WPI-CS-TR-05-05 Feb 2005

Revisiting the Role of Pipelined Parallelism in Multi-J&puery
Processing

by
Bin Liu
Elke A. Rundensteiner

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Revisiting the Role of Pipelined Parallelism in Multi-Join Query Processing

Bin Liu and Elke A. Rundensteiner
Department of Computer Science, Worcester Polytechnta tihes
100 Institute Road, Worcester, MA 01609-2280
{binliujrundens}@cs.wpi.edu

Abstract vice in a shared-nothing architecture. Three types of paral
lelism have been identified in the parallel query processing
Multi-join queries are the core of any integration service [12]. First, query operators none of which use data pro-
that integrates data from multiple distributed data sosrce duced by the others may run simultaneously on distinct ma-
Due to the large number of data sources and possibly highchines. This is termedhdependent parallelism Second,
volumes of data, the evaluation of multi-join queries faces query operators may be composed by a producer and con-
increasing scalability concerns. Parallel processing has sumer relationship such that tuples output by a producer can
been applied to tackle this problem. State-of-the-art par- be fed to a consumer as they get produced. This is termed
allel multi-join query processing commonly assume that the pipelined parallelism The third, termedartitioned par-
application of maximal pipelined parallelism leads to su- allelism refers to running several instances of one single
perior performance. In this paper, we instead illustratatth operator on different machines concurrently, with each in-
this assumption does not generally hold. We investigate howstance only processing a partitioned portion of the comaplet
best to combine pipelined parallelism with alternate forms data.

of parallelism to achieve an overall effective parallel pro Two processing strategies at opposite ends of the spec-

cessing strategy. An m-way bushy parallel processing-strat trym, namelysequentiaprocessing angipelinedprocess-

egy is proposed. Experimental studies are conducted on aNng, have been proposed in the literature [22]. For example,

actual software system over a cluster of high-performance,ye process a four-way join quel§; 1 Ry 1 Ry b1 Ry

PCs. The experimental results confirm that the proposedgp 2 machines. Here, we assuile ~ R, are not in these

parallel processing strategy leads to an on average of 50% 2 machines originally. Figure 1(a) illustrates an examjble o

improvement in terms of total proce_ssing time in compari- sequential processing. That is, we first evalu@itesa Ry

son to existing state-of-the-art solutions. over 2 machines and get the intermediate rekultVe then
process; 1 R3 on the same 2 machines (indicates by the
dashed rectangle) and get the intermediate rdsulfThis

1 Introduction process repeats until we get the final query results. Fig-
ure 1(b) shows an example of pipelined processing of this

Motivation. Many applications such as data integration ser- four-way join query. For example, we first distribuk,
vices, decision support systems, and ETL middleware havels, and iz, over the 2 machines. Then, tuples read from
their results specified in terms of complex multi-join qeeri 21 probe these relations in a pipelined fashion and gener-
across distributed data sources. Efficient processingatf su ate query results. This pipelined processing of multi-join
multi-join queries is thus critical to the success of thgse a dueries has been shown to be superior to the sequential pro-
plications. The evaluation of multi-join queries can take a €€ssing [22]. As we will discuss shortly, state-of-the-art
prohibitively long time due to the following reasons: (1) Parallel multi-join query processing solutions tend to max
the distributed nature of data sources, (2) the possibgelar imally apply this pipelined processing as its core exeeutio
number of data sources, and (3) the large volume of data inStrategy [22, 29, 4].
each data source. Thus, there is an increasing demand for However, does this commonly accepted solution of max-
scalable multi-join query processing solutions. imally applying pipelined parallelism always perform effe
Parallelizing query processing over a shared-nothing ar-tively when evaluating multi-join queries? Or put it dif-
chitecture, i.e., a computing cluster, has been shown toferently, are there methods that enable us to generate even
have a high degree of scale up and speed up [6]. Heremore efficient parallel execution strategies than thisyfull
we use the ternmachineto refer to each computation de- pipelined processing?

2Machines Probing ever it is necessary. That is, a partition (exchange) operat

RM R OMR) N D) M) [11] will be inserted into the query plan to partition the in-
b S * é @ put data tuples to multiple machines to conduct a partitione
(1) 1=RP<R, (2) 1=19Rg (3) 13=12R, 2 Machines hash join processing_

(a) Sequential Processing (b) Pipelined Processing

v

Contributions. To highlight, the main contributions of this

Figure 1. A Motivating Example work include:

e We question the commonly accepted model of maxi-
mally pipelined parallelism in parallel multi-join query
processing by both an analytical argument as well as
experimental observations.

In this work, we show via an cost analysis as well as real
system evaluations that such maximally pipelined process-
ing is not always effective. We propose emway bushy

parallel processing strategy for multi-join queries that-o e We propose am-way bushyarallel processing strat-
performs state-of-the-art solutions. egy that aims to balance all three forms of parallelism

for complex multi-join queries. This has not been care-
Focus of the Work. We focus on complex multi-join fully explored in the literature.

queries, i.e., they involve 10 or more source relations. We
target application scenarios in which all data will be first

taken to and then processed in the cluster. This require-
ment of processing joins outside the data sources is arather o We build a distributed query engine to back up our

e We provide optimization algorithms to generate the
above m-way bushy processing strategies.

common in many applications. For example, in a data claims. We incorporate our proposed strategies and
warehouse loading environment (e.g., ETL [20]), operating algorithms into the system. Extensive experimental
data sources may be too busy to process such complex join studies show that the m-way bushy parallel processing
queries or even simply may not be willing to give control to has on average a 50% improvement in terms of total
outsiders. Or data sources may not have the advanced query processing time in comparison to state-of-the-art solu-
processing capabilities necessary to evaluate complax joi tions.

queries, i.e., web severs.

We focus on hashing join algorithms [17] since they are 1 h€ remainder of the paper is organized as follows. Sec-
among the most popular ones in the literature due to theirtion 2 describes the state-of-the-art. Section 3 discusses

proven superior performance [21, 17]. Hashing joins pro- multi-phase parallel optimization approach. Section 4 an-

vide the possibility of a high degree of pipelined paral- alyzes the cost factors and trad_eoffs that affect the drall

lelism. Other join algorithms such as sort-merge join do Processing performance. Section 5 presents the proposed

not have this natural property of pipelined parallelismj[21 M-way bushy tree processing and optimization algorithms.

