
Stochastic Fair Aggregate Rate Control: Practical
Traffic Management for Efficient and Robust IP Networking

Jae Chung, Mark Claypool and Robert Kinicki
Computer Science Department
Worcester Polytechnic Institute

Worcester, MA 01609, USA
{goos|claypool|rek}@cs.wpi.edu

Abstract

The robustness of the Internet today depends upon the
end-to-end congestion control mechanisms of TCP. As
use of non-TCP applications such as streaming media
and network games grows, the potential for unfair net-
work resource allocation and the threat of congestion
collapse increase. The Internet needs a practical solu-
tion to protect well-behaving flows from misbehaving
flows and avoid collapse. This paper introduces a novel
statistical traffic filtering technique, Stochastic Fairness
Guardian (SFG), that effectively regulates misbehaving
flows with minimal traffic state information. SFG can
be used in conjunction with an active queue manage-
ment (AQM) mechanism to improve both network pro-
tection and efficiency. Through simulation, this paper
evaluates SFG and the integration of SFG with a previ-
ously developed Aggregate Rate Controller (ARC) for
TCP traffic in comparison with other similar statistical
flow management mechanisms including RED-PD, SFB
and CHOKe. Our results show that overall, SFG with
ARC outperforms other mechanisms in terms of fair-
ness, queuing delay, stability and TCP performance over
a wide range of realistic traffic loads and conditions.

1 Introduction
TCP, the de-facto Internet transport protocol, has end-
host congestion control mechanisms designed to manage
Internet congestion. However, TCP can be slow in re-
sponding to congestion due to the fact that end-hosts nor-
mally detect congestion only when router buffers over-
flow, wasting network bandwidth and lowering network
goodput. The limitations of end-host only congestion
control can be relieved by adding active queue manage-
ment (AQM) [4, 12, 14, 16, 18, 19, 21] with explicit
congestion notification (ECN) [29] to network routers.
AQM with ECN can provide congestion feedback infor-
mation promptly and efficiently to the end-hosts without
requiring a packet drop.

Despite the robustness of TCP, emerging Internet ap-
plications such as streaming media and network games
tend to use UDP as their transport protocol. As the use of

non-TCP applications increases, the Internet must deal
with more flows with improper or no end-to-end con-
gestion control. This trend carries the potential for a
significant imbalance in the link capacities used by TCP
and UDP flows. This imbalance threatens Internet stabil-
ity and, in the worst case, an extrapolation of this trend
could lead to Internet congestion collapse [7].

Approaches to protect the Internet from potential
misuse by unresponsive flows can be divided into
scheduling-based and preferential-based packet drop-
ping mechanisms. Scheduling-based techniques, such
as Fair Queuing (FQ) [11] and Stochastic Fair Queu-
ing (SFQ) [26], allocate a separate queue to each flow
or group of flows passing through a router’s outgoing
link and transmit packets from the queues in round-
robin fashion. Scheduling-based mechanisms are gen-
erally expensive to implement due to the complexity of
the link/packet scheduling. Moreover, it may be unde-
sirable to combine a scheduling-based mechanism with
an AQM congestion feedback controller due to the re-
dundancy inherent in providing queue buffers needed to
support both mechanisms.

Preferential-based packet dropping techniques mon-
itor, detect and regulate misbehaving flows before for-
warding packets to an outbound link queue that may
or may not be managed by a separate AQM controller.
Preferential-based dropping mechanisms can be further
categorized by their complexity and the amount of state
information maintained. The most complex mecha-
nisms, including Fair Random Early Drop (FRED) [23],
Core Stateless Fair Queuing (CSFQ) [32] and Rainbow
Fair Queuing(RFQ) [8], require per-flow state informa-
tion. The fact that per flow state information does not
scale for high capacity networks with many flows is a
significant weakness for FRED. However, CSFQ and
RFQ reduce this problem by requiring per-flow state in-
formation only at DiffServ [5]-like edge routers.

Other preferential-based dropping techniques do not
require an edge-core architecture for scalability. Tech-
niques such as Random Early Detection with Prefer-
ential Dropping (RED-PD) [24], Stochastic Fair Blue

(SFB) [13] and CHOKe [27], use statistical flow man-
agement to address scalability. RED-PD and SFB em-
ploy statistical flow monitoring to identify and then reg-
ulate misbehaving flows. RED-PD uses the conges-
tion notification history of RED, and SFB uses a Bloom
filter [6] to identify potentially misbehaving flows to
monitor. Although statistical flow monitoring mecha-
nisms can significantly reduce the flow state informa-
tion needed to be maintained when a small number of
flows account for the majority of the Internet traffic [28],
the mechanisms used to identify misbehaving flows are
complex and may induce significant processing over-
head. To avoid the complexity of flow identification,
CHOKe uses a stateless statistical traffic filtering tech-
nique that does not require any flow state information.
For each incoming packet, CHOKe randomly selects a
packet from the output queue and drops both packets
both if they are from the same flow. Yet, CHOKe’s
stateless design makes it difficult to configure the target
per-flow bitrate under changing traffic loads. Further-
more, CHOKe may punish well-behaved flows that are
unluckily selected and noticeably degrade TCP perfor-
mance under light traffic loads.

This paper introduces a novel statistical traffic filter-
ing technique, called the Stochastic Fairness Guardian
(SFG), that can effectively regulate misbehaving flows
with minimal traffic state information. SFG uses a multi-
level hash scheme that places incoming flows into differ-
ent flow groups at each level and approximates a proper
packet drop rate for each flow by monitoring the incom-
ing traffic rates for the groups to which the flow belongs.
SFG can be used in conjunction with a Drop-Tail queue
as an effective network protection mechanism. When
SFG is used in combination with an AQM congestion
feedback controller, the combination can improve both
network protection and efficiency. When TCP traffic is
effectively controlled by the AQM, the interference be-
tween SFG and the AQM for TCP traffic can be min-
imized such that SFG serves only as a traffic filter for
misbehaving, unresponsive flows.

