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Abstract 
 

The Model/View/Controller (MVC) paradigm, and 
its many variants, is a cornerstone of decoupling 
within object-oriented design. MVC leads to clear 
reuse benefits regarding the class hierarchies for the 
model and view elements. In practice, however, the 
controllers appear to defy reuse, most likely because 
they encapsulate specialized business logic. Within an 
effective product line, however, such specialized logic 
must be reused. We combine the MVC paradigm with 
feature-oriented programming (FOP) to produce a 
novel instance-oriented design pattern for layers that 
brings reusability back to controllers. We demonstrate 
the effectiveness of our approach using a product-line 
example of a solitaire game engine. 
 
1. Introduction 
 

A product line shares a common set of features 
developed from a common set of software artifacts [4]. 
We assume that a feature is a unit of functionality 
within a system that is visible to an end-user and can 
be used to differentiate members of the product line. 
One can specify (at the requirements level) that a 
member of the product line should support a set of 
features; however, the engineering of the resulting 
system is complicated because one cannot cleanly 
encapsulate features as modules to be simply linked 
together, as with code libraries. 

There is a tremendous amount of information in the 
software engineering literature on features and feature 
engineering (see [25] for a summary). We are focused 
on ways to engineer software product lines by 
synthesizing Model/View/Controller (MVC), feature-
based layers, and components. We assume components 
are designed using an object-oriented language, 
although the overall approach could still apply to other 
programming languages, with some effort. 

A member of a product line is assembled from a set 
of components, each of which has been tailored from 
template components within the software product line 
[4]. We need to show (1) how to construct the template 
components and (2) how to create the tailored 
components. Our solution uses the same mechanism to 
accomplish both tasks. We rely on existing techniques 
to specify the overall architecture and assemble the 
final tailored components into the actual member 
application of the product line. 

We chose to work on this problem because we had 
developed dozens of plugin components for a card 
solitaire game engine (described in Section 2.1) used 
for an undergraduate software engineering course. 
These solitaire plugins embraced the MVC design 
pattern and were all members of a product line. While 
the M/V classes showed excellent reusability and 
extension via inheritance (30 subclasses within the 
model hierarchy and 22 subclasses within the view 
hierarchy), we found it nearly impossible to reuse 
controllers. Since variation-specific logic was encoded 
in the controllers, the lack of reusability meant that 
seemingly similar solitaire variations had virtually no 
code shared between them. This research effort is our 
response to this lack of situation. 

 
1.1. MVC and components 

 
MVC is a pervasive technique that separates 

responsibilities in software to avoid overly restrictive 
coupling that otherwise might occur [8]. While MVC 
has most commonly been associated with GUI 
programming, it can also be applied to separately 
manage the input, processing, and output of software 
[14]. The primary benefit of MVC is the resulting 
extensibility and ease of change. When partnering 
MVC and product line components, a spectrum of 
possibilities appears, as shown in Figure 1. 



 
 

Figure 1. MVC/Component Spectrum. 
 
In Figure 1, the enclosing boxes are units of 

encapsulation within a component. On the left side, 
members of the product line are strictly decomposed 
into tiers, such as User Interface, Workflow & Process 
Control, Business Services & Legacy Wrapping, and 
Data & Operating System Services [16]. Components 
are wholly contained within a given tier and their 
responsibilities are restricted to those allowed within 
the tier; for example, an exclusively view component 
must belong to the User Interface tier. Alternatively, 
on the right side, a component may be “self-
contained”, responsible for modeling and storing state 
information, performing computations over this state, 
and presenting an interface to the user. In between 
there are distinct families of possibilities: 
DocumentView [27] merges V/C to operate over a 
model document; the JavaBeans component 
architecture [20] effectively merges M/V using 
properties; finally, Code-Behind refactoring [21] 
separates the view from the M/C.  

Regardless of the way in which MVC and 
components are integrated, we must consider how to 
tailor a template component to support a particular 
feature. The product line community has developed 
numerous approaches [2][12][17][24][26]: 

• Parameterization (either build-time via 
compiler directives or run-time arguments) 

• Inheritance and Polymorphism 
• Delegation 
• Extensions and Extension Points (built-in 

Variability Mechanisms within the component) 
• Component substitution  
• Adaptable Software components [10] 
• Code generation (when using a higher-level 

language to define desired properties). 
Most, if not all, of these mechanisms rely on the 
language itself in which the components are 
programmed. Many also rely on run-time testing of 
designs that should have been validated at design-time. 
We seek an approach that captures the higher-level 
concept of features, scales to enable components to be 

extended with multiple sets of features, and validates 
the tailored component at design time. 

