Internet, or a chat subsystem. The
communication protocol describes the full set of
responsibilities for the KS client and KS server. One
can construct stripped down (or super-enhanced) client
and server applications by composing appropriate
features, as required by the individual components that
make up KS.

4.4 ACDK prototype

Figure 5 contains a screenshot showing how the
Grandfather Solitaire game was assembled using
ACDK. A component is constructed by a set of layers.
As each layer is created or added from a library of
existing layers, the graphical visualization on the right
side reflects the structure with columns representing
layers. Each Jak artifact appears as a node within a
column; horizontal lines represent refinements of Jak
artifacts. The full set of Jak artifacts appears in the
leftmost column. The AHEAD tools can be invoked by
the toolbar at the top of the window, and one can
search for strings in all layers and Jak artifacts. ACDK
offers an alternative visualization showing the flowleft
and flowright concerns for the layers.

Figure 5. Sample ACDK screenshot.

5. Related Work

Our instance-oriented approach to constructing
product lines is based on Batory’s elegant notion of
feature-oriented composition using layers [3]. In
Section 3.1 we outlined our extensions. We believe
ACDK introduces a new design pattern for layered-
based designs, analogous to the design patterns for OO
design [8]. More experience with layered design will
naturally lead towards better understanding of the best
practices in the area.

The most closely related concept to our work is the
Presentation/Abstraction/Controller (PAC) design
pattern that forms a hierarchy of agents, each of whom
is responsible for a particular aspect of system
functionality. The primary limitation of using PAC is
its complexity. First, one must select the appropriate
level of granularity for each PAC; second, the control
components increasingly become mediators between
the Abstraction/Presentation, as well as with other
PAC agents. Third, PAC agents are distinct objects and
do not share the ability of AOP or AHEAD to compose
together and share state. Finally, while PAC is
extensible, allowing one to readily insert new PAC
agents into an existing hierarchy, the lifecycle
management of the agents quickly becomes a major
concern. What we are able to accomplish, essentially,
is use the AHEAD tool suite to compose together a set
of layers so there is no need to maintain or instantiate
objects for each individual layer, as one would need to
do for each PAC object.

AOP shares much of the concerns of this paper;
however, one common shortcoming is that it does not

scale when several aspects are to be woven together
over the same artifact. The problem may be the lack of
fine-grained control over the ordering of the weaving.
AOP simply fails to lay the foundation for designed
variability because of its focus on the implementation
artifacts. Some methodologies, realizing this limitation,
have sought to model the generic creation and
customization of modules. OPM is a rich modeling
methodology [7], whose weakness appears to be a
steep learning curve and lack of visibility in the greater
community. These will vanish in the future, at which
point OPM will be a serious contender for the way one
models, designs, and builds software.

Inheritance and delegation both offer mechanisms
to extend existing behavior by “bracketing” a method
invocation; a delegate can intercept a method request
and perform additional work before and after. With
inheritance, a subclass can override a method C.m()
with {preWork();C.m();postWork();}. While these
techniques work well for “localized” behavioral
modifications, they simply do not scale when
unanticipated (seemingly arbitrary) behaviors need to
be composed together. The instance-oriented layered
design relies on the Chain of Responsibility pattern as
well as the Factory Method pattern [8].

6. Lessons Learned and Future Work

Reusable Controllers. One of the most challenging
problems with the object-oriented application of MVC
is the lack of reuse within the controllers. This
limitation must be overcome because most OO
methodologies place complex business logic within
controllers. Indeed, in many applications of MVC, the
controller is simply defined as an interface, limiting
reuse opportunities. In our own anecdotal experience
in developing KS, we found no controller reuse (in
fact, most controllers were created via copy/paste).

Better Change Management. Once a product line is
designed, and various members constructed, there is a
natural hesitation to make changes to the base classes,
for fear of breaking existing working software. Using
layers, one can cleanly encapsulate changes with
minimal impact on existing code. Indeed, to “back out”
of a proposed change, one need only delete the layer
containing the change.

Coarse-grained Composition Techniques. Using the
AHEAD tool suite, a layer can only (1) add a new
class; (2) refine the methods of an existing class (add,
override, extend); or (3) add new fields to an existing
class. One can envision more fine-grained composition
techniques that require more sophisticated mechanisms
for weaving Jak files into Java classes; for example, a

layer could add a new case statement to an existing
switch statement. We believe that the elegance of
the AHEAD refinements – and their simplicity – made
possible the success of ACDK.

The KS and ACDK software packages are available
for download from http://www.cs.wpi.edu/~heineman

6.1. Future Work

The decomposition into feature layers that we have
proposed is also compatible with other research areas
that seek, for example, to check the validity of the
composition of features by validating individual
features in modular fashion [17]. We currently use the
existing ability of AHEAD to specify provides and
required information for each layer; we will consider
in the future more sophisticated means of specifying
the interface for a layer and validating that
compositions satisfy all interface specifications.

6.2 Acknowledgements

We would like to thank Don Batory for the many
conversations we have shared regarding the described
work, as well as for his excellent AHEAD tool suite.