In this work, SFG is evaluated in conjunction with a
previously developed AQM mechanism, the Aggregate
Rate Controller (ARC) [1]. ARC is a reduced-parameter
proportional-integral (PI) controller for TCP traffic de-
signed to support a wide range of traffic conditions. The
combination of SFG and ARC, referred to as Stochas-
tic Fair ARC (SFA), is compared against other statistical
flow management approaches including RED-PD, SFB
and CHOKe, and Drop-Tail queue management through
simulations. The results show that SFA outperforms
other mechanisms in terms of protection, stability, queu-
ing delay and overall TCP performance under a wide
range of realistic traffic mixes and loads that includes a
few high bitrate CBR flows and many MPEG-video like

Algorithm 1 Aggregate Rate Controller (ARC)
Every da seconds:
1: p← p + α(b − γ(daC − (q − q0)));
2: b← 0;

Every packet arrival:
3: if (uniform(0, 1) ≤ p) then
4: if (mark(packet) == false) then
5: drop(packet);
6: return;
7: end if
8: end if
9: b← b + sizeof(packet);

10: if (enqueue(packet) == false) then
11: drop(packet);
12: end if
Functions:

mark(packet): ECN mark the packet. Return false on error.
enqueue(packet): Enqueue the packet. Return false if queue full
drop(packet): Drop the packet.

Variables:

p, q, b

Parameters:
C: link capacity (bytes per second)
γ: target link utilization (γ = C0/C)
q0: target queue length in bytes
da: measurement interval
α: TCP congestion feedback constant

VBR streams. The simulations also demonstrate that
SFG with Drop-Tail queue management provides sim-
ple and effective fairness protection that complements
the weakness of Drop-Tail alone.

The remainder of this paper is organized as follows:
Section 2 provides background on ARC; Section 3 de-
scribes the design of SFG and SFA; Section 4 devel-
ops an error model to predict the number of false pos-
itives for SFG and provides SFG configuration guide-
lines; Section 5 uses simulations to evaluate the per-
formance of SFG and SFA along with other statistical
flow management approaches; Section 6 describes re-
lated work; and Section 7 presents conclusions and con-
siders future work.

2 Background

The proportional-integral (PI) controller is the most
widely used controller in modern control systems due
to its simplicity and effectiveness. Recently, several
AQM researchers [4, 19, 21] have viewed TCP conges-
tion control as a time-delayed feedback control system
and thereby were able to develop a PI controller for
routers handling TCP flows. While these approaches are
promising because a PI controller can provide stability
over a wide range of TCP conditions, a critical deploy-
ment challenge is the configuration of the PI control pa-
rameters in a time-delayed feedback system (i.e., the In-
ternet). There exist no simple and effective PI control
parameter configurations for time-delayed systems [31].

As a solution to the difficulty in configuring PI con-
trollers, [1] proposes to carefully reduce the PI parame-
ters, based on classic control theory and a sound under-
standing of PI behavior for the Internet traffic control do-
main. Aggregate Rate Controller (ARC), shown in Al-
gorithm 1, is a rate-based implementation of a reduced-
parameter PI congestion feedback controller for TCP
traffic designed to ease the controller configuration for
a wide range of traffic conditions and to offer flexible
quality of service (QoS) tuning for the outgoing link.

PI control-based AQM mechanisms determine con-
gestion notification probability (p) for aggregated traffic
proportional (α) to the length of a virtual queue. The
virtual queue length is computed after reserving some of
the link capacity to drain/fill a portion (β) of outbound
queue to maintain a target queue length (q0). ARC re-
duces the PI control parameters by fixing the queue con-
trol parameter β to 1, implying ARC conservatively re-
serves enough capacity to drain all the packets in the
queue due to control error from previous measurement
epochs (da). This independent PI control variable re-
duction eases the ARC tuning process while preserving
the effectiveness of the PI controller.

ARC provides a practical configuration guideline by
modeling a TCP-ARC feedback control system and per-
forming a classical stability analysis using the model. It
is shown from the analysis that given a system boundary
condition described by the minimum expected number
of TCP flows (Ň) and the maximum expected round-trip
time of the system (τ̂), the TCP-ARC system is stable if
α
da

meets the following condition:

{

α
da

| µ(ωg ,
α
da

) < −6
}

and
{

α
da

| − 150◦ < φ(ωp(
α
da

)) < −120◦
}

(1)

where, α is the reduced PI control parameter, da is the
control data measurement interval and:

µ(ω, α
da

) = 20 log10

ατ̂3γ3C3(1+γ)

4daŇ2

√

(τ̂ω
1+γ)

2
+1

ω

√

(

τ̂2γCω

2Ň

)2
+1

√
(τ̂ω)2+1

φ(ω) = tan−1

(

τ̂ω

1 + γ

)

− tan−1

(

τ̂2γCω

2Ň

)

− tan−1(τ̂ω) − 180◦

π
τ̂ω − 90◦

ARC also recommends setting the measurement inter-
val (da) greater than or equal to the maximum expected
round-trip time the system expects to support but smaller
than 2 seconds, and then determining α. By choosing
a large value of da, ARC can reduce control informa-
tion processing overhead, and more importantly, make
the TCP system stable even under unusually large trans-
mission delays or extremely low traffic load.

Algorithm 2 Stochastic Fairness Guardian (SFG)
Every ds seconds:
1: for i = 0 to L− 1 do
2: for j = 0 to N − 1 do
3: prob[i][j]← (bytes[i][j]− dsC/N)/bytes[i][j];
4: bytes[i][j]← 0; /* update drop p for all bins */
5: end for
6: end for

Every packet arrival:
7: p = 1;
8: for i = 0 to L− 1 do
9: j = hash(i, packet);

10: p = min(p, prob[i][j]); /* take min drop p seen so far */
11: bytes[i][j]← bytes[i][j] + sizeof(packet);
12: end for
13: if (uniform(0, 1) ≤ p) then
14: drop(packet);
15: return;
16: end if
17: queue(packet);

Functions:
hash(key, packet) Returns hash (<N) for given key and packet.
drop(packet): Drops the packet.
queue(packet): Passes the packet to the queue manager.

Variables:
prob[L][N], bytes[L][N], i, j, p

Parameters:
C: link capacity (bytes per second)
L: number of levels
N : number of bins in a level
ds: measurement interval

3 Stochastic Fairness Guardian

Stochastic Fairness Guardian (SFG) is a highly scal-
able statistical traffic filter that uses a small amount of
state information to provide stochastically fair network
resource allocation and network protection. Using a
pre-queue management mechanism, SFG preferentially
drops incoming packets in proportion to a flow’s approx-
imated unfair resource usage. SFG can be employed ei-
ther with a Drop-Tail queue or with an AQM mecha-
nism.