While features may cross-cut numerous 
components, one common characteristic is that the 
feature implementation itself can be subdivided into its 
effect on the MVC. New classes may need to be added 
to the model, or existing models refined; new view 
classes may compose information from one or more 
models, or existing views refined. Most importantly, 
we believe, new controller classes will need to be 
defined to contain the specific unique business logic 
required by individual features, or existing controllers 
refined. Product line designers must simultaneously 
manage the MVC artifacts within a template 
component and the tailored components. Our 
observation of the relationship between feature layers 
and MVC was an important step in understanding how 
to solve the problem. 

Given the sheer number of possible members of a 
product line, we need a way to rapidly and safely 
assembly the tailored components to be used. This 
paper proposes a model that defines this capability, 
describes a prototype tool that builds on top of 
Batory’s AHEAD tool suite [3] to perform the 
approach, and presents and evaluates a case study 
showing the practical application of the approach. 

We first state the requirements that drive this 
research followed by a detailed description of the 
solitaire game engine product line. Section 3 presents 
our formal model together with a full discussion of the 
layered solution to the product line. Section 4 
evaluates more fully the instance-oriented layered 
design against more traditional OO solutions. We 
conclude with related work and more information 
about the AHEAD Component Development Kit 
(ACDK). Section 6 describes lessons learned and 
presents future work. 
 
2. Requirements 
 

A design method for a product line starts with the 
definition of a common architecture and then captures 
any variabilities; but then it needs to go further. It 
must: 
• Enable the assembly of a valid product line member 

from primitive building blocks, paying special 
attention to the interaction between these building 
blocks. The definition of validity, its specification 
and evaluation, is flexible. 
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• Provide traceability to bridge information captured 
within use case scenarios that describe the variability 
and the underlying design and implementation of the 
resultant system. 

• Incorporate an existing Feature-oriented model 
instead of developing a new one.  

In a product line system, one needs to organize the 
design artifacts to better support at the implementation 
level the allowable composition of PL features. We 
also don’t want to force a major rewrite of the software 
base, so we must show how to organize existing 
object-oriented classes into feature-oriented layers. 
 
2.1 Product Line Domain Example 
 

Kombat Solitaire (KS) is a Java application that 
enables head-to-head competition of solitaire 
variations played simultaneously over the Internet. KS 
was developed as part of an undergraduate software 
engineering course. Each plugin represents a single 
solitaire variation. KS is constructed from a set of 
components – such as, userManager, pluginManager, 
client, server – and the individual solitaire variations 
can be loaded as plugins. We have accumulated nearly 
twenty-five different solitaire variations. Because of 
the commonality among variations, we knew there 
must be a better way to design and implement these 
plugins, which is why we investigated using AHEAD. 
The solitaire game engine itself is an excellent case 
study in product lines, since it offers four distinct 
members (in addition to the plugin components that 
remain the focus of this paper): 

• PT – Solitaire Plugin Tester 
• DA – Stand-alone Desktop application 
• DS – Distributed Solitaire Repository 
• KS – Head to Head competition over Internet 

KS (version 2.2.1) contains about 67K lines of Java 
code, of which 31K forms the core Solitaire playing 
engine. To support KS, we also developed a small 
application PT that simply enabled one to execute and 
test a solitaire plugin DA and DS have not yet been 
developed because of limited resources. However, 
given the success of the product line approach 
regarding the plugin variations, our future work 
includes building these product line members from the 
same set of software components. 
2.1.1. Plugin Design. To enable the rapid development 
of solitaire plugins, a rich set of model elements are 
already provided, as shown in Table 1. Each model 
element shown (except for abstract Stack) has a 
corresponding view element that depicts the model 
element within the solitaire playing field.  

Each KS plugin is responsible for constructing a 
model of the game, which may include a deck, 
columns where cards are stacked, a running score, and 
waste piles. The plugin then defines the views for these 
model elements over a 2-dimensional playing field 
such that no two views intersect each other. Finally, a 
controller is registered with each view to manage 
mouse events (press, release, click) and perform moves 
as allowed by the solitaire variation. The sum total of 
all the controllers enforces the rules of a solitaire 
variation. 