Furthermore, hashing joins also naturally fit partitionadp ~ EXPerimental results are provided in Section 6. While Sec-

allelism. tions 7 and 8 discuss related work and conclusions respec-
The key research question that we propose to address ifiVe!Y:

this work is whether maximally pipelined multi-join query

processing is indeed a superior solution as commonly as-2 State-of-the-Art

sumed in the literature. This pipelined process impliesmai

memory based processing. Hence, we assume that the ag- Various solutions have been investigated for parallel

gregated memory of all available machines is sufficient to multi-join query processing in the literature [22, 29, 4h T

hold the hash tables of the join relationsThe rationale be- illustrate, we use the 10-join query depicted in Figure 2 to

hind this is that both the main memory of each machine andexplain the core ideas. The multi-join query is depicted by

the number of machines in the cluster are getting increas-its join graph. Each node in the grapRy ~ Ry) represents

ingly large at affordable cost. one join relation (data source), while an edge denotes a join
Due to possibly large volumes of data in each source re-between two respective data sources.

lation, the main memory of one machine may not be enough

to hold the full hash table of one source relation. Thus, par-2.1 Sequential vs. Pipelined Processing

titioned parallelism is applied to each join operation when

- - H to hold all habfe Two strategies at opposite ends of the spectrum, namely,
In situations when main memory is not enough to hold all hables ; ; oAl ;
at the same time, we follow the typical approach to divideghery into Sequentlal processing and plpellned processing, have been

several pieces with each piece being processed sequentiidefer this proposed [22]. NOt? t_hat partitioned parallglism is aﬂp"e.
discussion to Section 5.4. by default for each join operator. Sequential processing is

®R) ®&®
R-®R)—R) ®)
® ® ®

Figure 2. An Example Query with 10 Relations

even though sequential processing in general may require
less memory, this is not always true due to intermediate

results have to be stored. A large intermediate result may
consume even larger memory than the sum of all building

relations.

The simulation results in [22] confirm that the pipelined
processing (right-deep) is more efficient than the sequen-
tial one (left-deep) in most of the cases they considered.
Without loss of generality, we thus associate figelined

based on a left-deep query tree. Figure 3(a) illustrates oneProcessing with aight-deepquery tree, and thsequential

example of sequential processing for the query defined in
Figure 2. HereB; represents the building phase of thth
join operation, whileP; denotes the corresponding probing

processing with deft-deepquery tree in the following dis-
cussions.

phase. This processing can be described by the following2-2 Maximally Pipelined Processing

steps: (1) scam®, and buildB, (2) scanR,, probeP;, and
build Bs, (3) scanR,, probeP,, and buildB3, and so on.

State-of-the-art parallel multi-join query processing so

This is repeated until all the join operations have been-eval lutions maximally pursue the above pipelined parallelism
uated. As can be seen, it processes joins sequentially andio improve the overall performance [22, 29, 4]. If the main
only partial operations, namely, the probing and the succes memory is not enough to hold all the hash tables of the
sive building operations, are pipelined. building relations, they commonly take the approach of di-
viding the whole query into “pieces”, with the expectation
that the building relations of each piece fit into the main
memory. Thatis, pieces are processed one by one with each
piece utilizing the entire memory applying fully pipelined
parallelism.

For example, zigzag processing [29] takes a right-deep
query tree and slices it into pieces based on the memory
availability. As an example, the right-deep tree in Figure
3(b) is cut into two pieces, one By ~ Rs3, and the other
is Iy, R4y ~ Ry (Figure 4(a)). Here]; corresponds to the
result of the first piec&?y, ~ Rs. These two pieces are
processed sequentially with fully pipelined parallelism i
each piece.

Pipelined processing is based on a right-deep query tree
[22]. Figure 3(b) illustrates an example of pipelined pro-
cessing for the same query in Figure 2. In this case, all the
building operations such as sc&n and buildB;, scank,
and buildBs, ..., scanRy and build By can be run con-
currently. After that, the operation of scdty and all the
probing operations, prob®,, probeP, ..., probeP, can
be done in a pipelined fashion. As demonstrated above, it
achieves fully pipelined parallelism.

Note that a pipeline process implies main memory based
processing. That is, it requires there to be enough main
memory to hold all the hash tables of the building relations
(R1 ~ Ry in this case) throughout the duration of process-
ing the query.

As identified in [22], pipelined processing is preferred
whenever main memory is adequaf€his is because (1)
intermediate results in pipelined processing exist only as
a stream of tuples flowing through the query tree, and (2)

(a) Sequential (b) Pipelined

Figure 3. Sequential vs. Pipelined

(a) Zig-Zag Tree

(b) Segmented Right-Deep *

Figure 4. ZigZag and Right-Deep Segment

Segmented right-deep processing [4] proposes heuris-
tics, namely, balanced-consideration and minimized-work
to generate pieces directly from the query graph based on
the memory constraint. The query tree is similar to the

2The term main memory henceforth denotes the sum of memory ofa 219Zag tree. However, each piece can be attached not only at
machines in the cluster unless otherwise specified. the first join operation of the next piece, but instead also in

the middle of it. For example, Figure 4(b) illustrates one ex operator-machine allocation (for phase(2)) and choose the
ample of segmented right-deep processing. As can be seergoncurrent executiompproach [22] as the pipeline execu-
the output (fromPs) is attached as the building relation of tion method (for phase(3)).

Bs.

To summarize, all the above approaches take the com-Allocating Query Operators. Query operators (joins) need
mon model of pursuing a maximally pipelined processing to be allocated to machines in the cluster. However, re-
of multi-joins via a right-deep query tree, with the number source allocation itself is a research problem of high com-
of join relations in the right-deep tree primarily beingelet plexity that has been extensively investigated in the-liter
mined by the main memory available in the cluster. ature [16, 10, 15]. Like most work in parallel multi-join

We now question the performance of such a maximally query processing literature [22, 29, 4], we focus on main
pipelined processing model. As mentioned earlier, this memory in the allocation phase. This is because main mem-
pipeline process implies a main memory based process-ory is the key resource in the above hash-based join process-
ing. Clearly, more efficient main memory based processinging. Other factors such as CPU capabilities of computation
strategies would lead to an improved overall performance.nodes are assumed to have less impact on the allocation,

Without loss of generality, we use the tepipelined seg- i.e., they are often assumed to be sufficient.

ment to refer a right-deep query tree that can be fully pro- The allocation is performed based on pipelined segments

cessed in the main memory. to promote the usage of pipelined parallelism [16]. For
example, if a right-deep tree is cut into pieces with each

3 A Multi-Phase Optimization piece being processed sequentially due to insufficient mem-

ory, then all machines are allocated to each piece. Thus,
Multi-join query optimization is an expensive process the whole allocation is performed inliaear fashion. As it

because the number of alternative query plans for a queryc@" Pe seen, all previous processing strategies described i
grows at least exponentially in the number of relations par- >€ction 2 fall into this type dfnear allocation

ticipating in the query [26]. Parallel multi-join query op-) o)
timization is even harder [14, 23, 9]. Complications arise PiPelined Execution Method. The building relations of
because the cost to be optimized, either total amount of€ach pipelined segment can entirely fit into the memory of
work to be processed or total processing time, are no longertn® machines that have been allocated to it. We apply a
closely correlated since a query plan with minimal work Concurrent executioapproach [22] to process a pipelined
may have a high sequential dependency that results in higﬁegmenﬁ In this execution method, all scan operations

overall processing time. Second, even one sequential query® Scheduled concurrently. For example, in Figure 5, we
plan can in turn have a huge number of parallel solutions. Process a way pipelined segment oh machines. Each

We take amulti-phaseoptimization approach in this Puilding relation &, ~ R.) is evenly partitioned across
work to cope with the complexity of parallel multi-join @l 3 machines. Thus, each machine houses the appropriate
query optimization. That is, we break the whole optimiza- Partitions from all building relations, denoted Bs. Here,
tion task into several phases and then optimize each phas&UPSCripti (2 < 7 < 4) denotes join relations, while super-
individually. While asingle-phaseptimization approach ~ SCTiPtj (1 < j < 3) represents machine ID. The probing
such as [23] could also be applied, our multi-phase ap- relation (Rl)_|s also partitioned into all 3 machines to probe
proach enables us to focus our attentation on the researci® @ppropriate hash tables to generate results.
task we are tackling.