SFG defines a flow as an abstract entity that can be
identified by a combination of source/destination ad-
dress, protocol and port numbers. A closely related issue
that makes flow monitoring and accounting challenging
for approaches such as RED-PD [24] and SFB [13] is de-
termining the lifetime of a flow. However, SFG does not
need to monitor nor account for individual flows to filter
traffic. Thus, in the rest of the paper the terms “incoming
packet” and “incoming flow” are used interchangeably.

To approximate and regulate unfair network usage,
SFG uses a multi-level traffic group management tech-
nique. SFG, shown in Algorithm 2, clusters incoming
flows into N different traffic groups in each of L lev-
els using an independent hash function for each level.
Thus, SFG maintains N x L bins, where each bin in a
level is assigned an equal share (1/N) of the outbound

Figure 1: An Example SFG showing three flows. The
size of the shaded blocks indicate the flow bitrates. The
drop probability applied to each flow is indicated on the
right.

link capacity (C). Every ds second epoch, SFG com-
putes and updates the packet drop probability for each
bin (prob[i][j]) by taking the incoming traffic rate of the
last measurment epoch (bytes[i][j]/ds) as an estimate of
this epoch’s packet arrival rate for the flows in the bin,
and setting the drop probability such that no more than
C/N capacity is used by a bin.

When a packet arrives, SFG looks up the packet drop
probabilities for the L bins to which the packet be-
longs and applies the minimum drop probability to the
packet. The motivation behind choosing the minimum
drop probability is to protect TCP flows that share one
or more accounting bins with other high bitrate flows.
Figure 3 shows an example of SFG selecting drop prob-
abilities for three different flows, where rounded-corner
boxes represent the accounting bins and shaded boxes
represent the bitrate of each flow. In this example, pack-
ets of flow1 is dropped with a probability p = 0.03
since it is the minimum drop probability of all the bins to
which the flow belongs. Similarly, flow2 gets p = 0.02
and flow3 gets p = 0.00.

A potential drawback of using static hash filters for
flow group assignments is that a well-behaving flow that
unfortunately shares all its bins with misbehaving flows
can be unfairly treated for the lifetime of the flow. SFG
eases this concern by a simple modification to Algo-
rithm 2 such that two hashes in each level are used,
one for the drop probability access for the current epoch
and the other for the control data collection for the next
epoch. In this way, a flow assigned to poluted bins in all
levels in the current epoch can be re-hashed into differ-
ent bins in the next epoch. This additional fairness en-
hancement is easily added to SFG, since SFG flow group
managment for the current epoch is independent of pre-

vious epochs.
SFG can be used both with a drop-trail queue or

with an AQM. The combinaton of SFG with an AQM
can enhance TCP performance by avoiding packet drops
through the AQM while still providing network protec-
tion through SFG. To maximize the benefit of an SFG
and AQM combintaion, a careful configuration of SFG
and the AQM is required. Note that although SFG
is not designed to be a congestion feedback controller
for TCP traffic, it may perform the roll of an implicit
(packet dropping) congestion feedback controller when
faced with fewer than N bandwdith-hungry TCP flows,
or when SFG is configured to offer lower link utiliza-
tion than the following queue manager can offer. Under
such circumstances, SFG may result in underutilization,
or may degrade TCP performance or even degrade TCP
congesion system stability by interfering with the AQM
congestion feedback control. The next section provides
SFG configuration guidlines for setting L, N and ds, and
addresses issues associated with combining SFG with a
queue manager to maximize preformance benefits.

SFG shares structural similarities with the Bloom fil-
ter technique used in SFB [13] in that both mecha-
nisms use multi-level hashing to group flows. However,
the major difference is that the Bloom filter in SFB is
used as an unresponisve flow identification tool, while
SFG uses Bloom-like stochastic fair resouce manage-
ment to prevent a few misbehaving flows from dom-
inating the outbound link utilization. By periodically
updating packet drop probabilities for accounting bins,
SFG inherently has less overhead than does SFB with
the Blue AQM [12] inside each accounting bin where
the congestion notification probabilities of the relevent
Blue bins are updated for every arriving packet.

4 Configuration
This section develops a false positive model to esti-
mate the probability of well-behaving flows being in-
correctly identified by SFG as one of the misbehaving
flows. Based on the model and performance considera-
tions, SFG configuration guidelines are provided with a
practical SFG integration mechanism that can be applied
to both a Drop-Tail queue and an AQM to maximize the
potential benefit of SFG.

An analytic model is developed to determine the false
positive flow punishment ratio for SFG, i.e. how often a
well-behaving flow is unfairly handled because it shares
all of its bins with misbehaving flows. Parameters in
the model include: L - the number of levels supported
by SFG , N - the number of bins in each level, and B
- the number of misbehaving flows in the system. The
first step is to determine the expected number of bins
occupied by one or more misbehaving flows (referred to
as polluted bins) in a level.

Let T (B, i) be the number of ways to distribute B
flows into i bins such that no bin is empty, where B > i.
This is a well-understood probability problem that can
be computed as follow:

T (B, i) =

i
∑

k=0

(−1)k

(

i

k

)

(i − k)B (2)

Let Pw(N, B, i) be the probability that exactly i bins
from the N total bins are polluted with B misbehav-
ing flows. Computing Pw, requires determining the
total number of possible instances of the event. Let
W (N, B, i) be the number of ways to pollute exactly i
bins from N total bins with B misbehaving flows. This
is equal to the number of ways to choose i bins from N
total bins and distribute B flows into the chosen i bins
such that no bin is empty. Thus, Pw(N, B, i) is deter-
mined by dividing W (N, B, i) by the number of ways
to put B flows into N bins. Thus, we have:

Pw(N, B, i) =
W (N, B, i)

NB
=

(

N
i

)

T (B, i)

NB

Let Ew(N, B) be the expected number of polluted bins
in a level, given N total bins and B misbehaving flows.
Ew can be computed as the sum of each possible out-
come number of polluted bins times its occurrence prob-
ability Pw(N, B, i):

Ew(N, B) =

B
∑

i=0

(i Pw(N, B, i))

Knowing Ew(N, B), the false positive probability,
Pfp(L, N, B), that a well-behaving flow shares its bins
in all levels with misbehaving flows and thus can be un-
fairly treated can be computed as:

Pfp(L, N, B) =

(

Ew(N, B)

N

)L

=

(

1

NB+1

B
∑

i=0

i

(

N

i

)

T (B, i)

)L

(3)

Equation 3 can be used as a secondary SFG config-
uration tool to find an appropriate number of levels (L)
that lowers the false positive error rate after configuring
the number of bins per level (N), based on an expected
maximum number of misbehaving flows (B̂). A misbe-
having flow, defined in this context, is flow that is not
TCP-friendly [15] flow, where a TCP-friendly flow is
a flow with a data rate that does not exceed the max-
imum rate of a conformant TCP connection under the
same network conditions. In practice it is difficult to
determine if a flow is TCP-friendly. For example, a rela-
tively low bitrate unresponsive flow that is classified as a

TCP-friendly flow under light traffic loads can turn into
a TCP-unfriendly flow at a higher load. Yet, the above
definition is sufficient for the purposes of SFG. Once N
is determined, the rate limit for misbehaving flow classi-
fication becomes apparent, i.e. C/N and B̂ can be esti-
mated.

A primary performance factor to consider in choos-
ing N , the number of bins in a level, is the maximum
per-flow bitrate that SFG will permit during congestion.
Choosing N directly determines the maximum allowed
per-flow bitrate (C/N) for a fixed capacity C. If N is
too small, SFG will not effectively filter misbehaving
flows that have a low flowrate and will also have a high
false positive flow punishment ratio. On the other hand,
if N is too large, the small maximum allowed per-flow
rate can affect link utilization at low traffic loads dom-
inated by a few greedy flows and prevent applications
with bandwidth requirements larger than C/N from uti-
lizing unused capacity.

One way to address this SFG configuration issue is to
only enable SFG when the outbound link is congested,
while carefully setting N such that the maximum al-
lowed per-flow rate is small enough to effectively filter
misbehaving flows and greater than or equal to a TCP-
friendly rate [15] at the SFG enabling/disabling thresh-
olds. This simple approach offers a static, maximum al-
lowed per-flow rate during congestion regardless of the
actual load level. A more sophisticated approach is to
dynamically adjust N every control/measurement epoch
using a TCP-friendly rate estimator. The TCP-friendly
rate can be estimated using a TCP-friendly rate formula
where the congestion notification rate (CNR) is mea-
sured at the router and the average system round-trip
time is included as an extra SFG configuration param-
eter. This dynamic configuration approach is elegant but
has increased complexity because the SFG hash func-
tions will have to be adjusted frequently as N changes.
This paper explores the feasibility of the simple static
on/off approach and leaves the dynamic bin adjustment
idea as future work.

To provide an on/off mechanism for SFG, a high/low
watermark mechanism (mh, ml) for the average CNR
estimate is used. The CNR estimate at the router is con-
sidered as a measure of the congestion level. To esti-
mate the average CNR, SFG takes a weighted average
on CNR every epoch, where CNR (pn) is computed as
the relational sum of the packet drop rate of SFG (pd)
and the congestion notification probability of the queue
manager (pe):

pn = pd + (1 − pd) pe (4)

where, pe can be measured in terms of the queue over-
flow packet loss rate for a Drop-Tail queue, or explicitly
reported by the AQM queue manager.

The SFG configuration process is illustrated by exam-
ple. Setting mh = 0.02 and ml = 0.01, SFG assumes
congestion when CNR is over 2% and under 1%, respec-
tively. The maximum allowed per-flow rate enforced by
SFG at congestion can be determined by computing the
low boundary TCP-friendly rate at the low watermark
using a TCP-friendly rate formula from [15]:

Ttcp ≤ 1.5
√

2/3 S

τ
√

pn

(5)

where, Ttcp is the upperbound TCP-friendly rate, S is
average packet size and τ is estimated system round-
trip time. By setting S = 1500 bytes, a typical MTU,
and τ = 300 ms, a value chosen from a valid range
of average round-trip times [9, 20], Ttcp is 0.5 Mbps.
To achieve this maximum allowed per-flow rate, SFG
should set N = 20 (C/Ttcp) for a 10 Mbps output link.

After configuring N , the minimum number of levels
(L) that can provide an optimal false positive error rate
can be determined using Equation 3 given a range of the
expected number of misbehaving flows (B̂). A reason-
able B̂ can be estimated based on an Internet measure-
ment study [25] that reports about 10% of the traffic is
UDP traffic. Based on this statistics, an average of 1
Mbps UDP traffic is expected for a 10 Mbps link. As-
suming all UDP bandwidth is potentially misbehaving,
medium quality video, the typical bitrate will be about
300 Kbps. Thus, B̂ is about 3 to 4 misbehaving flows for
a 10 Mbps link. Assuming the UDP flows are low qual-
ity 56 Kbps video streams, a 10 Mbps link may carry as
many as 17 misbehaving flows.

Figure 4 plots the false positive error rates of an
N = 20 system, varying L for B̂ = 1, 5, 10, 15, to find
the number of levels that reduces the per-packet process-
ing overhead from hashing as well as the false positive
error rates. Figure 4 shows that L = 3 provides both
a low packet processing overhead and a low false pos-
itive error rate for the selected range of B̂. For exam-
ple, Pfp(3, 20, 5) ≈ 0.01 and Pfp(3, 20, 10) ≈ 0.06
indicates that the chances that a well-behaving flow is
unfairly treated in an epoch by SFG with L = 3 and
N = 20 is about 1% when B̂ = 5 and about 6% when
B̂ = 10. Similarly, Pfp(3, 20, 15) ≈ 0.15 shows that
the chosen SFG setting can also offer relatively low false
positive error rates for the higher range of B̂.