 
Table 1. Classes within KS Model Hierarchy 

Stack abstract representation of cards in 
sequence from bottom to top  

BuildablePile
  

pile of cards face down on top of which a 
column can be built (as in Klondike) 

Card  single card 
Column stack of cards that reveals cards lower in 

the column 
Deck deck of playing cards 
MutableInteger integer that can change during play (such 

as the score) 
MutableString string that can change during play 
Pile stack whose topmost card is visible 

 
2.1.2. Object-oriented Support for MVC. The 
object-oriented paradigm rapidly converged on use 
cases during analysis to identify the desired objects. 
Use cases capture a slice of functionality in a system 
that is initiated by an actor and involves interactions 
with specific elements within the system. As designers 
develop use cases, there are two common modeling 
relationships: 

• «extend»  – When a use case adds behavior to a 
use case without changing the original use case. 

• «include» – When a use case contains behavior 
that is shared by multiple use cases. 

Once captured in the analysis model, these 
relationships can be used to identify reuse possibilities 
in the underlying object model [1], though many 
advise against trying to transfer these relationships into 
class inheritance [13][15]. Jacobson also advises to 
“never extend an extension” of an existing use case to 
avoid complexity [13]. Layers provide a more 
amenable artifact to the relationships between use 
cases; we return to this point in Section 3.1.  

Both Jacobson [10] and Cockburn [5] describe an 
approach to identify objects from use cases by defining 
three overall divisions – Entity, Boundary (or Interface 
to Jacobson), and Control. Entity objects represent the 
persistent data used by an application. Boundary 
objects provide the functionality to interact with the 



environment and receive requests from system actors. 
Control objects contain functionality “not contained in 
any other object” and encapsulate business logic. 
These divisions are reflective of the MVC division that 
appeared quite early in the evolution of object-
orientation, starting with SmallTalk. 

The premise of this paper is that using MVC 
naturally leads to the inability to reuse controllers. 
Domain experts have considerable expertise in using 
inheritance to capture the rich information to be stored 
in a model. HCI experts show how to build user 
interfaces that decouple the model from the view 
presented to the users. But the complex logic found in 
controllers can quickly be unmanageable because of 
the inherent limitations of the basic extension 
constructs in OO programming languages. Since 
business logic is encapsulated within controllers, MVC 
may actually be an impediment to the proper reuse or 
extension of business logic. 

Rather quickly one sees the limitations of using 
inheritance (a typing mechanism) as a means of 
capturing the way that one (complex) behavior is 
related to, or extends, another; this is especially true 
when one requires multiple sets of simultaneous 
extensions. To manage the multiple tailoring of several 
components within a product line, we must provide a 
more rigorous foundation. 
 
3. Formal Model 
 

When a product line member exhibits a set of n 
features, we say that mpl = {FE1, FE2, …, FEn}. mpl  is 
constructed from a set of components {C1, C2, …, Ck} 
according to the architectural definition of the product 
line. Because features can cross-cut multiple 
components, we define a feature implementation FEi to 
be a k-sized vector whose elements are fei,j, fragments 
of feature FEi that are composed into component Cj. 
When a feature is located entirely within a component, 
its vector contains only one non-empty element. The 
definition of mpl is thus a set of k equations, one for 
each component Cj, of the form fe1,j ● fe2,j ● … ● fen,j. 

The compose operator ● is as defined by Batory, 
thus each fei,j is an AHEAD layer [3]. Each layer l (a1, 
a2, …, am) contains a set of m Jak artifacts that are 
composed together to produce a set of Java classes. 
Each artifact ai is either a refinement of an existing 
class or a newly defined class. The equation [h (a1, a3) 
● j(a2, a3)] will result in three artifacts and the order of 
the composition shows that design artifact a3 in h 
refines the existing design artifact a3 in j.  

Each layer can define whether it is constant (i.e., 
forms a base artifact) and if it is single (i.e., can only 

appear once in an equation). Layers can declare their 
requirements and their provisions. Provisions and 
requirements are directional; for example, if an 
equation composes a layer Li with a flowleft 
requirement, then that requirement is satisfied if some 
layer Lj to the right of Li has a flowleft provision. 
Given a layer h in an equation, layers to the left of h 
are “downstream”, since they are being composed after 
h, while “upstream” layers are to the right of h.  

