
WPI-CS-TR-05-05 Feb 2005

Revisiting the Role of Pipelined Parallelism in Multi-JoinQuery
Processing

by

Bin Liu
Elke A. Rundensteiner

Computer Science
Technical Report
Series

 ��

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Revisiting the Role of Pipelined Parallelism in Multi-Join Query Processing

Bin Liu and Elke A. Rundensteiner
Department of Computer Science, Worcester Polytechnic Institute

100 Institute Road, Worcester, MA 01609–2280
{binliu|rundenst}@cs.wpi.edu

Abstract

Multi-join queries are the core of any integration service
that integrates data from multiple distributed data sources.
Due to the large number of data sources and possibly high
volumes of data, the evaluation of multi-join queries faces
increasing scalability concerns. Parallel processing has
been applied to tackle this problem. State-of-the-art par-
allel multi-join query processing commonly assume that the
application of maximal pipelined parallelism leads to su-
perior performance. In this paper, we instead illustrate that
this assumption does not generally hold. We investigate how
best to combine pipelined parallelism with alternate forms
of parallelism to achieve an overall effective parallel pro-
cessing strategy. An m-way bushy parallel processing strat-
egy is proposed. Experimental studies are conducted on an
actual software system over a cluster of high-performance
PCs. The experimental results confirm that the proposed
parallel processing strategy leads to an on average of 50%
improvement in terms of total processing time in compari-
son to existing state-of-the-art solutions.

1 Introduction

Motivation. Many applications such as data integration ser-
vices, decision support systems, and ETL middleware have
their results specified in terms of complex multi-join queries
across distributed data sources. Efficient processing of such
multi-join queries is thus critical to the success of these ap-
plications. The evaluation of multi-join queries can take a
prohibitively long time due to the following reasons: (1)
the distributed nature of data sources, (2) the possibly large
number of data sources, and (3) the large volume of data in
each data source. Thus, there is an increasing demand for
scalable multi-join query processing solutions.

Parallelizing query processing over a shared-nothing ar-
chitecture, i.e., a computing cluster, has been shown to
have a high degree of scale up and speed up [6]. Here,
we use the termmachineto refer to each computation de-

vice in a shared-nothing architecture. Three types of paral-
lelism have been identified in the parallel query processing
[12]. First, query operators none of which use data pro-
duced by the others may run simultaneously on distinct ma-
chines. This is termedindependent parallelism. Second,
query operators may be composed by a producer and con-
sumer relationship such that tuples output by a producer can
be fed to a consumer as they get produced. This is termed
pipelined parallelism. The third, termedpartitioned par-
allelism, refers to running several instances of one single
operator on different machines concurrently, with each in-
stance only processing a partitioned portion of the complete
data.

Two processing strategies at opposite ends of the spec-
trum, namely,sequentialprocessing andpipelinedprocess-
ing, have been proposed in the literature [22]. For example,
we process a four-way join queryR1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4

on 2 machines. Here, we assumeR1 ∼ R4 are not in these
2 machines originally. Figure 1(a) illustrates an example of
sequential processing. That is, we first evaluateR1 ⊲⊳ R2

over 2 machines and get the intermediate resultI1. We then
processI1 ⊲⊳ R3 on the same 2 machines (indicates by the
dashed rectangle) and get the intermediate resultI2. This
process repeats until we get the final query results. Fig-
ure 1(b) shows an example of pipelined processing of this
four-way join query. For example, we first distributeR2,
R3, andR4 over the 2 machines. Then, tuples read from
R1 probe these relations in a pipelined fashion and gener-
ate query results. This pipelined processing of multi-join
queries has been shown to be superior to the sequential pro-
cessing [22]. As we will discuss shortly, state-of-the-art
parallel multi-join query processing solutions tend to max-
imally apply this pipelined processing as its core execution
strategy [22, 29, 4].

However, does this commonly accepted solution of max-
imally applying pipelined parallelism always perform effec-
tively when evaluating multi-join queries? Or put it dif-
ferently, are there methods that enable us to generate even
more efficient parallel execution strategies than this fully
pipelined processing?

1

R2

(a) Sequential Processing (b) Pipelined Processing

Probing

(1) I1=R1 R2 (2) I2=I1 R3 (3) I3=I2 R4 2 Machines

2 Machines

R1 R3I1 R4I2 R3R2 R4R1

Figure 1. A Motivating Example

In this work, we show via an cost analysis as well as real
system evaluations that such maximally pipelined process-
ing is not always effective. We propose anm-way bushy
parallel processing strategy for multi-join queries that out-
performs state-of-the-art solutions.

Focus of the Work. We focus on complex multi-join
queries, i.e., they involve 10 or more source relations. We
target application scenarios in which all data will be first
taken to and then processed in the cluster. This require-
ment of processing joins outside the data sources is a rather
common in many applications. For example, in a data
warehouse loading environment (e.g., ETL [20]), operating
data sources may be too busy to process such complex join
queries or even simply may not be willing to give control to
outsiders. Or data sources may not have the advanced query
processing capabilities necessary to evaluate complex join
queries, i.e., web severs.

We focus on hashing join algorithms [17] since they are
among the most popular ones in the literature due to their
proven superior performance [21, 17]. Hashing joins pro-
vide the possibility of a high degree of pipelined paral-
lelism. Other join algorithms such as sort-merge join do
not have this natural property of pipelined parallelism [21].
Furthermore, hashing joins also naturally fit partitioned par-
allelism.

The key research question that we propose to address in
this work is whether maximally pipelined multi-join query
processing is indeed a superior solution as commonly as-
sumed in the literature. This pipelined process implies main
memory based processing. Hence, we assume that the ag-
gregated memory of all available machines is sufficient to
hold the hash tables of the join relations1. The rationale be-
hind this is that both the main memory of each machine and
the number of machines in the cluster are getting increas-
ingly large at affordable cost.

Due to possibly large volumes of data in each source re-
lation, the main memory of one machine may not be enough
to hold the full hash table of one source relation. Thus, par-
titioned parallelism is applied to each join operation when-

1In situations when main memory is not enough to hold all hash tables
at the same time, we follow the typical approach to divide thequery into
several pieces with each piece being processed sequentially. We defer this
discussion to Section 5.4.

ever it is necessary. That is, a partition (exchange) operator
[11] will be inserted into the query plan to partition the in-
put data tuples to multiple machines to conduct a partitioned
hash join processing.

Contributions. To highlight, the main contributions of this
work include:

• We question the commonly accepted model of maxi-
mally pipelined parallelism in parallel multi-join query
processing by both an analytical argument as well as
experimental observations.

• We propose anm-way bushyparallel processing strat-
egy that aims to balance all three forms of parallelism
for complex multi-join queries. This has not been care-
fully explored in the literature.

• We provide optimization algorithms to generate the
above m-way bushy processing strategies.

• We build a distributed query engine to back up our
claims. We incorporate our proposed strategies and
algorithms into the system. Extensive experimental
studies show that the m-way bushy parallel processing
has on average a 50% improvement in terms of total
processing time in comparison to state-of-the-art solu-
tions.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the state-of-the-art. Section 3 discussesa
multi-phase parallel optimization approach. Section 4 an-
alyzes the cost factors and tradeoffs that affect the parallel
processing performance. Section 5 presents the proposed
m-way bushy tree processing and optimization algorithms.
Experimental results are provided in Section 6. While Sec-
tions 7 and 8 discuss related work and conclusions respec-
tively.