Computation Machines

pLpypy (PP P2, | (Ps,Pe s,

— Probiqgf) . uilding

Breaking the Optimization Task. We divide the whole op-
timization task into the following three phases, (1) getera
ing an optimized query tree, (2) allocating query operators
in the query tree to machines, and (3) choosing pipelined
execution methods. We note that even if we divide the op-
timization task into multiple phases, the complexity ofteac
phase, i.e., phases (1) and (2), still remains exponential i
the number of join relations.

The main focus of this work is on investigating the im-

pact of query trees (phase (1)) and different forms of par-
3Other pipelined execution strategies suchstyed partitioning[4]

a"ells.m on the qvera” performanpe. To pro.ceEd’ we .fIrSt have also been proposed. The detailed discussion of thedegsts and
describe the design choices we will assume in the remindefieir impact on parallel processing strategies are beyiaadctope of this

of our work for phases (2) and (3) below. We simplify the paper. They can be found in our technical report.

‘ PartmonH Partition‘ ‘ Partition‘ ‘ Partition‘

& @&

Figure 5. Fully Concurrent Execution

4 Cost Analysis of Pipelined Segment 4.2 Pipelined Processing Cost Model

For pipelined processing of a right-deep segment, the
cost in terms of total work versus the overall processing
time may not be that closely correlated. We thus derive

The following two factors need to be considered when two separate cost models. To facilitate the description of
analyzing the performance of parallel multi-join querypro cost models, we assunig, is the probing relation, while
cessing via a partitioned hashing: (1) redirection costs be R1, ..., R, are the building relations of the pipelined seg-
tween join operations, and (2) optimal degree of paral- ment. We also assumiemachines are available to process
lelism. the pipelined segment. These machines are denotéd; by
Mo, ..., M. Without loss of generality, we ude to repre-

Redirection Costs. The basic idea behind the partitioned Sent the intermediate result after joining with. For exam-
hash join algorithm is that the join operation can be eval- P&, /1 denotes the result di, >a R;, while I, represents
uated by a simple union of joins on individual partitions. {1 > R2. Thusl, represents the final output of these joins.

For example, an equi-joill > B can be computed via o o

(A1 01 By) U (A3 1 By) ... U (A, 1 B,) if Aand B are Estimating Total Work. The total work of pipelined pro-
first divided inton partitions (4; ~ A,,, B; ~ B,) using cessing can be described as the sum of the work in the build-
the same hash function. Assume the two partitions in a pairind phase {1’,) and the work in the probing phas#’), as

(A;, B;) are put in the same machine, while different pairs listed below.

4.1 Identifying Tradeoffs

are spread over the distinct machines. This way, all pairs n
can be evaluated in parallel. Wy = (tread + tpartition + tnctwork + touita) * Y _ |Ril
However, for a right-deep tree segment, it is not possi- i=1

ble to always have all the matching partitions reside in the
same machine. For example, assume a query tree is defineq/vp _

tread +t artition tne work T t robe) * R
by “A.A4; = B.B; and BB, = C.C;". A and B are par- (partit ¢ prove) * | Rol

titioned based on their common attribute4j. (or B.B), k-1 & . - .

while C has to be partitioned based on the common attribute o ; il * tnctwork + (; [Fil) * tprove
between B and C, namely, B; (or C.C1). If we assume A

is the probing relation, then the partition function ofB. treads tpartitions tnetworks thuild, @NdEprobe IN the above
has to be re-applied to the intermediate resultipf B; formulae represent the unit cost of reading a tuple from a

to find the corresponding partitiori%. However, this cor- source relation, partitioning, transferring the tuplecssr
responding partitior’; might exist in a machine different the network, inserting the tuple into the hash table, and
from where the currerB; resides. Thus redirection ofinter- probing the hash tables respectively. They represent the
mediate results is necessary in this situation. For theispec main steps involved in a partitioned hash join processing.
case of a right-deep tree when only one attribute per sourcdn the probing phase workt s 377 | 1| toetworr, de-
relation is involved in the join condition, i.e., “4; = B.B; notes the redirection cost assuming the redirection occurs
= C.C,”, the same partition function can be applied to all after each join operation and the output of each join oper-
relations. In that case, all the corresponding partiticars ¢~ ation is uniformly distributed across all the machines. The

be put into the same machine to avoid such redirections. ~ cost of outputting the final results is omitted since it is the
same for all processing strategies.

Optimal Degree of Parallelism. Startup and coordination o .] o o

overhead among machines will counteract the benefits thaEStimating Processing Time.Similarly, estimation of the
could be gained from parallel processing. [27, 19] discuss Processing t|m.e can be divided into two_part_s: one, the hash
the basics on how to choose the optimal degree of paral-table building time(;) and two, the probing timeff,). The
lelism for a single partitioned operator, meaning the idea Puilding time of the pipelined processirig, can be esti-
number of machines that need to be assigned to one operadnated as follows:

tor. As one example, if a relation only has 1,000 tuples, it is £(k)

not a good idea to have it evenly distributed across a largelh = Max (tread+tpartition +tnctwork +tyuita)* ——*| Ril
number of machines (i.e., 100) since the startup and coor- o

dination costs among these machines might be higher than The processing time of the building phase can be esti-
the actual processing cost. Given the processing of moremated as the maximal building time of each individual rela-
than one join operators (pipelined segment), we expect thistion overk machines. Here, f(k) represents the contention
factor has a major impact on the overall performance. factor of the network since the more machines are involved,

the more contention of the network caused by transferringeach subtree is a join relation. However, there is no oppor-
tuples of join relations arises. This is used to reflect the tunity for independent parallelism except during the aliti
optimal degree of parallelism as discussed in Section 4.1. building phase of the join relations. While a wide bushy tree

The processing time of the probing phase is more diffi- has many subtrees, it also has ugdg,n layers of depen-
cult to analyze because of the pipelined processing. We usalencies withn being the number of source relations. These
the following formula to estimate the pipeline processing dependencies are likely to impact the overall performance.
time.