The use of MVC was critical in our understanding 
of constructing components from composed behaviors. 
The essential point is that we show how to build 
complex component behaviors by assembling reusable 
primitive behaviors defined in layers.  

 
3.1 Extensions to Batory’s AHEAD 

 
While we use Batory’s AHEAD tool suite “as is”, 

we make three novel contributions. (1) jak2java 
composes layers “in place”, which makes it hard to 
reuse layers. ACDK transparently manages layers in an 
equation by reference, copying all layers into a 
temporary location when composition is required; (2) 
ACDK provides a developer interface that enables the 
GUI construction of layers, supports arbitrary search 
through all layers (both Jak files and composed Java 
files). ACDK enables the rapid prototyping of layer 
compositions; (3) we developed the instance-oriented 
layered style of design.  

In instance-oriented layered design, we partner 
MVC with layers. Layers can introduce new “types” 
which are like object factories [8]; as “instance” layers 
are composed downstream, refining the type layer, 
objects of that type are constructed. Using the chain of 
responsibility pattern [8], each layer performs its task, 
and then invokes the appropriate logic on the upstream 
layer (similar to the way subclasses should invoke 
super() in constructors). 

Use cases “roughly” (by our experience) map into 
layers. Each use case that «extends» a use case 
becomes a layer that refines an existing upstream layer; 
use cases that «include» a base use case translate 
into layers that have a flowleft requirement provided 
by the layer representing that base use case. When 
features can be described as extensions or additions to 
existing use cases, our methodology quite nicely 
bridges the gap between requirements and code as it 
appears in layers. 



3.2 Visitor Pattern Example 
To provide a complete example, consider the set of 

classes shown in Figure 2 where a Layer is composed 
of a set of Concerns (these classes are selected from 
ACDK itself). Assume that the white classes form the 
base of a piece of software, where there are six 
subclasses of Concerns, five of which are directed. 

 

Figure 2. Visitor Pattern Example. 
Starting from this base, assume a designer wished to 

add the visitor pattern [8] because processing over the 
Concerns using an Iterator returned by Layer was too 
complex. We construct an aggregate layer containing 
these nine classes; this layer is constant, to use 
AHEAD terminology. To add the visitor design pattern 
in Java requires changes to each class. Using ACDK, 
we construct a new visitor layer that refines each class 
(by adding the method void accept 
(ConcernVisitor cv)) and adds two new classes 
(shaded in the upper left corner of Figure 2). Our 
equation is now [visitor ● aggregate]. 

Next, the designer adds a new subclass, PAE, to the 
AE class. A new specialization layer is composed, 
requiring refinements to both visitor classes, as well as 
defining the new PAE subclass. The final equation is: 
 
[specialization (ConcernVisitor, PureConcernVisitor, PAE) ● 
 visitor (Concern, AE, Ex, FL, FR, P, R, Layer, ConcernVisitor,  
 PureConcernVisitor) ● 
aggregate (Concern, DirectedConcern, AE, Ex, FL, 
 FR, P, R, Layer) ] 

3.3 Solitaire Domain Revisited as Layers 
We now describe how we developed a set of layers 

that can be assembled to form solitaire variation 
plugins. The game layer describes the empty solitaire 
plugin; it is analogous to an abstract base class except 
it can be instantiated and it generates a working plugin 
(albeit with no real behavior). game (Game, Layout) 
is shown in Figure 3 (all details of the actual 
implementation are omitted unless relevant). Note that 
the equation [game] is invalid because of the 
unsatisfied flowright requirements. 

 

game layer 
flowright flowleft 

 requires scoreDefined 
 requires numCardsLeftDefined 

 provides pluginBase 

Game
 
 

public class Game extends Solitaire 
  + Game ()   
  + Layout getLayout() // return object that places widgets 
  + boolean hasWon() // has variation been won? 
  + String getName()  // name of variation 
  + void initialize() // build controllers for playingArea 
  + void setDefaultControllers (Widget) // … for widget 

Layout
 

public class Layout { 
  + Layout (CardImages ci) // Layout needs card images 
  + CardImages getCards()  // return card images 
  + void setLocation (Widget) // refined by other layers 

 
integer layer 

flowright flowleft 
  provides integerDefined 
Game 
 
 

refines class Game  
 + void resetHand() // clean up 
 + void initialize() // as needed for integer 
 + IntegerManager getIntegerManager() // 
expose 