2 State-of-the-Art

Various solutions have been investigated for parallel
multi-join query processing in the literature [22, 29, 4]. To
illustrate, we use the 10-join query depicted in Figure 2 to
explain the core ideas. The multi-join query is depicted by
its join graph. Each node in the graph (R0 ∼ R9) represents
one join relation (data source), while an edge denotes a join
between two respective data sources.

2.1 Sequential vs. Pipelined Processing

Two strategies at opposite ends of the spectrum, namely,
sequential processing and pipelined processing, have been
proposed [22]. Note that partitioned parallelism is applied
by default for each join operator. Sequential processing is

2

R7

R6

R4

R3

R5 R0

R1

R8

R9

R2

Figure 2. An Example Query with 10 Relations

based on a left-deep query tree. Figure 3(a) illustrates one
example of sequential processing for the query defined in
Figure 2. HereBi represents the building phase of thei-th
join operation, whilePi denotes the corresponding probing
phase. This processing can be described by the following
steps: (1) scanR0 and buildB1, (2) scanR1, probeP1, and
build B2, (3) scanR2, probeP2, and buildB3, and so on.
This is repeated until all the join operations have been eval-
uated. As can be seen, it processes joins sequentially and
only partial operations, namely, the probing and the succes-
sive building operations, are pipelined.

R1 R0

R2

R8

R9

R0 R1

R2

R8

R9

B1 P1

(a) Sequential (b) Pipelined

......
B2 P2

B8 P8

B9 P9

B1 P1

B2 P2

B8 P8

B9 P9

Figure 3. Sequential vs. Pipelined

Pipelined processing is based on a right-deep query tree
[22]. Figure 3(b) illustrates an example of pipelined pro-
cessing for the same query in Figure 2. In this case, all the
building operations such as scanR1 and buildB1, scanR2

and buildB2, . . ., scanR9 and buildB9 can be run con-
currently. After that, the operation of scanR0 and all the
probing operations, probeP1, probeP2, . . ., probeP9 can
be done in a pipelined fashion. As demonstrated above, it
achieves fully pipelined parallelism.

Note that a pipeline process implies main memory based
processing2. That is, it requires there to be enough main
memory to hold all the hash tables of the building relations
(R1 ∼ R9 in this case) throughout the duration of process-
ing the query.

As identified in [22], pipelined processing is preferred
whenever main memory is adequate. This is because (1)
intermediate results in pipelined processing exist only as
a stream of tuples flowing through the query tree, and (2)

2The term main memory henceforth denotes the sum of memory of all
machines in the cluster unless otherwise specified.

even though sequential processing in general may require
less memory, this is not always true due to intermediate
results have to be stored. A large intermediate result may
consume even larger memory than the sum of all building
relations.

The simulation results in [22] confirm that the pipelined
processing (right-deep) is more efficient than the sequen-
tial one (left-deep) in most of the cases they considered.
Without loss of generality, we thus associate thepipelined
processing with aright-deepquery tree, and thesequential
processing with aleft-deepquery tree in the following dis-
cussions.

2.2 Maximally Pipelined Processing

State-of-the-art parallel multi-join query processing so-
lutions maximally pursue the above pipelined parallelism
to improve the overall performance [22, 29, 4]. If the main
memory is not enough to hold all the hash tables of the
building relations, they commonly take the approach of di-
viding the whole query into “pieces”, with the expectation
that the building relations of each piece fit into the main
memory. That is, pieces are processed one by one with each
piece utilizing the entire memory applying fully pipelined
parallelism.

For example, zigzag processing [29] takes a right-deep
query tree and slices it into pieces based on the memory
availability. As an example, the right-deep tree in Figure
3(b) is cut into two pieces, one isR0 ∼ R3, and the other
is I1, R4 ∼ R9 (Figure 4(a)). Here,I1 corresponds to the
result of the first pieceR0 ∼ R3. These two pieces are
processed sequentially with fully pipelined parallelism in
each piece.

R0R1

R2

R4

R3

R9

R8

R4

R9

R5

(a) Zig-Zag Tree (b) Segmented Right-Deep Tree

I1

B9 P9

B8 P8

B4 P4

B3 P3

B2 P2

B1 P1

�

R0R1

R2

R3

I1 B3 P3

B2 P2

B1 P1

B9 P9

B8 P8

B4 P4

�

Figure 4. ZigZag and Right-Deep Segment

Segmented right-deep processing [4] proposes heuris-
tics, namely, balanced-consideration and minimized-work,
to generate pieces directly from the query graph based on
the memory constraint. The query tree is similar to the
zigzag tree. However, each piece can be attached not only at
the first join operation of the next piece, but instead also in

3

the middle of it. For example, Figure 4(b) illustrates one ex-
ample of segmented right-deep processing. As can be seen,
the output (fromP3) is attached as the building relation of
B8.

To summarize, all the above approaches take the com-
mon model of pursuing a maximally pipelined processing
of multi-joins via a right-deep query tree, with the number
of join relations in the right-deep tree primarily being deter-
mined by the main memory available in the cluster.

We now question the performance of such a maximally
pipelined processing model. As mentioned earlier, this
pipeline process implies a main memory based process-
ing. Clearly, more efficient main memory based processing
strategies would lead to an improved overall performance.
Without loss of generality, we use the termpipelined seg-
ment to refer a right-deep query tree that can be fully pro-
cessed in the main memory.

3 A Multi-Phase Optimization

Multi-join query optimization is an expensive process
because the number of alternative query plans for a query
grows at least exponentially in the number of relations par-
ticipating in the query [26]. Parallel multi-join query op-
timization is even harder [14, 23, 9]. Complications arise
because the cost to be optimized, either total amount of
work to be processed or total processing time, are no longer
closely correlated since a query plan with minimal work
may have a high sequential dependency that results in high
overall processing time. Second, even one sequential query
plan can in turn have a huge number of parallel solutions.

We take amulti-phaseoptimization approach in this
work to cope with the complexity of parallel multi-join
query optimization. That is, we break the whole optimiza-
tion task into several phases and then optimize each phase
individually. While asingle-phaseoptimization approach
such as [23] could also be applied, our multi-phase ap-
proach enables us to focus our attentation on the research
task we are tackling.

Breaking the Optimization Task. We divide the whole op-
timization task into the following three phases, (1) generat-
ing an optimized query tree, (2) allocating query operators
in the query tree to machines, and (3) choosing pipelined
execution methods. We note that even if we divide the op-
timization task into multiple phases, the complexity of each
phase, i.e., phases (1) and (2), still remains exponential in
the number of join relations.

The main focus of this work is on investigating the im-
pact of query trees (phase (1)) and different forms of par-
allelism on the overall performance. To proceed, we first
describe the design choices we will assume in the reminder
of our work for phases (2) and (3) below. We simplify the

operator-machine allocation (for phase(2)) and choose the
concurrent executionapproach [22] as the pipeline execu-
tion method (for phase(3)).