W,
Tp = Isetup + Tp + Idelete

Here ..., represents the pipeline setup time, while
I4e10te denotes the pipeline depletion time. The steady pro-
cessing time of the pipeline can be estimated by the average
processing time of one tuplgvﬁ(vnﬂ‘) multiplied by the num- - = =
ber of tuples (R,|) that need to be processed over the total (&) gnr Deep with o logr iy 1 dependency
of kK machines. Clearly, this is a simplified model represent-
ing the ideal steady processing time without including for Figure 6. Right-Deep vs. Wide Bushy Tree
example variations in the network costs.

As we will discuss in Section 5.3, the above cost model
is used in finding the most efficient pipelined processing

strategies of each subgraph. 5.2 M-way Bushy Tree

5 Breaking Pipelined Parallelism Seen from the cost model, if the results of pipelined seg-
ments in a bushy tree are smaller than those of the origi-

5.1 Bushy Trees and Independent Parallelism nal join relations, then the bushy tree processing may have

less total work ¥, + W,) when compared with the fully

Query trees of a multi-join query can be classified into right-deep processing. Here we assume all the intermediate
two types: sequential trees (i.e., a right-deep tree orta lef results are kept in main memory.
deep tree as discussed above), and bushy trees. A right- Comparing the overall parallel processing time of fully
deep tree has a better performance over a left-deep tree sincright-deep and bushy trees is more complicated. As we
it has a high potential of pipelined parallelism for a hash- can see, each pipelined segment in a bushy tree only gets
based join algorithm. Thus we now use a right-deep tree asone portion of the total available machines. Thus the net-
the representative of sequential trees (e.g., Figure.6(a)) work contention f(k)) in the building phase may be less

A bushy tree has a height of at ledst,n (given a bi- severe than that of the full right-deep case. As a conse-
nary bushy tree that is balanced) withbeing the number quence, given the independent processing of these smaller
of join relations involved in the multi-join query. A bushy pipelined segments, the processing time of a bushy tree may
tree brings new flexibility to the style of processing, sush a be better than that of fully pipelined processing. However,
having multiple probing relations and composing different as we identified earlier, a bushy tree style processing may
pipelined segments. Moreover, a bushy tree has the potenbe affected by the dependencies among subtrees. More-
tial of processing independent subtrees (segments) concurover, there may be subtrees (up[to/4]) that have short
rently. However, such flexibility may also bring dependen- pipelined processing. For examplg;, and Ps; only have
cies to the execution. This dependency may both affect thea pipeline of one probing followed by the building for the
allocation of query operators and the corresponding mrall next join. These two factors may eventually counteract the
processing performance. benefits gained by introducing the independent parallelism

For example, Figure 6(b) illustrates one bushy tree andand smaller network contention in each segment.
its possible pipeline segments (each pipeline segmentis de Thus, the key question now is how to balance indepen-
noted by one dashed oval). Four segmemis{(P,) can be dent parallelism and pipelined parallelism in parallel tiaul
identified. As can been seeR, andP; can be processed in join query processing. By reducing each pipelined seg-
parallel by processing them on different machines. While ment (i.e., identified by dashed oval in Figure 6(b)) into
the execution of”, depends orP, the execution of?; de- one ‘mega-node’, we can build a dependency tree out of
pends both o, and Ps. the original query tree. We note that the dependencies are

As can be seen, a right-deep tree has the highest degreassociated with the height of this dependency tree. Thus re-
of pipelined parallelism without any dependencies becauseducing the height of the dependency tree should effectively

reduce the dependencies. We thus propose to utilize-an intermediate results. After that, we choose the best graph,

way bushyquery tree. An m-way bushy tree can be con- a partition of the original join graph, from these candidate

trolled to have a dependency tree with height of 2 as long asgenerated from the enumeration based on the cost model we

we increase the number of subtrees of the root node. developed in Section 4.2. The selection can also be based
Figure 7 illustrates the example of an m-way bushy tree on heuristics, i.e., choosing the group in which the join at-

of the join query in Figure 6. In this example, the whole tributes are the same to reduce the possible redirectids,cos

query is cut into three group$; ~ Rs3, R4 ~ Ry, and or selecting the one with the smallest output results.

Rs. Three pipelined segmenty, P,, andP; can be identi-

fied correspondinglyP; and P, can be processed indepen- Algorithm 1 ComposeBushyTree(G,m)

dently, each with pipelined parallelism. The output from Input: A connected join grapks with n nodes. Number m

these two segments can be directly fed iffjo Without loss that specifies the maximum number of nodes in each graph.

of generality, the pipelined segment that contains outpluts Output: An m-way bushy tree that has at least/m| sub-

all other segments is referred to as flml pipelined seg- trees.

ment In this casepP; is the final pipelined segment. Thus, 1. completed =false

all pipelined segments except the final one can be executed 2. while (Icompleted)do

concurrently without any dependencies. We can see that 3. Choose a node with largest cardinality that has not

an m-way bushy tree processing applies independent paral- yet been grouped as probing relation
lelism with minimal dependencies among subtrees (groups) 4. Enumerate all subgraphs starting from node selected
since it only has one layer of dependencies among pipelines. in Step 3 with at most, nodes
Without loss of generality, we always assume the right- 5. Choose best subgraph, mark the nodes in this group
most pipeline of an m-way bushy tree to serve as the probing have been selected in original join graph
relation of the final pipelined segment. For exampgte,is 6: if (3K, K is a connected subgraph of G with unse-
the probing relation of the final segmefy§ in Figure 7. lected nodes):& (K.size()> 2) then
‘‘‘‘‘ 7 completed =rue
8 endif
9: end while

10: Compose an m-way bushy tree

®) ®®
Figure 7. A M-way Bushy Tree ®-®-® ®

® ® &

(1) Ry, Ry Ry, Ry

(c) Finish the groupin

5.3 Composing m-way Bushy Tree (@R, Ry Ry R
B)R, Ry Ry Ry process since no mol
. connected groups wit
Now, we address the question how to generate the above (a) Enumerate groups (b) Enumerate groups nodes larger than 2
m-way bushy tree for a multi-join query. Algorithm 1 with 4 nodes from with 4 nodes from
. relation R relation R
sketches our proposed algorithm. It consumes a connecteu
join graphG and the maximal number of nodegper group Figure 8. An Example of the Algorithm
(we will discuss how to get thisn shortly). We would
choose the largest join relation as the probing relation of
each group since this reduces the time and the memory con- Figure 8 illustrates how the example join graph depicted
sumption of the building phase. Once we select the prob-in Figure 2 is divided by applying Algorithm 1 when =
ing relation, we then begin to enumerate all possible groups4. For example, we start from the relation with largest cardi-
having a maximum ofn join nodes starting from this prob- nality, say relationR;. The enumeration in Step 4 generates
ing relation. Enumeration is possible singeis usually all the possible connected groups with 4 nodes starting from
much smaller than the number of nodes in the join graph. R7, as illustrated in Figure 8(a). In this case, we chaBsg
Some of the groups may not contain exaetlynodes due Ry, Rg, and Rg as the nodes in the first group (pipelined
to the nodes in the group being no longer connected by asegment). For simplicity, we call this grodp,. After this,
join edge. Our goal is to avoid Cartesian products given if R; is the one with the largest cardinality among the nodes
that each data source may be large, thus resulting in hugehat have not yet been grouped, we then cha®sas the