Consider now the router memory requirement for
SFG. Assuming each bin requires a 4-byte integer for
counting bytes received and a 8-byte double-precision
floating number for storing the drop probability, the
memory requirement for a 10 Mbps SFG link with L =
3 and N = 20 is 720 bytes per output port (3 levels ×
20 bins × 12 bytes/bin). Similarly, a 10 Gbps link with
an equivalent SFG setting of L = 3 and N = 20, 000
requires only 720 Kbytes of memory per output port.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7

F
al

se
 P

os
iti

ve
 P

ro
ba

bi
lit

y

Number of Levels (L)

N = 20, B = 01
N = 20, B = 05
N = 20, B = 10
N = 20, B = 15

Figure 2: False Positive Probability (N = 20)

The last SFG parameter to discuss is the con-
trol/measurement epoch length (ds). We recommend
setting ds to a couple of seconds (ds is set to 2 seconds
in this investigation), such that it is approximately twice
the upperbound average round-trip time seen on the In-
ternet [9, 20]. This avoids control error due to insuffi-
cient control data acquisition and minimizes congestion
control interference with the AQM controller. Consid-
ering the long flow lifetimes of potentially misbehaving
flows such as streaming media and network games, the
large epoch length, and hence slow response time is ac-
ceptable. A more responsive system would pay a high
price in terms of fairness, efficiency and link utilization
for packet drops caused by inaccurate SFG control.

5 Evaluation
This section compares the performance of SFG (with
Drop-Tail queue management) and the combination of
SFG and ARC, referred to as Stochastic Fair ARC
(SFA), with RED-PD [24], SFB [13], CHOKe [27] and
Drop-Tail through detailed simulations. The simulations
attempt to incorporate realistic traffic conditions by in-
cluding long-lived FTP flows (that vary in number over
time to induce a range of offered loads), background
Web traffic, and 2-way traffic (which can result in ack
compression). The IP packet simulator NS was used for
all simulations. The NS distribution comes with source
code for RED-PD and makes available the source code
for SFB as contributed code. We extended NS to support
CHOKe, ARC, SFG and SFA.

The simulations model a dumbell network topology
with a bottleneck link capacity of 10 Mbps and a max-
imum packet size of 1000 bytes. Round-trip link de-
lays are randomly uniformly distributed over the range
[60:1000], based on measurements in [20]. The physical
queue limit for each AQM and the Drop-Tail queue is set
to 500 Kbytes, approximately equal to the bandwidth-
delay product for the mean round-trip time.

The settings for the parameters of the various statis-
tical preferential drop and AQM mechanisms are based
on the recommendations of their authors (see Related
Work in Section 6 for details on other preferential-based

dropping mechanisms). The settings for RED have min-
imum and maximum thresholds of 50 and 300 respec-
tively, maximum drop probability of 0.15, weighted av-
erage factor Wq = 0.002, and the gentle option enabled.
The additional RED-PD settings include: a target system
round-trip time of 100 ms that is used to determine the
epoch length for monitoring and for the TCP-friendly
rate, flow monitor history window of 5, minimum time
to un-monitor a monitored flow and its drop rate thresh-
old of 15 seconds and 0.005, respectively, and maximum
drop probability increment step of 0.05. CHOKe, which
works in conjunction with RED, is set to divide RED’s
minimum and maximum queue threshold range into 5
even subregions and apply 2i + 1 drop comparisons for
an incoming packet, where i = {0, 1, 2, 3, 4} is the sub-
region ID.

For SFB, the number of levels and bins are set to
L = 3 and N = 20, the unresponsive detection CNP
threshold is set to 0.98, and the penalty box time is set
to 15 ms. SFB is set to switch hash functions every 20
seconds. For the Blue AQM inside each SFB bin, the
CNP increment step is 0.005 and the decrement step is
0.001 with a freeze time of 100 ms.

The settings for ARC include the measurement epoch
da = 1 second, α = 1.42 × 10−5, the target utiliza-
tion γ = 0.98 and the target queue q0 = 0. For SFG,
based on the analysis made in the previous section, the
on/off thresholds are mh = 0.02 and ml = 0.01, the
control/measurement interval ds = 2 seconds, the num-
ber of levels L = 3 and the number of bins N = 20.

All simulations use ECN enabled NewReno TCP for
both the long-live FTP flows and the Web sessions. Each
simulation has 50 backward direction bulk transfer FTP
flows and 300 forward direction background Web ses-
sions (using the Webtraf code built into NS) that start
evenly distributed during the first 30 seconds. Based
on settings from [3, 17], each Web session requests
pages with 2 objects drawn from a Pareto distribution
with a shape parameter of 1.2 and an average size 5
Kbytes. The Web sessions have an exponentially dis-
tributed think time with a mean of 7 seconds, which
results in an average utilization of about 2.5 Mbps of
the 10 Mbps capacity, a fraction typical of some Inter-
net links, such as in [30]. Each simulation has forward
direction bulk transfer FTP flows. To test the various
mechanisms under different traffic loads, the number of
forward direction FTP flows varies every 200 simulation
seconds from 10-50-100-200-400 flows and then back
down from 400-200-100-50-10 flows.

To more intuitively characterize the degree of conges-
tion experienced by the link beyond simply the number
of flows, the Drop-Tail queue simulation with the above
network settings was run with only the Web traffic, vary-
ing the number of Web session from 1200 to 1800, and

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 1 2 3 4 5 6 7 8 9

O
ffe

re
d

Lo
ad

 b
y

W
eb

 T
ra

ffi
c

Packet Drop % (DropTail Queue)

(1200 Sessions)

(1500 Sessions)

(1800 Sessions)

Session:

objects/click = 2 (object: mean = 5 Kbytes, Pareto = 1.2)

inter-click time = Exp. distibution w/ mean 7 seconds

Figure 3: Offered Load by Web Traffic versus Packet
Drop Rate (Drop-Tail queue: qlim = 500 Kbytes)

recording the packet drop rate for each load. Subse-
quently, the congested link bandwidth was changed from
10 to 100 Mbps and the simulation re-run to measure
the offered traffic rate for each number of Web sessions
under a capacity unconstrained condition. The offered
traffic rates were then converted to offered loads in re-
lation to the 10 Mbps link capacity, and plotted in re-
lation to the packet drop rates measured for the same
number of Web sessions under the 10 Mbps link. Fig-
ure 5 shows the linear relationship between the Drop-
Tail packet drop rate and offered load.

The offered loads given as a function of the Drop-Tail
packet drop rates are useful for characterizing the load
created by the TCP traffic mix (i.e., forward direction
FTP, backward direction FTP, and background Web traf-
fic), by converting the load of the mixed TCP traffic ex-
pressed in terms of the number of FTP flows into the
equivalent Web offered traffic load expressed in terms
of the packet drop rates of a Drop-Tail queue. Thus, the
equivalent offered loads for the TCP traffic mix when the
number of forward direction FTP flows is 10, 50, 100,
200 and 400 are about 1.0, 1.1, 1.2, 1.4 and 1.7 respec-
tively. This means, for example, that when the number
of FTP flows is 400, the congested link is experiencing
about 1.7 times the offered load it can handle without
having to drop any packets.