Allocating Query Operators. Query operators (joins) need
to be allocated to machines in the cluster. However, re-
source allocation itself is a research problem of high com-
plexity that has been extensively investigated in the liter-
ature [16, 10, 15]. Like most work in parallel multi-join
query processing literature [22, 29, 4], we focus on main
memory in the allocation phase. This is because main mem-
ory is the key resource in the above hash-based join process-
ing. Other factors such as CPU capabilities of computation
nodes are assumed to have less impact on the allocation,
i.e., they are often assumed to be sufficient.

The allocation is performed based on pipelined segments
to promote the usage of pipelined parallelism [16]. For
example, if a right-deep tree is cut into pieces with each
piece being processed sequentially due to insufficient mem-
ory, then all machines are allocated to each piece. Thus,
the whole allocation is performed in alinear fashion. As it
can be seen, all previous processing strategies described in
Section 2 fall into this type oflinear allocation.

Pipelined Execution Method. The building relations of
each pipelined segment can entirely fit into the memory of
the machines that have been allocated to it. We apply a
concurrent executionapproach [22] to process a pipelined
segment3. In this execution method, all scan operations
are scheduled concurrently. For example, in Figure 5, we
process a4 way pipelined segment on3 machines. Each
building relation (R2 ∼ R4) is evenly partitioned across
all 3 machines. Thus, each machine houses the appropriate
partitions from all building relations, denoted asP j

i . Here,
subscripti (2 ≤ i ≤ 4) denotes join relations, while super-
script j (1 ≤ j ≤ 3) represents machine ID. The probing
relation (R1) is also partitioned into all 3 machines to probe
the appropriate hash tables to generate results.

R2 R3 R4R1

Computation Machines

R1R2

R3

R4

Partition Partition Partition Partition

BuildingProbing

P3
2 P

3
3 P

3
4P2

2 P
2
3 P

2
4P1

2 P
1
3 P

1
4

Figure 5. Fully Concurrent Execution

3Other pipelined execution strategies such asstaged partitioning[4]
have also been proposed. The detailed discussion of these strategies and
their impact on parallel processing strategies are beyond the scope of this
paper. They can be found in our technical report.

4

4 Cost Analysis of Pipelined Segment

4.1 Identifying Tradeoffs

The following two factors need to be considered when
analyzing the performance of parallel multi-join query pro-
cessing via a partitioned hashing: (1) redirection costs be-
tween join operations, and (2) optimal degree of paral-
lelism.

Redirection Costs. The basic idea behind the partitioned
hash join algorithm is that the join operation can be eval-
uated by a simple union of joins on individual partitions.
For example, an equi-joinA ⊲⊳ B can be computed via
(A1 ⊲⊳ B1) ∪ (A2 ⊲⊳ B2) . . . ∪ (An ⊲⊳ Bn) if A and B are
first divided inton partitions (A1 ∼ An, B1 ∼ Bn) using
the same hash function. Assume the two partitions in a pair
(Ai, Bi) are put in the same machine, while different pairs
are spread over the distinct machines. This way, all pairs
can be evaluated in parallel.

However, for a right-deep tree segment, it is not possi-
ble to always have all the matching partitions reside in the
same machine. For example, assume a query tree is defined
by “A.A1 = B.B1 and B.B2 = C.C1”. A and B are par-
titioned based on their common attribute A.A1 (or B.B1),
while C has to be partitioned based on the common attribute
between B and C, namely, B.B2 (or C.C1). If we assume A
is the probing relation, then the partition function of B.B2

has to be re-applied to the intermediate result ofAi ⊲⊳ Bi

to find the corresponding partitionsCi. However, this cor-
responding partitionCi might exist in a machine different
from where the currentBi resides. Thus redirection of inter-
mediate results is necessary in this situation. For the special
case of a right-deep tree when only one attribute per source
relation is involved in the join condition, i.e., “A.A1 = B.B1

= C.C1”, the same partition function can be applied to all
relations. In that case, all the corresponding partitions can
be put into the same machine to avoid such redirections.

Optimal Degree of Parallelism. Startup and coordination
overhead among machines will counteract the benefits that
could be gained from parallel processing. [27, 19] discuss
the basics on how to choose the optimal degree of paral-
lelism for a single partitioned operator, meaning the idea
number of machines that need to be assigned to one opera-
tor. As one example, if a relation only has 1,000 tuples, it is
not a good idea to have it evenly distributed across a large
number of machines (i.e., 100) since the startup and coor-
dination costs among these machines might be higher than
the actual processing cost. Given the processing of more
than one join operators (pipelined segment), we expect this
factor has a major impact on the overall performance.

4.2 Pipelined Processing Cost Model

For pipelined processing of a right-deep segment, the
cost in terms of total work versus the overall processing
time may not be that closely correlated. We thus derive
two separate cost models. To facilitate the description of
cost models, we assumeR0 is the probing relation, while
R1, . . ., Rn are the building relations of the pipelined seg-
ment. We also assumek machines are available to process
the pipelined segment. These machines are denoted byM1,
M2, . . ., Mk. Without loss of generality, we useIi to repre-
sent the intermediate result after joining withRi. For exam-
ple, I1 denotes the result ofR0 ⊲⊳ R1, while I2 represents
I1 ⊲⊳ R2. ThusIn represents the final output of these joins.

Estimating Total Work. The total work of pipelined pro-
cessing can be described as the sum of the work in the build-
ing phase (Wb) and the work in the probing phase (Wp), as
listed below.

Wb = (tread + tpartition + tnetwork + tbuild) ∗
n∑

i=1

|Ri|

Wp = (tread + tpartition + tnetwork + tprobe) ∗ |R0|

+
k − 1

k
∗

n−1∑

i=1

|Ii| ∗ tnetwork + (

n−1∑

i=1

|Ii|) ∗ tprobe

tread, tpartition, tnetwork, tbuild, andtprobe in the above
formulae represent the unit cost of reading a tuple from a
source relation, partitioning, transferring the tuple across
the network, inserting the tuple into the hash table, and
probing the hash tables respectively. They represent the
main steps involved in a partitioned hash join processing.
In the probing phase work,k−1

k
∗

∑n−1

i=1
|Ii| ∗ tnetwork de-

notes the redirection cost assuming the redirection occurs
after each join operation and the output of each join oper-
ation is uniformly distributed across all the machines. The
cost of outputting the final results is omitted since it is the
same for all processing strategies.

Estimating Processing Time.Similarly, estimation of the
processing time can be divided into two parts: one, the hash
table building time (Tb) and two, the probing time (Tp). The
building time of the pipelined processingTb can be esti-
mated as follows:

Tb = max
1≤i≤n

(tread+tpartition+tnetwork+tbuild)∗
f(k)

k
∗|Ri|

The processing time of the building phase can be esti-
mated as the maximal building time of each individual rela-
tion overk machines. Here, f(k) represents the contention
factor of the network since the more machines are involved,

5

the more contention of the network caused by transferring
tuples of join relations arises. This is used to reflect the
optimal degree of parallelism as discussed in Section 4.1.

The processing time of the probing phase is more diffi-
cult to analyze because of the pipelined processing. We use
the following formula to estimate the pipeline processing
time.