probing relation for the second group,. We repeat the
process as illustrated by Figures 8(b)-(c). After thespsste
only Ry and R are left. They are not connected. We thus
end up with 4 groups. An example m-way bushy tree with
these 4 groups can be built as shown in Figure 9(a).
Allocating machines to an m-way bushy is based on the
number of building relations in each pipelined segment. For
example, for the m-way bushy tree shown in Figure 9(a),

relations for the generated groups. The second is a cost-
based selection approach. Again we note that the range of
the number of groupgis betweer? to n/2 4. We thus can
repeatedly call the functioBomposeBushyTréalgorithm

1) with the numbem ranging fromn/2 to 2 (¢ changes
from 2 to n/2 correspondingly). We then estimate the cost
of processing strategy fro@omposeBushyTred he final
output will be the one with the best estimated cost. While

three pipelined segments can be identified (see dashed cythis may increase the optimization cost, it has the potentia

cles in Figure 9(b)). The number of machines that are as-
signed to each pipelined segment, denotedihyks, and
ks, can be computed as follows.

Ny, = Z |Ri| + [11]
0<i<9,i£1,7
R R R
- L(l 6|+|N8|+| 9|)J
b
(|Rz2| + |R3| + |R4|)
I{j =
2 | N, J
ks = k—ky — ko

Here,I; andl, denote the outputs of grougs andGs
respectively. N, represents the total number of tuples that
need to be built assuming;, R, andl> are the probing
relations ofGGy, G2, and the final pipelined segment respec-
tively. Note that the selection of the probing relation for
the final pipeline segment is not straightforward. We will
discuss this in more detail in Section 6.5.

(a) m-way bushy tree

(b) allocation

Figure 9. M-way Tree and Node Allocation

However, the question remains how to decide the right
number of groups given a join graph. Let us now gde
represent this number. Note that the input of Algorithm 1,
the maximum number of nodes in each graopan be es-
timated bym = [n/g] with n being the number of join
relations in the query. There are two ways to address this
issue. The firstis a heuristics-based selection approaxch. F
example, we can choogeas the number of nodes that have
cardinality larger than 3/2 of the average cardinality. ¢{er
we assume that has to be bound withid ~ n/2. The ra-
tionale behind this selection criterion is that in the bests;

to result in a better processing strategy.
5.4 Handling Insufficient Memory

The problem of handling insufficient memory can be ad-
dressed using the “cutting” principle as in [22, 4]. That is,
we divide the whole query (joins) into pieces such that each
piece can be run in the main memory. Note that in the ex-
treme case, the multi-join query processing would have to
be sequentialized due to not enough memory being avail-
able to hold more than one join. As we mentioned in Sec-
tion 1, we assume that the aggregated memory can hold at
least 2 or more building relations.

Algorithm 2 sketches an incremental approach to ad-
dress this problem. This incremental approach is based on
the static right deep tree [22] or segmented right-deep tree
[4] which divides the join query into right-deep segments
based on the main memory of the cluster. After that, we
further compose each right-deep segment into an m-way
bushy tree if it is necessary, i.e., the number of building re
lations in each piece is larger than a certain threshold:eSin
each right-deep segment s likely to be more efficiently pro-
cessed, the performance of the whole query is also expected
to be better than the static right-deep or segment-right dee
tree processing.

Algorithm 2 SimplelnclMwayTree(G,M)

Input: A connected join graplG with n nodes, total
main memory of clusteM. Output: A sequence of m-
way bushy trees, each processable in main memory of clus-
ter.

: Compose Static or Segmented Right-Deep Tree
. for each right-deep segmentio

. m < Maximal number of relations per group
t «— ComposeBushyTree(r,m)

Putt into result sequence

: end for

7: Return result sequence

1
2
3
4:
5
6

A “top-down cut” approach, dividing the join graph di-
rectly such that each group can be processed in the main

4In extreme cases, the actual number of groups may be largenta.
However, we assume that we have less interests in thesewchees: large

we can choose all these large join relations as the probingnumber of groups with only one join relation in it.

memory, can also be devised. We then select the groups and
process them iteratively. However, as mentioned earkier, t
essence of our work is to re-examine the performance of f4 Query Composer H Query Optimizer ‘
a main memory based maximal pipelined processing. We
argue that having a more efficient main memory based pro- ‘
cessing strategies will also lead to improved overall perfo
mance even if we apply a simple incremental optimization

Controller Module

Distribution Manager }4—{ Query Plan Generator ‘

Distributing Parallel Query Plans

: . : —_ ' Execution Modul Execution Modul
algorithm such as Algorithm 2. This claim is confirmed by =*¢ct"°n MoAuiq i xecuion Mocu
our experimental studies discussed below. ‘ Query Plan Parser ‘ ‘ Query Plan Parser

3 v
. Query Operators Query Operators
6 Experlments Queues‘ Communication (=) Queue# Communication
|+

6.1 Prototype System

{—» Control Flow ¢=) Data Flow

We have implgmented a distri_bu_ted query engin_e to test Figure 10. Architecture of the System
out our hypothesis. The system is implemented using Java.
It is capable of optimizing and executing multi-join quarie
across a set of.shared. nothing machines cor}necteq by net- o E PIIl 800M Hz PC,
work. The basic architecture of the system is depicted in Application 256M Memory
Figure 10. The architecture consists of two main modules,

. : ; Each processing node: 2 2.4GHz Xeon CPUs,
one is thecontroller module and the_other is tf&xecuhon_ 2G Memory, Connect by Gigabit etheret switch
module. The controller module is in charge of managing E
the computation process. It can be installed on a standalone i@ i@ i@ ié
machine or on the machine that has other modules. The = = “= > || 2P 1G cPut
controller module contains packages that compose multi- |10 Nodes Cluster | ' 1G Memory
jqin _queries, generate parallel ex_e_cutic_)n query _plans, and i PIIl 800M Hz PC,
distribute query plans to the participating machines. The === 256M Memory
parallel query plans (processing strategies) are spedified Controller

guery operators such as scan, partition, hash join, unidn an
load in an xml file format. The query is executed in the
ecutionmodule. This execution engine is installed on each
participant machine in the cluster that is involved in the
computation process. The execution engine in each nod
waits for incoming query plans sent by the controller mod-
ule. Once the execution engine receives the query plan, it
parses the query plan, initializes it and starts up the query As done in [4], we use generated data sets and queries in
operators. After that, query operators in different comaput our experiments. This is because benchmark queries such as
tion machines automatically connect to each other and be-TPC-H [25] only have a limited number of queries (around
gin the query processing. 20), and most of them have less than 5 joins. The muilti-