References

[1] S. Ambler, The Object Primer, 3rd Edition, Agile
Model Driven Development with UML 2, Cambridge
University Press, 2004.
[2] P. America, H. Obbink, R.van Ommering, and F.
van der Linden, “CoPAM: A Component-Oriented
Platform Architecting Method Family for Product
Family Engineering,” P. Donohoe, Ed., Software
Product Lines: Experience and Research Directions,
Kluwer Publications, pp. 167-180, Aug. 2000.
[3] D. Batory, J. Sarvela, and A. Rauschmayer,
Scaling Stepwise Refinement, International
Conference on Software Engineering, Portland,
Oregon, May, 2003.
[4] P. Clements and L. Northrop, Software Product
Lines: Practices and Patterns, Addison Wesley,
Boston, MA, 2002.
[5] A. Cockburn, Writing Effective Use Cases,
Addison-Wesley, 2000.
[6] J. Coutaz, “PAC, an Object Oriented Model for
Dialog Design”. In Rullinger, H. I. and Shackel, R.,
Eds., Human-Computer Interaction - INTERACT.
Elsevier Science Publishers, 1987, pp 431-436.
[7] Dov Dori, Object Process Methodology, Springer-
Verlag, August 2002.

http://www.cs.wpi.edu/~heineman

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns: Elements of Reusable Object-oriented
Software, Addison Wesley, 1995.
[9] M. Griss, “Implementing Product-Line Features
with Component Reuse”, 6th International Conference
on Software Reuse (ICSR), Springer-Verlag, Vienna,
Austria, June 2000.
[10] G. T. Heineman, A Model for Designing
Adaptable Software Components, 22nd Annual
International Computer Science and Application
Conference, pp. 121-127, Vienna, Austria, Aug. 1998.
[11] I. Jacobson, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-
Wesley, 1992.
[12] I. Jacobson, M. Griss, and P. Jonsson, Software
Reuse: Architecture, Process, and Organization for
Business Success, Addison-Wesley, 1997.
[13] I. Jacobson, Use Cases: Yesterday, Today, and
Tomorrow, Rational Technical Library, Nov. 2003,
http://www-106.ibm.com/developerworks/rational/
library/775.html
[14] B. Kotec, MVC design pattern brings about better
organization and code reuse, Builder.com: beyond the
code, October 2002, http://builder.com.com/5100-
6386-1049862.html
[15] D. Kulak and Eamonn Guiney, Use Cases:
Requirements in Context, Addison Wesley, 2000.
[16] S. Latchem, “Component Infrastructures: Placing
Software Components in Context”, George T.
Heineman and William T. Councill, Eds., Component-
Based Software Engineering: Putting the Pieces
Together, Chapter 15, Addison-Wesley, 2001.
[17] H. Li, S. Krishnamurthi and K. Fisler. Interfaces
for Modular Feature Verification, International
Conference on Automated Software Engineering,
September 2002.
[18] D. Muthig, T. Patzke, Generic Implementation of
Product Line Components, NetObjectDays, 2002,
net.objectdays.org/node02/de/Conf/publish/papers.html
[19] Sun Microsystems, Designing Enterprise
Applications with the J2EE™ Platform, 2nd Edition,
http://java.sun.com/blueprints/guidelines/
designing_enterprise_applications_2e/DEA2eTOC.html
[20] Sun Microsystems, JavaBeans Specification 1.01,
http://java.sun.com/products/javabeans
[21] MSDN, Enterprise Solution Patterns Using
Microsoft .NET. http://msdn.microsoft.com/library/en-
us/dnpatterns/html/Esp.asp
[22] www.pysol.org
[23] Python Software Foundation, www.python.org
[24] M. Svahnberg and J. Bosch, “Issues Concerning
Variability in Software Product Lines”, 3rd
International Workshop on Software Architectures for
Product Families, Canaria, Spain, LNCS, 2000.

[25] C. Turner, A. Fuggetta, and A. Wolf, “A
Conceptual Basis for Feature Engineering”, Journal of
Systems and Software, 49(1), Dec. 1999, pp. 3-15.
[26] J. Wijnstra, “Supporting Diversity with
Component Frameworks as Architectural Elements”,
Proceedings of the International Conference on
Software Engineering (ICSE), Limerick, Ireland, pp.
50-59, 2000.
[27] Document Object Model (DOM) Level 2 Views
Specification, Version 1.0, W3C Recommendation 13
November, 2000, http://www.w3.org/TR/2000/REC-
DOM-Level-2-Views-20001113

Appendix A. Solitaire Plugin Layers

http://www-106.ibm.com/developerworks/rational/�library/775.html
http://www-106.ibm.com/developerworks/rational/�library/775.html
http://builder.com.com/5100-6386-1049862.html
http://builder.com.com/5100-6386-1049862.html
http://net.objectdays.org/node02/de/Conf/publish/papers.html
http://java.sun.com/blueprints/guidelines/�designing_enterprise_applications_2e/DEA2eTOC.html
http://java.sun.com/blueprints/guidelines/�designing_enterprise_applications_2e/DEA2eTOC.html
http://java.sun.com/products/javabeans
http://msdn.microsoft.com/library/en-us/dnpatterns/html/Esp.asp
http://msdn.microsoft.com/library/en-us/dnpatterns/html/Esp.asp
http://www.pysol.org/
http://www.python.org/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113

	1. Introduction
	1.1. MVC and components

	2. Requirements
	2.1 Product Line Domain Example
	Stack

	3. Formal Model
	3.1 Extensions to Batory’s AHEAD
	3.2 Visitor Pattern Example
	3.3 Solitaire Domain Revisited as Layers
	game layer
	flowright
	flowleft
	integer layer
	flowright
	flowleft
	numLeft layer
	flowright
	flowleft
	score layer
	flowright
	flowleft
	layout layer
	flowright
	flowleft

	4. Evaluation
	4.1 Comparison with other OO Solitaire Engine
	4.2 LOC Comparison between KS and ACDK
	4.3 Extending to Full KS Component Set
	4.4 ACDK prototype

	5. Related Work
	6. Lessons Learned and Future Work
	6.1. Future Work
	6.2 Acknowledgements

	References
	Appendix A. Solitaire Plugin Layers