Tp = Isetup +
Wp

k
+ Idelete

Here Isetup represents the pipeline setup time, while
Idelete denotes the pipeline depletion time. The steady pro-
cessing time of the pipeline can be estimated by the average
processing time of one tuple (Wp

|R0|
) multiplied by the num-

ber of tuples (|R0|) that need to be processed over the total
of k machines. Clearly, this is a simplified model represent-
ing the ideal steady processing time without including for
example variations in the network costs.

As we will discuss in Section 5.3, the above cost model
is used in finding the most efficient pipelined processing
strategies of each subgraph.

5 Breaking Pipelined Parallelism

5.1 Bushy Trees and Independent Parallelism

Query trees of a multi-join query can be classified into
two types: sequential trees (i.e., a right-deep tree or a left-
deep tree as discussed above), and bushy trees. A right-
deep tree has a better performance over a left-deep tree since
it has a high potential of pipelined parallelism for a hash-
based join algorithm. Thus we now use a right-deep tree as
the representative of sequential trees (e.g., Figure 6(a)).

A bushy tree has a height of at leastlog2n (given a bi-
nary bushy tree that is balanced) withn being the number
of join relations involved in the multi-join query. A bushy
tree brings new flexibility to the style of processing, such as
having multiple probing relations and composing different
pipelined segments. Moreover, a bushy tree has the poten-
tial of processing independent subtrees (segments) concur-
rently. However, such flexibility may also bring dependen-
cies to the execution. This dependency may both affect the
allocation of query operators and the corresponding parallel
processing performance.

For example, Figure 6(b) illustrates one bushy tree and
its possible pipeline segments (each pipeline segment is de-
noted by one dashed oval). Four segments (P1∼P4) can be
identified. As can been seen,P1 andP3 can be processed in
parallel by processing them on different machines. While
the execution ofP2 depends onP1, the execution ofP4 de-
pends both onP2 andP3.

As can be seen, a right-deep tree has the highest degree
of pipelined parallelism without any dependencies because

each subtree is a join relation. However, there is no oppor-
tunity for independent parallelism except during the initial
building phase of the join relations. While a wide bushy tree
has many subtrees, it also has up tolog2n layers of depen-
dencies withn being the number of source relations. These
dependencies are likely to impact the overall performance.

R8

R7

R1 R2

(b) A wide bushy with dependency
upto log2

n layers

P1
P2 P3

P4

R3 R4R1 R2 R5 R6
R7 R8

(a) Right-Deep with
no dependency

Figure 6. Right-Deep vs. Wide Bushy Tree

5.2 M-way Bushy Tree

Seen from the cost model, if the results of pipelined seg-
ments in a bushy tree are smaller than those of the origi-
nal join relations, then the bushy tree processing may have
less total work (Wb + Wp) when compared with the fully
right-deep processing. Here we assume all the intermediate
results are kept in main memory.

Comparing the overall parallel processing time of fully
right-deep and bushy trees is more complicated. As we
can see, each pipelined segment in a bushy tree only gets
one portion of the total available machines. Thus the net-
work contention (f(k)) in the building phase may be less
severe than that of the full right-deep case. As a conse-
quence, given the independent processing of these smaller
pipelined segments, the processing time of a bushy tree may
be better than that of fully pipelined processing. However,
as we identified earlier, a bushy tree style processing may
be affected by the dependencies among subtrees. More-
over, there may be subtrees (up to⌈n/4⌉) that have short
pipelined processing. For example,P1 andP3 only have
a pipeline of one probing followed by the building for the
next join. These two factors may eventually counteract the
benefits gained by introducing the independent parallelism
and smaller network contention in each segment.

Thus, the key question now is how to balance indepen-
dent parallelism and pipelined parallelism in parallel multi-
join query processing. By reducing each pipelined seg-
ment (i.e., identified by dashed oval in Figure 6(b)) into
one ‘mega-node’, we can build a dependency tree out of
the original query tree. We note that the dependencies are
associated with the height of this dependency tree. Thus re-
ducing the height of the dependency tree should effectively

6

reduce the dependencies. We thus propose to utilize anm-
way bushyquery tree. An m-way bushy tree can be con-
trolled to have a dependency tree with height of 2 as long as
we increase the number of subtrees of the root node.

Figure 7 illustrates the example of an m-way bushy tree
of the join query in Figure 6. In this example, the whole
query is cut into three groups,R1 ∼ R3, R4 ∼ R7, and
R8. Three pipelined segmentsP1, P2, andP3 can be identi-
fied correspondingly.P1 andP2 can be processed indepen-
dently, each with pipelined parallelism. The output from
these two segments can be directly fed intoP3. Without loss
of generality, the pipelined segment that contains outputsof
all other segments is referred to as thefinal pipelined seg-
ment. In this case,P3 is the final pipelined segment. Thus,
all pipelined segments except the final one can be executed
concurrently without any dependencies. We can see that
an m-way bushy tree processing applies independent paral-
lelism with minimal dependencies among subtrees (groups)
since it only has one layer of dependencies among pipelines.

Without loss of generality, we always assume the right-
most pipeline of an m-way bushy tree to serve as the probing
relation of the final pipelined segment. For example,P1 is
the probing relation of the final segmentP3 in Figure 7.

R3R1 R2R4 R5 R6
R7

R8
P2

P3

P1

Figure 7. A M-way Bushy Tree

5.3 Composing m-way Bushy Tree

Now, we address the question how to generate the above
m-way bushy tree for a multi-join query. Algorithm 1
sketches our proposed algorithm. It consumes a connected
join graphG and the maximal number of nodesmper group
(we will discuss how to get thism shortly). We would
choose the largest join relation as the probing relation of
each group since this reduces the time and the memory con-
sumption of the building phase. Once we select the prob-
ing relation, we then begin to enumerate all possible groups
having a maximum ofm join nodes starting from this prob-
ing relation. Enumeration is possible sincem is usually
much smaller than the number of nodes in the join graph.
Some of the groups may not contain exactlym nodes due
to the nodes in the group being no longer connected by a
join edge. Our goal is to avoid Cartesian products given
that each data source may be large, thus resulting in huge

intermediate results. After that, we choose the best graph,
a partition of the original join graph, from these candidates
generated from the enumeration based on the cost model we
developed in Section 4.2. The selection can also be based
on heuristics, i.e., choosing the group in which the join at-
tributes are the same to reduce the possible redirection costs,
or selecting the one with the smallest output results.

Algorithm 1 ComposeBushyTree(G,m)
Input: A connected join graphG with n nodes. Number m
that specifies the maximum number of nodes in each graph.
Output: An m-way bushy tree that has at least⌈n/m⌉ sub-
trees.

1: completed =false
2: while (!completed)do
3: Choose a node with largest cardinality that has not

yet been grouped as probing relation
4: Enumerate all subgraphs starting from node selected

in Step 3 with at mostm nodes
5: Choose best subgraph, mark the nodes in this group

have been selected in original join graph
6: if (∃K, K is a connected subgraph of G with unse-

lected nodes)&& (K.size()≥ 2) then
7: completed =true
8: end if
9: end while

10: Compose an m-way bushy tree

R7

R6

R4

R3

R5 R0

R1

R8

R9

R2

(1) R7, R8, R9, R6

(2) R7, R9, R6, R8

(3) R7, R4, R8, R5

...