While an offered load of 1.7 is probably beyond any
realistic load for most routers on today’s Internet, this
high load serves as a stress test of the various prefer-
ential dropping and AQM mechanisms, showing insight
into how they handle the traffic in terms of fairness,
throughput, stability, queuing delay, packet and byte loss
rate, and Web performance. RED-PD, CHOKe, SFB,
SFG and SFA are evaluated using the TCP traffic mix,
in comparison with Drop-Tail and ARC, queue manage-
ment mechanisms without a preferential dropping mech-
anism. The next set of simulations include one unre-
sponsive 10 Mbps CBR flow added to the TCP traffic
mix, replacing the one unresponsive flow with five un-
responsive 2 Mbps CBR flows, and finally replacing the
five unresponsive flows with five unresponsive MPEG

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4: TCP Traffic Mix - Queue Dynamics (top) and
Throughput (bottom)

video VBR flows.

5.1 TCP Traffic Mix

As a baseline, this experiment compares the perfor-
mance of the various statistical preferential drop mech-
anisms with that of a Drop-Tail (DT) and ARC over the
range of loads with the TCP traffic mix (ie - no unre-
sponsive flows). Figure 4 shows the queue dynamics
(top) and system throughput (bottom) of DT, ARC, SFB,
CHOKe, RED-PD, SFG and SFA. The byte loss rate,
packet drop rate, and average Web object service time
for each system is shown in Figure 5

First, comparing the queue dynamics, throughput and
byte loss rate of Drop-Tail with ARC shows the potential
benefits of using AQM: control over link quality of ser-
vice (QoS) (low queue length) and efficient link utiliza-
tion. ARC is able to stably control traffic over the entire
load range, keeping the queue length low at around 100
Kbytes, and maintaining a high link utilization. ARC
loss rates are low (less than 2%), even at the offered load

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

B
yt

e
Lo

ss
 %

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ac

ke
t D

ro
p

%

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 5: TCP Traffic Mix - Packet Drop Rate (top),
Byte Loss Rate (middle) and Average Web Object Ser-
vice Time (bottom)

of 1.7, resulting in a higher goodput than the Drop-Tail
system. The low queue length is desirable for interactive
Internet applications and the stable queue size can also
greatly reduce the buffer size required to achieve a high
link utilization [2].

The packet loss rate and the average Web object ser-
vice time of Drop-Tail and ARC show some less well-
known performance aspects of ECN when viewed over
the range of traffic loads. Although the network effi-
ciency measured in byte loss rate is consistently better
for ARC, the packet losses for ARC, a combination of
ECN-incapable SYN packets for the Web traffic and the
backward direction TCP ACK packets, are about twice
as high as that of Drop-Tail as the traffic load increases
beyond an offered load of 1.2. To control traffic at con-
gestion, ARC, and more generally any AQM, using ECN
must maintain a higher congestion notification probabil-
ity (CNP) than the packet-drop congestion notification
rate of a Drop-Tail queue. As a result, ARC, by dropping

non-ECN packets with the CNP, favors ECN-capable
packets over non-ECN packets especially at high traf-
fic loads, yielding a significantly higher packet drop rate
than Drop-Tail for conditions in which small, non-ECN
enabled packets dominate.

This phenomenon creates the Web object delivery per-
formance crossover for the Drop-Tail and ARC systems
as the offered load changes from 1.2 to 1.4, at which
point the initial TCP timeout for SYN packet drops
becomes the dominating factor for Web object service
times. At the peak load of 1.7, the average Web object
service time for ARC is about 5 seconds, while the Web
object service time for Drop-Tail is about 2 seconds. For
the traffic load ranges below 1.2, the Web performance
results are consistent with the experimental measure-
ment results from [22], showing AQM with ECN can
significantly benefit Web traffic at offered loads from 0.9
to 1.0. In contrast, for traffic load ranges above 1.2 or
1.3, Web performance can be significantly degraded by
AQM with ECN, although such high loads are uncom-
mon in practice.

The various performance measures of SFG (with
Drop-Tail queue management) shown in Figure 4 and
Figure 5 closely match those of Drop-Tail, indicating
that SFG, activated from 300 to 1900 seconds, works
well with Drop-Tail queue management for the TCP
traffic mix. Similarly, the performance of SFA closely
matches that of ARC except for the slightly higher byte
loss rates, indicating SFG interfered little with the ability
of ARC to control TCP traffic. The sharp link utilization
drops for SFG and SFA between 1800 and 1900 sec-
onds are due to the maximum allowed per-flow rate of
SFG being less than the TCP-Friendly rate as the system
load goes down. However, both SFG and SFA detect the
decrease in load within a minute and then turn off the
fairness enforcement mechanism.

Comparing the performance of SFB, CHOKe and
RED-PD with that of SFA in Figure 4 and Figure 5,
SFB, CHOKe and RED-PD have consistently higher
packet drop rates and byte loss rates than SFA, except
for RED-PD’s slightly lower byte loss rate caused by
RED-PD’s higher operating queue length. Yet CHOKe,
which works in conjunction with a RED controller, was
not able to benefit from this higher RED queue length
due to its rather inefficient statistical preferential drop-
ping mechanism, and had a low average throughput of
8.5 Mbps with the low offered loads during the first and
last 200 seconds. Throughout the simulation, SFB suf-
fers from low link utilization caused by the inefficient
rate control afforded by Blue for the traffic mix.

5.2 An Unresponsive, High-Bitrate Flow
In this set of simulations, one unresponsive 10 Mbps
CBR UDP flow is added to the TCP traffic mix used in

Figure 6: An Unresponsive High-Bitrate CBR Flow -
Queue Dynamics

Section 5.1, starting at time 100 seconds and stopping at
time 1700 seconds in order to test the performance of the
different preferential dropping mechanisms. For com-
parison, the performance of Drop-Tail and ARC are ex-
amined to determine the impact of the unimpeded CBR
flow. Figure 6 shows the queue dynamics, Figure 7
shows the system throughput (top) and the throughput
of the single CBR stream (bottom), and Figure 8 shows
the average Web object service time of the systems.