IntegerManager
 
 

refines class IntegerManager 
  + void setLocation (Widget) //place widget 
  + void createInteger()   //create model 
  + void createIntegerView()  //create view 

 
numLeft layer 

flowright flowleft 
 provides numCardsLeftDefined  requires integerDefined 

IntegerManager
 
 

refines class IntegerManager  
  + void createInteger ()            // add 
to Model 
  + void createIntegerView()   // add to View 

 
score layer 

flowright flowleft 
 provides scoreDefined  requires integerDefined 

IntegerManager
 
 

refines class IntegerManager  
  + void createInteger ()           // add to Model 
  + void createIntegerView()   // add to View 
 

 
layout layer 

flowright flowleft 
  requires pluginBase 
IntegerManager
 
 

refines class IntegerManager 
  + void setLocation (Widget) //place widget
 
 

Figure 3. Definition of layers. 
The Game artifact is part of the model while the 
Layout artifact belongs to the view. Given the existing 
layers defined for the solitaire product line family, the 
first valid equation E1 is [score ● numLeft ● integer 
● game]. Reading from right to left (as we must with 
equation compositions) this composes with game the 
integer layer (which introduces the type of integer) 
and then two instance layers (which add the elements 
of the number of cards left together with the score of a 
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solitaire game). This equation, while correct, produces 
a solitaire plugin whose playingArea is empty; we 
need to compose a specialized layout layer that knows 
how to place the integer widgets on the screen. The 
final equation is [layout ● E1]. 

To see how these layers interact, consider the 
initialize method. The integer layer refines  game, 
which means that it will first receive control when 
initialize is invoked; it performs its task by calling 
createInteger and createIntegerView. Within 
integer these methods are empty, but numLeft and 
score refine the methods to create a chain of 
responsibilities [8] where score M/V elements are first 
created, and then numberCardsLeft M/V elements. As 
each IntegerView element is created, setLocation  is 
invoked. The integer layer provides the definition of 
this method, but it only has meaning when the layout 
layer refines the method to properly layout the score 
and numCardsLeft widgets. The interactions between 
the layers show how (1) decisions are deferred to 
downstream layers; and (2) layers refine behaviors of 
upstream layers. 
 
4. Evaluation 
 

Table 2 compares the reusability factor for ACDK-
generated layers of four solitaire plugin components 
against their hand-coded counterparts. Note that we 
omit references to “core” classes provided by the KS 
model and view hierarchy, since these are used as is by 
both solutions; we are interested in identifying 
opportunities for reuse across the solitaire variations. 

 
Table 2. Reusability Comparison 

 Java ACDK 
 #Classes (#reused) # Layers (#reused)  % 
Idiot 6 (0) 16 (13) 81% 
Narcotic 7 (0) 17 (13) 76% 
GrandFatherClock 6 (0) 31 (29) 93% 
Klondike 11 (0) 31 (25) 80% 

 
The ACDK equations for these plugin components are 
as follows (* means unique to the variation, a number 
means the number of times the layer is composed): 

Idiot: [stacktostack ● layout* ● solve* ● rules* ● 
decktostacks ● aCol4 ● column ● aDeck ● deck ● 
numCardsLeft ● score ● integer ● game] 

Narcotic: [solve* ● rules* ● stacktostack ● 
reassembleDeck* ● layout* ● decktostacks ● aPile4 ● pile 
● aDeck ● deck ● numCardsLeft ● score ● integer ● 
game] 

GrandfatherClock: [layout* ● aDeck ● rules* ● 
stacktostack ● aPile12 ● aCol8 ● numCardsLeft ● score ● 
deck ● pile ● column ● integer ● game] 

Klondike: [rules* ● buildablePileMoves* ● pileMoves* 
● restockDeck ● flipCard ● stacktostack ● deckMoves* ● 
deal* ● klondikeLayout ● aFanPile ● fanpile ● aPile4 ● 
pile ● aBuildablePile8 ● buildablepile ● aDeck ● deck ● 
numCardsLeft ● score ● integer ● game] 

As the reader can verify, the ACDK solutions 
showed tremendous gains in reusability. 