R7

R6

R4

R3

R5 R0

R1

R8

R9

R2

(1) R1, R0, R2, R3

(2) R1, R2, R0, R3

(3) R1, R2, R3, R4

...

R7

R6

R4

R3

R5 R0

R1

R8

R9

R2

(a) Enumerate groups
with 4 nodes from
relation R7

(b) Enumerate groups
with 4 nodes from
relation R1

(c) Finish the grouping
process since no more
connected groups with
nodes larger than 2

G1 G1

G2

Figure 8. An Example of the Algorithm

Figure 8 illustrates how the example join graph depicted
in Figure 2 is divided by applying Algorithm 1 whenm =
4. For example, we start from the relation with largest cardi-
nality, say relationR7. The enumeration in Step 4 generates
all the possible connected groups with 4 nodes starting from
R7, as illustrated in Figure 8(a). In this case, we chooseR7,
R9, R6, andR8 as the nodes in the first group (pipelined
segment). For simplicity, we call this groupG1. After this,
if R1 is the one with the largest cardinality among the nodes
that have not yet been grouped, we then chooseR1 as the

7

probing relation for the second groupG2. We repeat the
process as illustrated by Figures 8(b)-(c). After these steps,
only R0 andR5 are left. They are not connected. We thus
end up with 4 groups. An example m-way bushy tree with
these 4 groups can be built as shown in Figure 9(a).

Allocating machines to an m-way bushy is based on the
number of building relations in each pipelined segment. For
example, for the m-way bushy tree shown in Figure 9(a),
three pipelined segments can be identified (see dashed cy-
cles in Figure 9(b)). The number of machines that are as-
signed to each pipelined segment, denoted byk1, k2, and
k3, can be computed as follows.

Nb =
∑

0≤i≤9,i6=1,7

|Ri|+ |I1|

k1 = ⌊
(|R6|+ |R8|+ |R9|)

Nb

⌋

k2 = ⌊
(|R2|+ |R3|+ |R4|)

Nb

⌋

k3 = k − k1 − k2

Here,I1 andI2 denote the outputs of groupsG1 andG2

respectively.Nb represents the total number of tuples that
need to be built assumingR7, R1, andI2 are the probing
relations ofG1, G2, and the final pipelined segment respec-
tively. Note that the selection of the probing relation for
the final pipeline segment is not straightforward. We will
discuss this in more detail in Section 6.5.

R2R4 R3R8 R6 R9
R7

R5

R1

R0I1 I2

(a) m-way bushy tree

R2R4 R3R8 R6 R9
R7

R5

R1

R0I1 I2

k3

k2

(b) allocation

k1

Figure 9. M-way Tree and Node Allocation

However, the question remains how to decide the right
number of groups given a join graph. Let us now useg to
represent this number. Note that the input of Algorithm 1,
the maximum number of nodes in each groupm can be es-
timated bym = ⌈n/g⌉ with n being the number of join
relations in the query. There are two ways to address this
issue. The first is a heuristics-based selection approach. For
example, we can chooseg as the number of nodes that have
cardinality larger than 3/2 of the average cardinality. Here,
we assume thatg has to be bound within2 ∼ n/2. The ra-
tionale behind this selection criterion is that in the best case,
we can choose all these large join relations as the probing

relations for the generated groups. The second is a cost-
based selection approach. Again we note that the range of
the number of groupsg is between2 to n/2 4. We thus can
repeatedly call the functionComposeBushyTree(Algorithm
1) with the numberm ranging fromn/2 to 2 (g changes
from 2 to n/2 correspondingly). We then estimate the cost
of processing strategy fromComposeBushyTree. The final
output will be the one with the best estimated cost. While
this may increase the optimization cost, it has the potential
to result in a better processing strategy.

5.4 Handling Insufficient Memory

The problem of handling insufficient memory can be ad-
dressed using the “cutting” principle as in [22, 4]. That is,
we divide the whole query (joins) into pieces such that each
piece can be run in the main memory. Note that in the ex-
treme case, the multi-join query processing would have to
be sequentialized due to not enough memory being avail-
able to hold more than one join. As we mentioned in Sec-
tion 1, we assume that the aggregated memory can hold at
least 2 or more building relations.

Algorithm 2 sketches an incremental approach to ad-
dress this problem. This incremental approach is based on
the static right deep tree [22] or segmented right-deep tree
[4] which divides the join query into right-deep segments
based on the main memory of the cluster. After that, we
further compose each right-deep segment into an m-way
bushy tree if it is necessary, i.e., the number of building re-
lations in each piece is larger than a certain threshold. Since
each right-deep segment is likely to be more efficiently pro-
cessed, the performance of the whole query is also expected
to be better than the static right-deep or segment-right deep
tree processing.

Algorithm 2 SimpleInclMwayTree(G,M)
Input: A connected join graphG with n nodes, total
main memory of clusterM. Output: A sequence of m-
way bushy trees, each processable in main memory of clus-
ter.

1: Compose Static or Segmented Right-Deep Tree
2: for each right-deep segmentr do
3: m← Maximal number of relations per group
4: t← ComposeBushyTree(r,m)
5: Putt into result sequence
6: end for
7: Return result sequence

A “top-down cut” approach, dividing the join graph di-
rectly such that each group can be processed in the main

4In extreme cases, the actual number of groups may be larger than n/2.
However, we assume that we have less interests in these caseswhen a large
number of groups with only one join relation in it.

8

memory, can also be devised. We then select the groups and
process them iteratively. However, as mentioned earlier, the
essence of our work is to re-examine the performance of
a main memory based maximal pipelined processing. We
argue that having a more efficient main memory based pro-
cessing strategies will also lead to improved overall perfor-
mance even if we apply a simple incremental optimization
algorithm such as Algorithm 2. This claim is confirmed by
our experimental studies discussed below.

6 Experiments

6.1 Prototype System

We have implemented a distributed query engine to test
out our hypothesis. The system is implemented using Java.
It is capable of optimizing and executing multi-join queries
across a set of shared nothing machines connected by net-
work. The basic architecture of the system is depicted in
Figure 10. The architecture consists of two main modules,
one is thecontroller module and the other is theexecution
module. The controller module is in charge of managing
the computation process. It can be installed on a standalone
machine or on the machine that has other modules. The
controller module contains packages that compose multi-
join queries, generate parallel execution query plans, and
distribute query plans to the participating machines. The
parallel query plans (processing strategies) are specifiedby
query operators such as scan, partition, hash join, union and
load in an xml file format. The query is executed in theex-
ecutionmodule. This execution engine is installed on each
participant machine in the cluster that is involved in the
computation process. The execution engine in each node
waits for incoming query plans sent by the controller mod-
ule. Once the execution engine receives the query plan, it
parses the query plan, initializes it and starts up the query
operators. After that, query operators in different computa-
tion machines automatically connect to each other and be-
gin the query processing.

The system is deployed on a cluster composed of 10 ma-
chines, as described Figure 11. Each machine in the cluster
has dual 2.4GHz Xeon CPUs with 2GB RAM. They are
connected by a private gigabit ethernet switch. In our ex-
perimental setting, all source (join) relations are storedin
an oracle database that reside in a different machine outside
the cluster having 2 PIII 1G Hz CPUs and 1G main mem-
ory. The query results are sent to an application server with
one PIII 800M Hz CPU and 256M Memory. This setup
follows a typical data warehouse loading environment (e.g.,
ETL [20]) where the process has to be performed outside
the data sources. This is because the operating data sources
may be too busy to process complex join queries or even
simply may not be willing to give control to the outsiders.