The system is deployed on a cluster composed of 10 majoin queries used in the experiments are randomly generated
chines, as described Figure 11. Each machine in the clusteqith the number of join relations ranging from 8, 12, to
has dual 2.4GHz Xeon CPUs with 2GB RAM. They are 165. The cardinality of each join relation ranges from 1K
connected by a private gigabit ethernet switch. In our ex- ~ 100K tuples, and the average size of each source tuple
perimental setting, all source (join) relations are stdared is about 40 bytes. Each result tuple has about 32640
an oracle database that reside in a different machine autsid bytes on average, by simply concatenating all tuples from
the cluster having 2 PIll 1G Hz CPUs and 1G main mem- join relations. Data size in our experiment is choosen to
ory. The query results are sent to an application server withmake sure all the hash tables can fit in the main memory
one PIIl 800M Hz CPU and 256M Memory. This setup since our main focus of this work is the main memory based
follows a typical data warehouse loading environment (e.g. processing.
ETL [20]) where the process has to be performed outside
the data sources. This is because the operating data sourcesy . N

We acutally generate random connect acyclic graphs giveedified

may be too busy to process -complex join queries- O eV€Npymber of nodes. Each node represents join relations, vehith edge
simply may not be willing to give control to the outsiders. denotes the join condition.

Figure 11. Experimental Environment

%.2 Experimental Setup

6.3 Impact of the Number of Data Servers group. In Figure 13, we see that an m-way bushy tree pro-
cessing almost consistently outperforms fully pipelineatp

Initial experiments have been conducted to evaluate thecessing.

impact of the number of Oracle data servers in the experi-

mental setup on the overall performance. We compare the 700000 & Right Deep Tree

performance of multi-join queries using a pure right-deep 600000 1 [HESE

tree (pipelined) processing given different numbers oadat 500000 1

servers. The test queries are generated randomly with 8 ’

16 join relations. For each query, we vary the number of '

data servers from 1 to 4. Thus, if we hawtata servers with

1 < < 4 andk (either 8, 12, or 16) join relations, then we

have each data server hold on averfigé] join relations. v s 6 A o e e e h e

These data servers are deployed on different machines with Sample Queries

similar configurations having Oracle 8i installed. The fesu .

is shown in Figure 12. Each data point in Figure 12 reflects ~ Figure 13. Performance of 20 Example

an average of 50 randomly generated queries for each query Queries

type (queries have the same number of join relations). In

Figure 12, x-axis denotes the number of join relations in

the query, while y-axis represents the total processing.tim Figure 14 shows the results of queries with an increas-

From Figure 12, we can see that the number of data serversng number of join relations in the query. The number of

in the system only has a minor impact on the overall perfor- relations in a query ranges from 8, 12 to 16. The exper-

mance. This is because the total time spend on reading thémental results reflect an average processing time over 50

tuples from data servers only represents a small fraction ofdifferent randomly generated queries per query type. For

the total query processing time in our current experimental example, for queries with 8 join relations, we generate 50

settings. Thus, the improvement due to shared read by mulqueries randomly. We then produce both the fully pipelined

tiple data servers does not play a major role in the overall processing and the m-way bushy processing strategies for

performance. This indicates that the data server is not theggch generated query. In this experimental setup, queries

bottleneck in our experimental environment. Without loss with 8 relations are divided into groups having a maximum

of generality, we report our following experimental result of 3 relations, while queries with 12 and 16 relations are

with a setup that stores all join relations in one data server divided into groups having a maximum of 4 relations.

In Figure 14, we can see that m-way bushy tree pro-

ime (ms)

400000

300000 -

100000 A

Processing T
N
o
o
o
o
o o

800000 177 Server cessing is consistently better than maximal pipelined par-
R ;ZZEZZ 152 o b allelism. The performance improvement is around 50% in
£ 4'S | = . .
< soc000 | D4 Servers terms of the total processing time.
= 400000
§ 300000 800000
E 200000 700000 “ Em%lvj;-yDt?fs%y
& 100000 - ’gGOOOOO 7
0 - . . gsooooo
8 12 16 5, 400000 -
Number of join relations in a Query é 300000 -
. g 200000 -
Figure 12. Vary the Number of Data Servers * 100000 |
0 T T
8 12 16
Number of relations in a query
6.4 Pipelined vs. M-way Bushy Processing Figure 14. Right-Deep vs. M-way Bushy

Experiments have been conducted to compare the perfor-
mance (total processing time) of a pure right-deep tree pro-
cessing having fully pipelined processing to our proposed 6.5 Probing Relation Selection for Final Pipelined
m-way bushy tree processing that mixes both pipelined and Segment
independent parallelism. Figure 13 shows the results of 20
randomly generated queries with 8 join relations. Here, the Selection of the probing relation of a pipelined segment
m-way bushy tree has a maximum of 3 join relations per is usually based on the cardinality of the join relations.

10

This is because choosing a large relation as probing relatio 450000

can effectively reduce the work and processing time of the 5 0000] B
building phase. However, for a pipelined segment that in- 5 300000 1

volves outputs from other segments (assuming main mem- " 20000 |

ory is enough to hold these building relations), the cardina g 150000

ity of the relation alone may no longer be the best choice £ oo |

in general. Changing the probing relation of a pipelined 0 ' ‘ ‘
segment that only involves source join relations does not b o reatons in4thegroupforth5e - ® ion
change the number of probes in the probing phase. It only of final segment

changes the number of probing and building tuples. Here

we define the number of probe steps as the maximum num- Figure 16. Probing Relation Selection

ber of hash tables that a tuple from the probing relation
needs to probe to produce the final output. However, for
a pipeline segment having outputs from other segments,5 5 Number of Join Relations per Group
changing the probing relation will also change the total
number of probes.

For example, if we change the probing relation for the
pipeline segmenk; as shown in Figure 15(a) fromR; to
Rg, no changes in the number of probe steps occur. Both
of them are 3 (Figures 15(a)-(b)). However, if we change
the probing relation of pipelin®; (exchanging? andP),
then the total number of probe steps changes from 4 to 5in
this case. This is becaug® itself has 3 probe steps while
P, only has 2.

Figure 17 illustrates the impact of the maximal num-
ber of join relations per group in our environment. Here,
all the tested queries have 16 join relations. We vary the
number of join relations per group from 3 to 6. As we
can see, if the number of join relations per group increases,
the total processing time also increases. This is mainly be-
cause given ouf ompose BushyT ree algorithm, the final
pipelined segment tends to choose the largest subgraph (the
one with the largest number of join relations) as the prob-
ing relation since it usually has the largest intermediate r
sults. As shown in Section 6.5, a long pipeline of the final
pipelined segment degrades the overall performance. We
thus revise our algorithm to choose the subgraph with the
smallest number of probing steps as the probing relation of
the final pipelined segment. As can be seen, the revised al-
gorithm is less sensitive to the number of join relations in a
group.