 
4.1 Comparison with other OO Solitaire 
Engine 
 

The lack of reusability within KS could simply have 
been poor design and/or programming. To determine 
whether this was the case, we compare KS with an 
open source object-oriented solitaire game engine, 
PySol [22]. PySol is written in Python, an interpreted 
object-oriented programming language [23] that uses 
an easy-to-read syntax. PySol has an extensible 
solitaire engine and supports features such as multi-
level undo/redo, loading and saving games, storing 
statistics, help, and hints for next moves. 

In PySol, each solitaire Game has a talon that holds 
the initial deck, a waste pile of cards dealt from the 
talon, a set of foundation piles where cards are placed 
for the final solution, a set of row piles to hold 
intermediate storage as allowed by the solitaire 
variation being, a set of additional reserve piles for 
holding cards, and a set of internal piles that are 
invisible during game play and are used to simplify the 
coding of a particular variation. The Game class thus 
provides a rich set of primitive objects that the PySol 
designers expected would be in any variation. 

The definition of Klondike as an extension to the 
base Game class is shown in Figure 4. The behavior 
for the Klondike variation is encoded in several ways: 
(a) By fixing the class for an object to determine 
allowable moves (i.e., in Klondike the foundation piles 
are Same Suit piles of increasing card rank, and the 
row piles must be Alternating Color and start with a 
King if empty). The definitions of 
SS_FoundationStack and KingAC_RowStack are 
provided by the PySol infrastructure, and are 
themselves extensions of abstract base classes.  

It is clear that PySol satisfies its main objective of 
providing an extensible engine for solitaire games 
(with over 200 variations). Yet the design has flaws: 
• In PySol, there is no separation of Model, View, 

and Controller. In fact, it supports what it calls a 
“pseudo MVC scheme” by creating three class 
variables model, view, and controller that are 
all set to self, the python version of this! The 
Stack class has 23 methods that access/update the 
model, 15 that access/update the view, and 31 



methods that access/update a controller. 
OBSERVATION: the design is complex. 

• If a new variation requires a specialized layout, the 
Layout class must be modified to include a method 
written for the new variation. For example, the     
freeCellLayout method in Layout exists only for 
use by the FreeCell variation. OBSERVATION: avoid 
changes to core classes just to encode a variation. 

• Often logic for a variation is spread throughout 
multiple Python modules.  In PySol, one can use an 
integer seed to select a random game. If the same 
seed is used, the deck will be shuffled identically. 
Because FreeCell is so popular, the base Game 
class in PySol has a sub-case (used only by 
FreeCell) that will shuffle the deck to appear 
exactly as it would have if played on Windows. 
OBSERVATION: avoid intermingling specific with 
generic functionality. 

• Much of the logic is embedded within the objects 
themselves. In Klondike in Figure 4, for example, 
the WasteTalonStack knows that the cards dealt 
from the talon end up in the waste pile. 
OBSERVATION: separate model from view. 

The KS and PySol approaches offer similar solutions: 
Reuse existing classes “as is” where possible to 
construct the solitaire game, and extend hierarchy 
classes with specialized logic to encode variations. 
Two variations of Klondike allow for 1 or 3 cards to be 
dealt from the talon, and for multiple re-deals once the 
talon is exhausted. To realize all four possible 
variations, KS and PySol would do the following: 
• In PySol, Klondike offers pre-defined flexibility 

by the createGame method, where the invoker 
can specify the number of cards dealt 
(num_deal) and the number of allowed rounds 
(max_rounds). Each subclass of Klondike 
would be required to have its own createGame 
method to define the proper values. 

• In KS, the controllers encode the logic for the 
variations and would be parameterized with 
num_deal and max_rounds information to 
prevent illegal moves. 

These solutions are indeed serviceable, yet the 
concepts of multiple-card deals, or multiple rounds, is 
more general and would likely appear in lots of other 
solitaire variations. For example,  PySol, has three 
classes, FreeCell_AC_RowStack, Spider_AC_RowStack, 
Yukon_AC_RowStack; all ensure that cards are in 
alternating colors/decreasing rank, but additional 
variation-specific logic is woven together. In addition, 
the PySol designers have “fixed in concrete” the 
possible variation points through parameters. 