Controller Module

Query Composer Query Optimizer

Query Plan GeneratorDistribution Manager

Communication Queues

Query Operators

Query Plan Parser

Execution Module

Communication Queues

Query Operators

Query Plan Parser

Execution Module

...

Distributing Parallel Query Plans

Control Flow Data Flow

Figure 10. Architecture of the System

Oracle 8i

Controller

...

10 Nodes Cluster

PIII 800M Hz PC,
256M Memory

Each processing node: 2 2.4GHz Xeon CPUs,
2G Memory. Connect by Gigabit ethernet switch

2 PIII 1G CPUs,
1G Memory

Application
PIII 800M Hz PC,

256M Memory

Figure 11. Experimental Environment

6.2 Experimental Setup

As done in [4], we use generated data sets and queries in
our experiments. This is because benchmark queries such as
TPC-H [25] only have a limited number of queries (around
20), and most of them have less than 5 joins. The multi-
join queries used in the experiments are randomly generated
with the number of join relations ranging from 8, 12, to
16 5. The cardinality of each join relation ranges from 1K
∼ 100K tuples, and the average size of each source tuple
is about 40 bytes. Each result tuple has about 320∼ 640
bytes on average, by simply concatenating all tuples from
join relations. Data size in our experiment is choosen to
make sure all the hash tables can fit in the main memory
since our main focus of this work is the main memory based
processing.

5We acutally generate random connect acyclic graphs given a specified
number of nodes. Each node represents join relations, whileeach edge
denotes the join condition.

9

6.3 Impact of the Number of Data Servers

Initial experiments have been conducted to evaluate the
impact of the number of Oracle data servers in the experi-
mental setup on the overall performance. We compare the
performance of multi-join queries using a pure right-deep
tree (pipelined) processing given different numbers of data
servers. The test queries are generated randomly with 8∼
16 join relations. For each query, we vary the number of
data servers from 1 to 4. Thus, if we havei data servers with
1 ≤ i ≤ 4 andk (either 8, 12, or 16) join relations, then we
have each data server hold on average⌈k/i⌉ join relations.
These data servers are deployed on different machines with
similar configurations having Oracle 8i installed. The result
is shown in Figure 12. Each data point in Figure 12 reflects
an average of 50 randomly generated queries for each query
type (queries have the same number of join relations). In
Figure 12, x-axis denotes the number of join relations in
the query, while y-axis represents the total processing time.
From Figure 12, we can see that the number of data servers
in the system only has a minor impact on the overall perfor-
mance. This is because the total time spend on reading the
tuples from data servers only represents a small fraction of
the total query processing time in our current experimental
settings. Thus, the improvement due to shared read by mul-
tiple data servers does not play a major role in the overall
performance. This indicates that the data server is not the
bottleneck in our experimental environment. Without loss
of generality, we report our following experimental results
with a setup that stores all join relations in one data server.

0

100000

200000

300000

400000

500000

600000

700000

800000

8 12 16

Number of join relations in a Query

P
ro

ce
ss

in
g

T
im

e
(m

s)

1 Server
2 Servers
3 Servers
4 Servers

Figure 12. Vary the Number of Data Servers

6.4 Pipelined vs. M-way Bushy Processing

Experiments have been conducted to compare the perfor-
mance (total processing time) of a pure right-deep tree pro-
cessing having fully pipelined processing to our proposed
m-way bushy tree processing that mixes both pipelined and
independent parallelism. Figure 13 shows the results of 20
randomly generated queries with 8 join relations. Here, the
m-way bushy tree has a maximum of 3 join relations per

group. In Figure 13, we see that an m-way bushy tree pro-
cessing almost consistently outperforms fully pipelined pro-
cessing.

0

100000

200000

300000

400000

500000

600000

700000

1 3 5 7 9 11 13 15 17 19

Sample Queries

P
ro

ce
ss

in
g

T
im

e
(m

s)

Right-Deep Tree
M-way Tree (3)

Figure 13. Performance of 20 Example
Queries

Figure 14 shows the results of queries with an increas-
ing number of join relations in the query. The number of
relations in a query ranges from 8, 12 to 16. The exper-
imental results reflect an average processing time over 50
different randomly generated queries per query type. For
example, for queries with 8 join relations, we generate 50
queries randomly. We then produce both the fully pipelined
processing and the m-way bushy processing strategies for
each generated query. In this experimental setup, queries
with 8 relations are divided into groups having a maximum
of 3 relations, while queries with 12 and 16 relations are
divided into groups having a maximum of 4 relations.

In Figure 14, we can see that m-way bushy tree pro-
cessing is consistently better than maximal pipelined par-
allelism. The performance improvement is around 50% in
terms of the total processing time.

0

100000

200000

300000

400000

500000

600000

700000

800000

8 12 16

Number of relations in a query

P
ro

ce
ss

in
g

tim
e

(m
s)

Right-Deep
m-way bushy

Figure 14. Right-Deep vs. M-way Bushy

6.5 Probing Relation Selection for Final Pipelined
Segment

Selection of the probing relation of a pipelined segment
is usually based on the cardinality of the join relations.

10

This is because choosing a large relation as probing relation
can effectively reduce the work and processing time of the
building phase. However, for a pipelined segment that in-
volves outputs from other segments (assuming main mem-
ory is enough to hold these building relations), the cardinal-
ity of the relation alone may no longer be the best choice
in general. Changing the probing relation of a pipelined
segment that only involves source join relations does not
change the number of probes in the probing phase. It only
changes the number of probing and building tuples. Here
we define the number of probe steps as the maximum num-
ber of hash tables that a tuple from the probing relation
needs to probe to produce the final output. However, for
a pipeline segment having outputs from other segments,
changing the probing relation will also change the total
number of probes.

For example, if we change the probing relation for the
pipeline segmentP1 as shown in Figure 15(a) fromR7 to
R6, no changes in the number of probe steps occur. Both
of them are 3 (Figures 15(a)-(b)). However, if we change
the probing relation of pipelineP3 (exchangingP1 andP2),
then the total number of probe steps changes from 4 to 5 in
this case. This is becauseP1 itself has 3 probe steps while
P2 only has 2.