Figure 6 shows that the Drop-Tail queue remains full
from the time the high-bitrate CBR flow starts until it
stops and Figure 7 (bottom) shows that Drop-Tail is very
unfair as about 95% of the link capacity is used by the
CBR flow. The average Web service time for Drop-Tail
ranges from about 50 to 300 seconds, too high to be seen
in Figure 8.

ARC controls the aggregated traffic and the unrespon-
sive flow better than Drop-Tail, applying a high con-
gestion notification probability (CNP) to drop the UDP
packets while marking the ECN-enabled packets. Fur-
thermore, as shown in Figure 6, ARC is still able to keep
the queue length consistently low while maintaining a
high link utilization even in the supersaturated condi-
tions. However, like Drop-Tail, ARC is unfair, and the
Web traffic experiences high service times, ranging from
about 2 to 13 seconds throughout the simulation.

Figure 7 (bottom) shows that SFB is able to effec-
tively handle the high-bitrate CBR flow, reducing its
achieved bandwidth to the target rate. Yet, as in the
case of the TCP-only traffic mix, SFB experiences se-

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
B

R
 T

hr
ou

gh
pu

t (
M

bp
s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 7: An Unresponsive High-Bitrate CBR Flow -
System Throughput (top) and CBR Throughput (bot-
tom)

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 8: An Unresponsive High-Bitrate CBR Flow -
Average Web Object Service Time

vere link underutilization. CHOKe, using its statistical
filtering mechanism, is able to regulate the unresponsive,
high-bitrate flow. However, CHOKe’s fairness is coarse
as CHOKe heuristically increases the number of ran-
dom match drops for each incoming packet as the load
increases. RED-PD is able to effectively regulate the
high-bitrate CBR flow by monitoring and then restrict-
ing the flow to no more than the periodically adjusted
TCP-friendly rate. As observed from the queue dynam-
ics of both the RED AQM based CHOKe and RED-PD,
by frequently adjusting the maximum allowed flow rate
for the CBR flow, RED-PD affects the stability of the
RED congestion control, causing the queue in RED-PD
to oscillate more than the queue in CHOKe.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 C
B

R
 T

hr
ou

gh
pu

t (
M

bp
s)

Seconds

Confidence Level = 0.90

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 9: Multiple Unresponsive Medium-Bitrate CBR
Flows - System Throughput (top) and CBR Throughput
(bottom)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 10: Multiple Unresponsive Medium-Bitrate CBR
Flows - Average Web Object Service Time

Similarly to SFB and RED-PD, both SFG (with Drop-
Tail) and SFA (SFG + ARC) are able to effectively re-
strict the rate of the unresponsive high-bitrate CBR flow
to the target maximum. Yet, Figure 7 (top) shows that
a high-bitrate, unresponsive flow in lightly loaded traf-
fic conditions can degrade link utilization by forcing a
pre-configured target rate to be imposed on all incom-
ing flows. This potential shortcoming can be relaxed by
dynamically adjusting the configuration of N , as briefly
discussed in Section 4. Finally, the consistently stable
and low queue dynamics in Figure 4 (top) of Section 5.1
and Figure 6 show that the statistical filtering mecha-
nism of SFG does not noticeably affects the congestion
control of ARC.

5.3 Multiple Unresponsive, Medium-
Bitrate Flows

For the simulation in this section, the one 10 Mbps un-
responsive CBR flows used in Section 5.2 is replaced
with five unresponsive 2 Mbps CBR flows. As in the
previous simulation, the unresponsive CBR flows are
started at 100 seconds and stopped at 1700 seconds. Fig-
ure 9 shows the system throughput (top) and the average
throughput of the five unresponsive CBR streams (bot-
tom), and Figure 10 shows the average Web object ser-
vice times. To save space, the queue dynamics are not
shown, since they are very similar to the queue dynam-
ics in Figure 6 in Section 5.2 and Figure 11 in the next
section.

The effect of five unresponsive 2 Mbps CBR flows
on the performance of Drop-Tail and ARC is similar to
that of a single unresponsive 10 Mbps CBR flows. How-
ever, the five smaller capacity flows cause a remarkable
degradation in performance for SFB. Figure 9 (bottom)
shows SFB fails to detect the unresponsive medium bi-
trate flows until the offered load reaches 1.7, and per-
forms even more unfairly than ARC, despite ARC not
having any fairness protection mechanisms. Moreover,
when SFB finally detects the five unresponsive streams
and restricts their rate by putting them into a penalty box,
there is significant link underutilization, since SFB fails
to lower the congestion notification probability (CNP)
accordingly. SFB’s failure to properly adjust the CNP
when there is an increase in the available capacity is also
apparent in the Web object service time, shown in Fig-
ure 10, that is similar to or larger than that of ARC for
the second half of the simulation.

Other preferential dropping mechanisms perform as
designed. RED-PD effectively regulates each unrespon-
sive flow to the estimated TCP-friendly rate at each con-
trol epoch, and SFG and SFA prevent each flow from
using more bandwidth than the pre-assigned target rate
of 0.5 Mbps.

5.4 Multiple Unresponsive, MPEG Video
Streams

In order to test SFB, CHOKe, RED-PD, SFG and SFA
with more realistic unresponsive flows, the five unre-
sponsive 2 Mbps CBR flows used in Section 5.3 are re-
placed with five unresponsive MPEG-like video streams,
implemented using tools from [10]. The MPEG streams
have average I-, P- and B-frame sizes of 11, 8, and 2
Kbytes, respectively based on a trace of typical MPEG-1
video, sent at 30 frames per second for an average bitrate
of slightly over 1 Mbps.

As in the previous experiments, the five MPEG
streams are started at 100 seconds to stopped at 1700
seconds. For completeness, this section includes the

Figure 11: Multiple Unresponsive MPEG Video
Streams - Queue Dynamics

same set of performance results as Section 5.2. Fig-
ure 11 shows the queue dynamics of the different sys-
tems, Figure 12 shows the system throughput (top) and
the average throughput of the five MPEG streams (bot-
tom), and Figure 13 shows the average Web object ser-
vice times.