800000

| @ Original Algorithm
700000 B Revised Algorithm

600000

Figure 15. Probing Relation Selection

500000
400000 T—

300000 +—
200000

Processing Time (ms)

Figure 16 shows the experimental results of the impact
of the probing relation selection for the final pipelined-seg 100000
ment. Here, the number on the x-axis denotes the number O aanoen 34 s .
of relations in the probing relation of the final pipelinedse Maximal Number of Relatons per Group
ment. The generated queries have 16 join relations. In Fig-
ure 16, we see that in our current environment, the larger ~ Figure 17. Exchanging the Probing Relation
the number of relations in the probing relation of the fi-
nal pipelined segment, the worse the total processing per-
formance will be. This is because the longer probe steps
in the final pipelined segments impair the processing per-6.7 Handling Insufficient Memory
formance. This again confirms our observation that a ful
pipeline may not be the best performer. Note that the perfor- Figure 18 shows the experimental results when the ag-
mance degradation for a pipeline that is longer than 8 can begregated main memory is not sufficient to hold all the hash
explained by the experiments shown in Figure 14. Hence, intables of the building relations. We deploy join querieswit
Figure 16, we conveyed the scope of smaller pipeline sizes.32 join relations. Assume the query will be cut into three

11

pieces with each piece being executed sequentially. Heregxamples of parallel database systems. Many papers were
the intermediate results of each piece will be first written written studying their performance. [13] proposes sohsdio

to the data server, while the next piece will read the inter- for scheduling pipelined query operators to minimize the
mediate results back into the main memory. We comparetotal work. Task scheduling and allocation in general also
the performance of the segmented right-deep tree with ourhave been extensively studied [15]. Other focuses such as
m-way bushy tree generated by Algorithm 2. Note that the load balancing [8, 3] and resource allocation [16, 10] are
segmented right-deep tree has each piece fully pipelinedalso topics closely related to parallel query processing. A
while the m-way bushy will have the same right-deep seg- can be seen, these works provide the necessary background
ment (piece) further composed into an m-way bushy treefor the work presented in this paper. In this work, we in-
with a maximum of 3 join relations per group. Figure 18 stead focus on a specific area of parallel query processing,
reports the comparison between these two approaches fonamely, the parallel multi-join query processing via hash-
10 randomly generated queries. As can be seen, the ming.

way bushy tree processing consistently outperformsthe seg Evaluating a multi-join query via hashing in parallel (ap-
mented right-deep processing. This is expected becauselying partitioned and pipelined parallelism) over a skiare
each piece is processed more efficiently given our m-way nothing environment also has been investigated in the lit-
bushy tree approach. Thus, the overall performance of theerature before [22, 24, 18]. Different parallel processing
query is correspondingly improved. strategies such as left-deep and right-deep [22], segihente
right-deep [4], and zigzag tree [29] have been proposed, as
we have provided an in-depth discussion in Section 2. How-

igggggg 7:1 Eaev%?ented Right-Deep .
100000 | iy Bushy Tiee ever, these proposed solutions all share the common ap-
£ 1400000 proach which is to maximally use pipelined parallelism.(i.e
£ oo | maximally divide a right-deep tree into segments) based on
£ 800000 | certain objective functions (i.e., memory constraintsi] a
E jgggzg each segment is processed one by one. In this work, we
200000 instead consider more tradeoffs in optimizing such pdralle
T . e s e 1 s e 10 multi-join query processing, i.e., other types of quengetre
Example Queries shapes, independent parallelism and its dependencigs, pro
erties of the join definitions to reduce redirection costs, e
Figure 18. M-way Bushy vs. Segmented Moreover, most of the previous works report their results
Right-Deep based on simulations, while we report our results based on

a working distributed system.
[28] experimentally compares five types of query shapes
and various execution strategies based on the PRISMA/DB
. system [27]. However, it does not explore how to generate
6.8 Concluding Remarks optimized parallel processing query plans. In this work, we
propose algorithms to generate efficient parallel proogssi
As can be seen, these experimental results clearly highsolutions.
light the main message of our work, namely, the long stand-
ing assumption that “maximal pipelining is preferred” is 8 Conclusion
shown to be wrong. Our proposed m-way bushy processing
almost consistently beats full pipelined processing. Give . . i
the massive application of pipelined processing, esggcial In this work, we have revisited the common assumption

in growing areas such as continuous query processing, thighat has been taken by practically all prior work in the titer
observation can also shed some new light on how best tolure, namely, to pursue maximal pipelined parallelism when

optimize distributed pipelined query plans when the opti- processing multi-join query processing in parallel. Weéhav

mization function is related to total processing time. shown both experimentally and via a cost analysis that the
introduction of independent parallelism at the cost of re-

ducing the pipeline can greatly impact the parallel perfor-

7 Related Work mance. A heuristic-driven optimization algorithm for gen-
erating a new class of processing strategies incorporating
Parallel query processing has been extensively studied inndependent parallelism and yet controlling its dependen-
the literature [6, 27, 13, 19, 22, 14, 5, 18, 11]. Many differ- cies has been proposed in this paper. A working distributed
ent research efforts have been conducted in this area. Foguery engine has been implemented. Experimental studies

example, GAMMA [7], Bubba [2], PRISMA/DB [27] are confirm our claim that maximal pipelined parallelism is not

12

always the best.

The observation we made in this work also sheds some
new light on how best to optimize pipelined query plans in
general given the optimization function is related to thalto o)
processing time. This optimization is bound to get increas- [12] W. Hasan.Optimization of SQL Queries for Parallel

ingly attention due to new and growing research areas such

as continuous query processing [1].

References

[1] D. J. Abadi, D. Camey, and et al. Aurora: @ NeW 41 \y Hong and M. Stonebraker. Optimization of parallel

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

model and architecture for data stream management.
The VLDB Journal12(2):120-139, 2003.

H. Boral, W. Alexander, L. Clay, G. P. Copeland,
S. Danforth, M. J. Franklin, B. E. Hart, M. Smith,

and P. Valduriez. Prototyping bubba, a highly paral-
lel database systentEEE TKDE, 2(1):4—24, 1990.

[16]

L. Bouganim, D. Florescu, and P. Valduriez. Dynamic
load balancing in hierarchical parallel database sys-
tems. InThe VLDB Journalpages 436—-447, 1996.

M.-S. Chen, M.-L. Lo, P. S. Yu, and H. C. Young.
Using segmented right-deep trees for the execution of
pipelined hash joins. IRProceedings of VLDBpages
15-26, 1992.

[17]

[11] G. Graefe. Encapsulation of parallelism in the volcano

guery processing system. Rroceedings of ACM SIG-
MOD, pages 102-111, 1990.

Machines PhD thesis, Stanford University, Dec 1995.