R4 R5 R6
R7 R4 R5 R7

R6

R3R1 R2R4 R5 R6
R7

R8

R3R1 R2 R4 R5 R6
R7

R8

(a) 3 Probe Steps (b) 3 Probe Steps

(c) 4 Probe Steps (d) 5 Probe Steps

P1 P1

P1

P2

P3 P3

P2
P1

Figure 15. Probing Relation Selection

Figure 16 shows the experimental results of the impact
of the probing relation selection for the final pipelined seg-
ment. Here, the number on the x-axis denotes the number
of relations in the probing relation of the final pipelined seg-
ment. The generated queries have 16 join relations. In Fig-
ure 16, we see that in our current environment, the larger
the number of relations in the probing relation of the fi-
nal pipelined segment, the worse the total processing per-
formance will be. This is because the longer probe steps
in the final pipelined segments impair the processing per-
formance. This again confirms our observation that a ful
pipeline may not be the best performer. Note that the perfor-
mance degradation for a pipeline that is longer than 8 can be
explained by the experiments shown in Figure 14. Hence, in
Figure 16, we conveyed the scope of smaller pipeline sizes.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

3 4 5 6

Number of relations in the group for the probing re lation
of final segment

P
ro

ce
ss

in
g

T
im

e
(m

s)

Figure 16. Probing Relation Selection

6.6 Number of Join Relations per Group

Figure 17 illustrates the impact of the maximal num-
ber of join relations per group in our environment. Here,
all the tested queries have 16 join relations. We vary the
number of join relations per group from 3 to 6. As we
can see, if the number of join relations per group increases,
the total processing time also increases. This is mainly be-
cause given ourComposeBushyTree algorithm, the final
pipelined segment tends to choose the largest subgraph (the
one with the largest number of join relations) as the prob-
ing relation since it usually has the largest intermediate re-
sults. As shown in Section 6.5, a long pipeline of the final
pipelined segment degrades the overall performance. We
thus revise our algorithm to choose the subgraph with the
smallest number of probing steps as the probing relation of
the final pipelined segment. As can be seen, the revised al-
gorithm is less sensitive to the number of join relations in a
group.

0

100000

200000

300000

400000

500000

600000

700000

800000

Right-Deep 3 4 5 6

Maximal Number of Relations per Group

P
ro

ce
ss

in
g

 T
im

e
 (

m
s)

Original Algorithm
Revised Algorithm

Figure 17. Exchanging the Probing Relation

6.7 Handling Insufficient Memory

Figure 18 shows the experimental results when the ag-
gregated main memory is not sufficient to hold all the hash
tables of the building relations. We deploy join queries with
32 join relations. Assume the query will be cut into three

11

pieces with each piece being executed sequentially. Here,
the intermediate results of each piece will be first written
to the data server, while the next piece will read the inter-
mediate results back into the main memory. We compare
the performance of the segmented right-deep tree with our
m-way bushy tree generated by Algorithm 2. Note that the
segmented right-deep tree has each piece fully pipelined,
while the m-way bushy will have the same right-deep seg-
ment (piece) further composed into an m-way bushy tree
with a maximum of 3 join relations per group. Figure 18
reports the comparison between these two approaches for
10 randomly generated queries. As can be seen, the m-
way bushy tree processing consistently outperforms the seg-
mented right-deep processing. This is expected because
each piece is processed more efficiently given our m-way
bushy tree approach. Thus, the overall performance of the
query is correspondingly improved.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6 7 8 9 10

Example Queries

P
ro

ce
ss

in
g

T
im

e
(m

s)

Segmented Right-Deep
M-way Bushy Tree

Figure 18. M-way Bushy vs. Segmented
Right-Deep

6.8 Concluding Remarks

As can be seen, these experimental results clearly high-
light the main message of our work, namely, the long stand-
ing assumption that “maximal pipelining is preferred” is
shown to be wrong. Our proposed m-way bushy processing
almost consistently beats full pipelined processing. Given
the massive application of pipelined processing, especially
in growing areas such as continuous query processing, this
observation can also shed some new light on how best to
optimize distributed pipelined query plans when the opti-
mization function is related to total processing time.

7 Related Work

Parallel query processing has been extensively studied in
the literature [6, 27, 13, 19, 22, 14, 5, 18, 11]. Many differ-
ent research efforts have been conducted in this area. For
example, GAMMA [7], Bubba [2], PRISMA/DB [27] are

examples of parallel database systems. Many papers were
written studying their performance. [13] proposes solutions
for scheduling pipelined query operators to minimize the
total work. Task scheduling and allocation in general also
have been extensively studied [15]. Other focuses such as
load balancing [8, 3] and resource allocation [16, 10] are
also topics closely related to parallel query processing. As
can be seen, these works provide the necessary background
for the work presented in this paper. In this work, we in-
stead focus on a specific area of parallel query processing,
namely, the parallel multi-join query processing via hash-
ing.

Evaluating a multi-join query via hashing in parallel (ap-
plying partitioned and pipelined parallelism) over a shared-
nothing environment also has been investigated in the lit-
erature before [22, 24, 18]. Different parallel processing
strategies such as left-deep and right-deep [22], segmented
right-deep [4], and zigzag tree [29] have been proposed, as
we have provided an in-depth discussion in Section 2. How-
ever, these proposed solutions all share the common ap-
proach which is to maximally use pipelined parallelism (i.e.,
maximally divide a right-deep tree into segments) based on
certain objective functions (i.e., memory constraints), and
each segment is processed one by one. In this work, we
instead consider more tradeoffs in optimizing such parallel
multi-join query processing, i.e., other types of query tree
shapes, independent parallelism and its dependencies, prop-
erties of the join definitions to reduce redirection costs, etc.
Moreover, most of the previous works report their results
based on simulations, while we report our results based on
a working distributed system.

[28] experimentally compares five types of query shapes
and various execution strategies based on the PRISMA/DB
system [27]. However, it does not explore how to generate
optimized parallel processing query plans. In this work, we
propose algorithms to generate efficient parallel processing
solutions.

8 Conclusion

In this work, we have revisited the common assumption
that has been taken by practically all prior work in the litera-
ture, namely, to pursue maximal pipelined parallelism when
processing multi-join query processing in parallel. We have
shown both experimentally and via a cost analysis that the
introduction of independent parallelism at the cost of re-
ducing the pipeline can greatly impact the parallel perfor-
mance. A heuristic-driven optimization algorithm for gen-
erating a new class of processing strategies incorporating
independent parallelism and yet controlling its dependen-
cies has been proposed in this paper. A working distributed
query engine has been implemented. Experimental studies
confirm our claim that maximal pipelined parallelism is not

12

always the best.
The observation we made in this work also sheds some

new light on how best to optimize pipelined query plans in
general given the optimization function is related to the total
processing time. This optimization is bound to get increas-
ingly attention due to new and growing research areas such
as continuous query processing [1].

References

[1] D. J. Abadi, D. Carney, and et al. Aurora: a new
model and architecture for data stream management.
The VLDB Journal, 12(2):120–139, 2003.

[2] H. Boral, W. Alexander, L. Clay, G. P. Copeland,
S. Danforth, M. J. Franklin, B. E. Hart, M. Smith,
and P. Valduriez. Prototyping bubba, a highly paral-
lel database system.IEEE TKDE, 2(1):4–24, 1990.

[3] L. Bouganim, D. Florescu, and P. Valduriez. Dynamic
load balancing in hierarchical parallel database sys-
tems. InThe VLDB Journal, pages 436–447, 1996.

[4] M.-S. Chen, M.-L. Lo, P. S. Yu, and H. C. Young.
Using segmented right-deep trees for the execution of
pipelined hash joins. InProceedings of VLDB, pages
15–26, 1992.

[5] M.-S. Chen, P. S. Yu, and K.-L. Wu. Scheduling and
processor allocation for parallel execution of multi-
join queries. InProceedings of ICDE, pages 58–67,
1992.

[6] D. DeWitt and J. Gray. Parallel database systems: the
future of high performance database systems.Com-
munications of the ACM, 35(6):85–98, 1992.