 
class Klondike(Game): 
    Layout_Method = Layout.klondikeLayout 
    Talon_Class = WasteTalonStack 
    Foundation_Class = SS_FoundationStack 
    RowStack_Class = KingAC_RowStack 
    Hint_Class = KlondikeType_Hint 
 
  def createGame(self, max_rounds=-1,  
                 num_deal=1, **layout): 
    # create layout 
    l, s = Layout(self), self.s 
    kwdefault(layout, rows=7, waste=1, 
              texts=1, playcards=16) 
    apply(self.Layout_Method, (l,), layout) 
    self.setSize(l.size[0], l.size[1]) 
 
    # create stacks 
    s.talon = self.Talon_Class(l.s.talon.x,  
                l.s.talon.y, self,  
                max_rounds=max_rounds,  
                num_deal=num_deal) 
 
    if l.s.waste: 
      s.waste = WasteStack(l.s.waste.x, 
                l.s.waste.y, self) 
    for r in l.s.foundations: 
      s.foundations.append 
        (self.Foundation_Class(r.x, r.y, self,  
           suit=r.suit)) 
    for r in l.s.rows: 
     s.rows.append(self.RowStack_Class(r.x,  
           r.y, self)) 
    # default 
    l.defaultAll() 
    return l 
 
  def startGame(self, flip=0, reverse=1): 
    for i in range(1, len(self.s.rows)): 
      self.s.talon.dealRow  
         (rows=self.s.rows[i:], flip=flip,  
          frames=0, reverse=reverse) 
  self.startDealSample() 
  self.s.talon.dealRow(reverse=reverse) 
 
  # deal first card to WasteStack (if exists) 
  if self.s.waste: 
    self.s.talon.dealCards()       
 
  def shallHighlightMatch(self, stack1, card1,  
                          stack2, card2): 
    return (card1.color != card2.color and 
             (card1.rank + 1 == card2.rank or  
              card2.rank + 1 == card1.rank)) 

Figure 4. Klondike PySol Implementation. 
 

It is inappropriate to localize variation-specific 
logic in Klondike, but it is equally incorrect to 
“pollute” Game or Layout with arbitrary logic that 
appears only within a few (or even one) variations. We 
find that instance-oriented layered design enables us to 
assemble a valid component variation from primitive 
building blocks, paying special attention to the 
interaction between these building blocks. 
4.2 LOC Comparison between KS and ACDK 

The complete Klondike assembly consists of 31 
layers and 17 Jak entities consisting of 2,879 lines of 
Jak. The total composed Java files account for 3,089 
lines of code. This implementation compares against a 



Klondike implementation created manually within KS 
that consisted of 12 Java classes and 1,632 LOC. 
 
4.3 Extending to Full KS Component Set 

 
The majority of this work was focused on 

constructing solitaire plugin components using ACDK. 
The template component, in this case, was the set of 
base MVC classes and the tailored component was the 
resulting plugin. We now briefly show how the 
approach extends to the “core” components that make 
up the KS application. The userManager component 
within KS is responsible for storing statistical 
information for each user about games played (such as 
number of games lost or won). If we wanted to store 
variation-specific information (in Klondike, for 
example, how many cards remained face down) we 
would compose a new feature FEi = fei,1 ● fei,2 ● fei,3 
where fei,1 represents the feature fragment layer 
composed with userManager, fei,2 represents the layer 
composed with the Klondike plugin, and fei,3 
represents the layer composed with the pluginManager 
that ensures at run-time that only the Klondike plugin 
can be loaded. 

The more routine form of layered equations within 
KS would relate to the core features visible to the users 
– creating virtual tables for solitaire games to be 
played over the Internet, or a chat subsystem. The 
communication protocol describes the full set of 
responsibilities for the KS client and KS server. One 
can construct stripped down (or super-enhanced) client 
and server applications by composing appropriate 
features, as required by the individual components that 
make up KS. 

 
4.4 ACDK prototype 

Figure 5 contains a screenshot showing how the 
Grandfather Solitaire game was assembled using 
ACDK. A component is constructed by a set of layers. 
As each layer is created or added from a library of 
existing layers, the graphical visualization on the right 
side reflects the structure with columns representing 
layers. Each Jak artifact appears as a node within a 
column; horizontal lines represent refinements of Jak 
artifacts. The full set of Jak artifacts appears in the 
leftmost column. The AHEAD tools can be invoked by 
the toolbar at the top of the window, and one can 
search for strings in all layers and Jak artifacts. ACDK 
offers an alternative visualization showing the flowleft 
and flowright concerns for the layers. 