[13] W. Hasan and R. Motwani. Optimization algorithms

for exploiting the parallelism-communication tradeoff
in pipelined parallelism. IrProceedings of VLDB
pages 36—-47, 1994,

guery execution plans in xprs. Rroceedings of PDIS
pages 218-225, 1991.

Y.-K. Kwok. Static scheduling algorithms for allo-
cating directed task graphs to multiprocessoh&M
Computing Surveys (CSUR1(4):406—-471, 1999.

M.-L. Lo, M.-S. S. Chen, C. V. Ravishankar, and
P. S. Yu. On optimal processor allocation to support
pipelined hash joins. IiProceedings of ACM SIG-
MOD, pages 69-78, 1993.

H. Lu, K.-L. Tan, and M.-C. Sahn. Hash-based join
algorithms for multiprocessor computers with shared
memory. InProceedings of VLDBpages 198-209,
1990.

M.-S. Chen, P. S. Yu, and K.-L. Wu. Scheduling and [18] T. P. Martin, P.-A. Larson, and V. Deshpande. Paral-

processor allocation for parallel execution of multi-
join queries. InProceedings of ICDEpages 58-67,
1992.

[19]

D. DeWitt and J. Gray. Parallel database systems: the
future of high performance database syster@em-
munications of the ACIVB5(6):85-98, 1992.

D. J. DeWitt, S. Ghandeharizadeh, D. Schneider,
A. Bricker, H.-l. Hsiao, and R. Rasmussen. The
gamma database machine projectlEEE TKDE
2(1):44-62, 1990.

D. J. DeWitt, J. F. Naughton, D. A. Schneider, and [22]

S. Seshadri. Practical skew handling in parallel joins.
In Proceedings of VLDBpages 27-40, 1992.

S. Ganguly, W. Hasan, and R. Krishnamurthy. Query
optimization for parallel execution. IRroceedings of
ACM SIGMOD pages 9-18. ACM Press, 1992.

M. N. Garofalakis and Y. E.

loannidis. Multi-

dimensional resource scheduling for parallel queries. [24]

In Proceedings of ACM SIGMQDpages 365—-376.
ACM Press, 1996.

13

lel hash-based join algorithms for a shared-everything.
IEEE TKDE 6(5):750-763, 1994.

M. Mehta and D. J. DeWitt. Data placementin shared-
nothing parallel database systerike VLDB Journal
6(1):53-72,1997.

[20] Sagent Technology. http://www.sagent.com.

[21] D. A. Schneider and D. J. DeWitt. A performance

evaluation of four parallel join algorithms in a shared-
nothing multiprocessor environment. Rroceedings
of ACM SIGMOD pages 110-121, 1989.

D. A. Schneider and D. J. DeWitt. Tradeoffs in pro-
cessing complex join queries via hashing in multipro-
cessor database machines. Firoceedings of VLDB
pages 469-480, 1990.

[23] J. Srivastava and G. Elsesser. Optimizing multi-join

queries in parallel relational databasesPtaceedings
of the 2nd PDISpages 84-92, 1993.

K.-L. Tan and H. Lu. Processing multi-join query in
parallel systems. IRroceedings of ACM Symposium
on Applied computingpages 283-292, 1992.

[25] TPC. TPC-H Benchmark Standard Specification.
http://www.tpc.org/tpch/

[26] C. Wang and M.-S. Chen. On the Complexity of Dis-
tributed Query OptimizationlEEE TKDE 8(4):650—
662, 1996.

[27] A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Paral-
lelism in a main-memory dbms: The performance of
prisma/db. InProceedings of VLDBpages 521-532,
1992.

[28] A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Par-
allel evaluation of multi-join queries. IRroceedings
of ACM SIGMOD pages 115-126, 1995.

[29] M. Ziane, M. Zat, and P. Borla-Salamet. Parallel
query processing with zigzag treeshe VLDB Jour-
nal, 2(3):277-302, 1993.

14

A M-way Processing Cost Model

We provide the m-way processing cost model. The assumptienaade are the same as discussed in Section 4.2.

Estimating Total Work. Assume join relations are divided inta groups (pipelines) connected by a m-way bushy tree.
Without loss of generality, we assume all these groups ametdd by its join relation indice$0 ~mq), (my + 1~ my),

o (mm—1 + 1 ~ n). The intermediate result of each group is representef}py. . ., I,,,, . Correspondingly, we assume
each group will be assignég),, machines based on its building relation sizes. The finallipipe segment gets; machines.
The query result is also represented/hy Without loss of generality, we also assume that will be the probing relation of
the final pipelined segment. Given these, the total work dfiing phase of an m-way bushy processiig;j and the total
work of the probing phaséX;) can be described by the following formulae.

WI; (read + tpartztwn + tnetwork + tbuzld Z Z |R | + Z |Im7

m=1 j=m;+1

m—1
W;; - (tread + tpartition + tnetwork + tprobe) * (|Im1| + |RO| + Z |Rm1+1|)
=1
m 1 mit1—1 k
+ lnetwork * Z Z |I | +Z I |Im
=1 " j=mitl

m Mmiy1—1

+ probe Z Z |I | + Z |Im1

=1 j=m;+1

Estimating Processing Time. The overall processing time of the bushy tree can be treaditeasum of two phases. The
first phase7s, estimates the time of processing all the pipelined segsriignbups) with the results of these pipelines being
directly fed into the building phase of the final pipelinedisent. The second phase, denoted’as estimates the time of
probing the final pipelined segment and outputing the quesults.

The processing time of each pipelined segmeny) s composed by the following three components. (1) Thedngj
phase time of the building relationsiin;, denoted byB,,,;. (2) The probing phase time of the group, represented by,,,;.
(3) The building time to the final pipelined segment from tlwpait of groupm; (1,,,;), denoted a3/, .. The processing time
estimations of these components are given below.

f(km,)
k

ez

Bmi - Maxmi,1+1§j§mi{ * |Rg|) * (tread + tpartition + tnetwork + tbuild)}

Pmi:

mg

mei = (tread + tpartition + tnetwork + tprobe) * |Im73,1 |

mip1—1 mip1—1

Ko, — 1
+ tnetwork * (k Z |I]|) + tprobe * (Z |Ij|)

P j=my+l j=m;+1
+ (tpartition + tnetwork + tbuild) * |Iml|

B f(kf
ky

|Im | * (tread + tpartition + thetwork + tbuild)

The cost of the first phase is estimated®y = Maxi<i<m{Bm, + Pm, + B,,,}. Note that theP,,, and B, are
actually processed in a pipelined fashioin, we simply it bgliag the cost directly.

15

The processing time of the second phdBg) is composed basically the probing of first grodp,{), and the rest of the
intermediate results. We estimate the time%‘rs W/ can be described below.

kp—17%

-1
I,
N ;I ;

m—1
!
Wi - tnetwork * + tprobe * § |IfnI
m=2

16