[7] D. J. DeWitt, S. Ghandeharizadeh, D. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The
gamma database machine project.IEEE TKDE,
2(1):44–62, 1990.

[8] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical skew handling in parallel joins.
In Proceedings of VLDB, pages 27–40, 1992.

[9] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query
optimization for parallel execution. InProceedings of
ACM SIGMOD, pages 9–18. ACM Press, 1992.

[10] M. N. Garofalakis and Y. E. Ioannidis. Multi-
dimensional resource scheduling for parallel queries.
In Proceedings of ACM SIGMOD, pages 365–376.
ACM Press, 1996.

[11] G. Graefe. Encapsulation of parallelism in the volcano
query processing system. InProceedings of ACM SIG-
MOD, pages 102–111, 1990.

[12] W. Hasan.Optimization of SQL Queries for Parallel
Machines. PhD thesis, Stanford University, Dec 1995.

[13] W. Hasan and R. Motwani. Optimization algorithms
for exploiting the parallelism-communication tradeoff
in pipelined parallelism. InProceedings of VLDB,
pages 36–47, 1994.

[14] W. Hong and M. Stonebraker. Optimization of parallel
query execution plans in xprs. InProceedings of PDIS,
pages 218–225, 1991.

[15] Y.-K. Kwok. Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors.ACM
Computing Surveys (CSUR), 31(4):406–471, 1999.

[16] M.-L. Lo, M.-S. S. Chen, C. V. Ravishankar, and
P. S. Yu. On optimal processor allocation to support
pipelined hash joins. InProceedings of ACM SIG-
MOD, pages 69–78, 1993.

[17] H. Lu, K.-L. Tan, and M.-C. Sahn. Hash-based join
algorithms for multiprocessor computers with shared
memory. InProceedings of VLDB, pages 198–209,
1990.

[18] T. P. Martin, P.-A. Larson, and V. Deshpande. Paral-
lel hash-based join algorithms for a shared-everything.
IEEE TKDE, 6(5):750–763, 1994.

[19] M. Mehta and D. J. DeWitt. Data placement in shared-
nothing parallel database systems.The VLDB Journal,
6(1):53–72, 1997.

[20] Sagent Technology. http://www.sagent.com.

[21] D. A. Schneider and D. J. DeWitt. A performance
evaluation of four parallel join algorithms in a shared-
nothing multiprocessor environment. InProceedings
of ACM SIGMOD, pages 110–121, 1989.

[22] D. A. Schneider and D. J. DeWitt. Tradeoffs in pro-
cessing complex join queries via hashing in multipro-
cessor database machines. InProceedings of VLDB,
pages 469–480, 1990.

[23] J. Srivastava and G. Elsesser. Optimizing multi-join
queries in parallel relational databases. InProceedings
of the 2nd PDIS, pages 84–92, 1993.

[24] K.-L. Tan and H. Lu. Processing multi-join query in
parallel systems. InProceedings of ACM Symposium
on Applied computing, pages 283–292, 1992.

13

[25] TPC. TPC-H Benchmark Standard Specification.
http://www.tpc.org/tpch/.

[26] C. Wang and M.-S. Chen. On the Complexity of Dis-
tributed Query Optimization.IEEE TKDE, 8(4):650–
662, 1996.

[27] A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Paral-
lelism in a main-memory dbms: The performance of
prisma/db. InProceedings of VLDB, pages 521–532,
1992.

[28] A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Par-
allel evaluation of multi-join queries. InProceedings
of ACM SIGMOD, pages 115–126, 1995.

[29] M. Ziane, M. Zat, and P. Borla-Salamet. Parallel
query processing with zigzag trees.The VLDB Jour-
nal, 2(3):277–302, 1993.

14

A M-way Processing Cost Model

We provide the m-way processing cost model. The assumptionswe made are the same as discussed in Section 4.2.

Estimating Total Work. Assume join relations are divided intom groups (pipelines) connected by a m-way bushy tree.
Without loss of generality, we assume all these groups are denoted by its join relation indices,(0 ∼ m1), (m1 + 1 ∼ m2),
. . ., (mm−1 + 1 ∼ n). The intermediate result of each group is represented byIm1

, . . ., Imm
. Correspondingly, we assume

each group will be assignedkmi
machines based on its building relation sizes. The final pipelined segment getskf machines.

The query result is also represented byIn. Without loss of generality, we also assume thatIm1
will be the probing relation of

the final pipelined segment. Given these, the total work of building phase of an m-way bushy processing (W ′
b) and the total

work of the probing phase (W ′
p) can be described by the following formulae.

W ′
b = (tread + tpartition + tnetwork + tbuild) ∗ (

m∑

m=1

mi∑

j=mi+1

|Rj |+
m∑

i=2

|Imi
|)

W ′
p = (tread + tpartition + tnetwork + tprobe) ∗ (|Im1

|+ |R0|+

m−1∑

i=1

|Rmi+1|)

+ tnetwork ∗ (

m∑

i=1

kmi
− 1

kmi

mi+1−1∑

j=mi+1

|Ij |+

m∑

i=2

kf − 1

kf

|Imi
|)

+ tprobe ∗ (

m∑

i=1

mi+1−1∑

j=mi+1

|Ij |+

m∑

i=2

|Imi
|)

Estimating Processing Time. The overall processing time of the bushy tree can be treated as the sum of two phases. The
first phase,Tf1, estimates the time of processing all the pipelined segments (groups) with the results of these pipelines being
directly fed into the building phase of the final pipelined segment. The second phase, denoted asTf2, estimates the time of
probing the final pipelined segment and outputing the query results.

The processing time of each pipelined segment (mi) is composed by the following three components. (1) The building
phase time of the building relations inmi, denoted byBmi. (2) The probing phase time of the groupmi, represented byPmi.
(3) The building time to the final pipelined segment from the output of groupmi (Imi), denoted asB′

mi. The processing time
estimations of these components are given below.

Bmi
= Maxmi−1+1≤j≤mi

{
f(kmi

)

kmi

∗ |Rj |) ∗ (tread + tpartition + tnetwork + tbuild)}

Pmi = Isetup +
Wpmi

kmi

+ Idelete

Wpmi
= (tread + tpartition + tnetwork + tprobe) ∗ |Imi−1

|

+ tnetwork ∗ (
kmi
− 1

kmi

mi+1−1∑

j=mi+1

|Ij |) + tprobe ∗ (

mi+1−1∑

j=mi+1

|Ij |)

+ (tpartition + tnetwork + tbuild) ∗ |Imi
|

B′
mi =

f(kf)

kf

∗ |Imi
| ∗ (tread + tpartition + tnetwork + tbuild)

The cost of the first phase is estimated byTf1 = Max1≤i≤m{Bmi
+ Pmi

+ B′
mi
}. Note that thePmi

andB′
mi

are
actually processed in a pipelined fashioin, we simply it by adding the cost directly.

15

The processing time of the second phase (Tf2) is composed basically the probing of first group (Im1
), and the rest of the

intermediate results. We estimate the time asW ′

i

kf
. W ′

i can be described below.

W ′
i = tnetwork ∗

kf − 1

kf

m−1∑

i=2

|Imi
|+ tprobe ∗

m−1∑

m=2

|Imi
|

16