 

Figure 5. Sample ACDK screenshot. 
 
5. Related Work 

Our instance-oriented approach to constructing 
product lines is based on Batory’s elegant notion of 
feature-oriented composition using layers [3]. In 
Section 3.1 we outlined our extensions. We believe 
ACDK introduces a new design pattern for layered-
based designs, analogous to the design patterns for OO 
design [8]. More experience with layered design will 
naturally lead towards better understanding of the best 
practices in the area. 

The most closely related concept to our work is the 
Presentation/Abstraction/Controller (PAC) design 
pattern that forms a hierarchy of agents, each of whom 
is responsible for a particular aspect of system 
functionality. The primary limitation of using PAC is 
its complexity. First, one must select the appropriate 
level of granularity for each PAC; second, the control 
components increasingly become mediators between 
the Abstraction/Presentation, as well as with other 
PAC agents. Third, PAC agents are distinct objects and 
do not share the ability of AOP or AHEAD to compose 
together and share state. Finally, while PAC is 
extensible, allowing one to readily insert new PAC 
agents into an existing hierarchy, the lifecycle 
management of the agents quickly becomes a major 
concern. What we are able to accomplish, essentially, 
is use the AHEAD tool suite to compose together a set 
of layers so there is no need to maintain or instantiate 
objects for each individual layer, as one would need to 
do for each PAC object. 

AOP shares much of the concerns of this paper; 
however, one common shortcoming is that it does not 



scale when several aspects are to be woven together 
over the same artifact. The problem may be the lack of 
fine-grained control over the ordering of the weaving. 
AOP simply fails to lay the foundation for designed 
variability because of its focus on the implementation 
artifacts. Some methodologies, realizing this limitation, 
have sought to model the generic creation and 
customization of modules. OPM is a rich modeling 
methodology [7], whose weakness appears to be a 
steep learning curve and lack of visibility in the greater 
community. These will vanish in the future, at which 
point OPM will be a serious contender for the way one 
models, designs, and builds software.  

Inheritance and delegation both offer mechanisms 
to extend existing behavior by “bracketing” a method 
invocation; a delegate can intercept a method request 
and perform additional work before and after. With 
inheritance, a subclass can override a method C.m() 
with {preWork();C.m();postWork();}. While these 
techniques work well for “localized” behavioral 
modifications, they simply do not scale when 
unanticipated (seemingly arbitrary) behaviors need to 
be composed together. The instance-oriented layered 
design relies on the Chain of Responsibility pattern as 
well as the Factory Method pattern [8]. 

 
6. Lessons Learned and Future Work 
 

Reusable Controllers. One of the most challenging 
problems with the object-oriented application of MVC 
is the lack of reuse within the controllers. This 
limitation must be overcome because most OO 
methodologies place complex business logic within 
controllers. Indeed, in many applications of MVC, the 
controller is simply defined as an interface, limiting 
reuse opportunities. In our own anecdotal experience 
in developing KS, we found no controller reuse (in 
fact, most controllers were created via copy/paste). 

Better Change Management. Once a product line is 
designed, and various members constructed, there is a 
natural hesitation to make changes to the base classes, 
for fear of breaking existing working software. Using 
layers, one can cleanly encapsulate changes with 
minimal impact on existing code. Indeed, to “back out” 
of a proposed change, one need only delete the layer 
containing the change. 

Coarse-grained Composition Techniques. Using the 
AHEAD tool suite, a layer can only (1) add a new 
class; (2) refine the methods of an existing class (add, 
override, extend); or (3) add new fields to an existing 
class. One can envision more fine-grained composition 
techniques that require more sophisticated mechanisms 
for weaving Jak files into Java classes; for example, a 

layer could add a new case statement to an existing 
switch statement. We believe that the elegance of 
the AHEAD refinements – and their simplicity – made 
possible the success of ACDK. 

The KS and ACDK software packages are available 
for download from http://www.cs.wpi.edu/~heineman
 
6.1. Future Work 

The decomposition into feature layers that we have 
proposed is also compatible with other research areas 
that seek, for example, to check the validity of the 
composition of features by validating individual 
features in modular fashion [17]. We currently use the 
existing ability of AHEAD to specify provides and 
required information for each layer; we will consider 
in the future more sophisticated means of specifying 
the interface for a layer and validating that 
compositions satisfy all interface specifications. 
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