As in the case with five unresponsive 2 Mbps CBR
flows, for the MPEG streams, all preferential dropping
mechanisms perform well, except SFB which again fails
to detect the unresponsive flows. Figure 11 and Fig-
ure 12 (top) show SFA performs best in terms of queue
length, stability and control of link utilization. Consid-
ering the Web performance in Figure 13, at an offered
load of 1.2 or less, all preferential drop AQM mecha-
nisms outperform Drop-Tail and ARC. When the offered
load goes beyond 1.2, all ECN-based mechanisms per-
form worse than Drop-Tail, where SFG with Drop-Tail
queue performs best.

From Figure 12 (top), after 1700 seconds, the SFG
and SFA’s turning on/off mechanism in response to load
is more accurate when used with ARC than with Drop-
Tail. The turn on/off decisions are based on the esti-
mated congestion notification rate (CNR) of the system
which can be explicitly informed by ARC, whereas for
the Drop-Tail queue, SFG has to measure the packet
overflow rate to estimate the CNR.

In terms of fairness enforcement in Figure 12 (bot-
tom), RED-PD, with its heavy-weight TCP-friendly tar-
get flow rate computation, perform best followed by
SFG and SFA. For some additional complexity, the fair-

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 M
P

E
G

 T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

Confidence Level = 0.90

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 12: Multiple Unresponsive MPEG Video
Streams - System Throughput and MPEG Throughput

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 13: Multiple Unresponsive MPEG Video
Streams - Average Web Object Service Time

ness control performance gap between RED-PD and
SFG and SFA could be reduced by dynamically adjust-
ing the target flow rate, as briefly discussed in Section 4
(and left as future work). However, even without this
adjustment, the main goal of SFG and SFA has been
met, and that is not to strictly enforce TCP-Friendly fair-
ness but rather provide reasonable protection from egre-
giously unresponsive flows.

6 Related Work

This section provides details on the most pertinent re-
lated work: Stochastic Fair Blue (SFB) [13], RED with
Preferential Dropping (RED-PD) [24] and CHOKe [27]
(which stands for CHOose and Keep/Kill).

SFB, RED-PD and CHOKe provide approximate fair-

ness among individual flows without requiring per-flow
state information or an edge-core DiffServ [5] network
architecture. These mechanisms address the scalability
issues of per-flow traffic management by using statisti-
cal flow-monitoring or packet-filtering techniques that
detect or filter outstanding flows by keeping limited per-
flow information. RED-PD requires the most per-flow
state information, SFB the second most, and CHOKe the
least. Although these mechanisms cannot guarantee to-
tal per-flow fairness, they can be scalably deployed inde-
pendent of other changes at any router with only moder-
ate overhead. Moreover, whether total per-flow fairness
is necessary, or even beneficial for flows with heteroge-
nous round-trip times, is arguable.

SFB uses a Bloom filter to offer both a fair congestion
notification service and a flow monitoring-based fairness
protection service. SFB assigns incoming flows into dif-
ferent groups (accounting bins) multiple times and main-
tains the congestion notification probability (CNP) for
each flow group using the BLUE AQM [12]. SFB de-
termines the CNP for an individual flow by taking the
minimum CNP of the groups to which the flow belongs.
To determine if a specific flow is consuming more band-
width than other flows, SFB monitors the maximum
CNP of the bins to which a flow belongs. When the
maximum CNP of the flow is greater than or equal to a
given threshold (0.98 is recommended value), the flow
is put in to a penalty box and gets rate limited for a fixed
amount of time.

RED-PD is a statistical flow monitoring mechanism
that extends RED to support pseudo per-flow bandwidth
fairness by recording the per-flow packet drop history to
detect potentially high-bandwidth flows during conges-
tion. Although the drop history-based method for se-
lecting flows to monitor reduces the amount of state in-
formation required, the flow selection algorithm is com-
plex and requires a significant overhead due to dynamic
the history list lookup and maintenence. Moreover, the
flow selection performance is sensitive to the history col-
lection epoch length that is computed based on a TCP-
friendly rate formula [15]. Once a flow is selected, RED-
PD monitors its flow rate and regulates it under the esti-
mated TCP-friendly rate given by the TCP-friendly for-
mula using the RED CNP and a hard-coded round-trip
time as parameters.

CHOKe is a lightweight statistical packet filtering
mechanism. For each incoming packet, CHOKe ran-
domly choose a packet from the outbound queue and
drops both packets if they are from the same flow. This
algorithm is derived from the observation that the higher
a flow’s bitrate, the more the chance for a packet from
the flow to be found in the outbound queue. However,
the basic CHOKe algorithm cannot effectively control
the target flow rate for unresponsive flows as offered

traffic load changes. Thus, CHOKe extends the number
of the random packet matches per incoming packet as of-
fered load increases. To estimate offered load, CHOKe
suggests using RED’s average queue length. The ex-
tended CHOKe algorithm divides RED’s minimum and
maximum queue thresholds range into m even subre-
gions and applies 2i + 1 drop comparisons for an in-
coming packet, where i = {0, 1, 2, 3, ..., m − 1} is the
subregion ID. Although simple in practice, CHOKe can
have significant overhead that increases with the offered
load. Additionally CHOKe may not work well with
other AQMs, such as ARC, that minimize queue length,
since there are not as many packets to randomly compare
against as in a RED queue.

7 Summary and Future Work
This paper presents a novel statistical packet filtering
mechanism, Stochastic Fairness Guardian (SFG), which
protects flows that respond to congestion from unrespon-
sive flows through preferential packet drops before the
router queue manager. SFG is a general packet filter that
can be used in congestion with a Drop-Tail queue or with
an AQM to improve efficiency as well as provide pro-
tection. This paper also develops an analytic model for
estimating the chance of a flow being incorrectly lim-
ited with SFG, and provides practical SFG configuration
guidelines through performance bottleneck analysis and
the false positive rate analysis.

In evaluation, SFG is integrated with a Drop-Tail
queue and with a previously developed AQM, called
ARC, forming Stochastic Fair ARC (SFA). SFG and
SFA are evaluated through simulations and compared
with other preferential drop mechanisms including
SFB [13], CHOKe [27] and RED-PD [24], and also
compared with approaches with no filtering mechanisms
including ARC and Drop-Tail. Performance metrics in-
clude queue dynamics, throughput, fairness, byte loss
rate, packet drop rate and Web object service time.

Considering overall performance and design com-
plexity, SFA outperforms other preferential dropping
mechanisms as well as Drop-Tail and ARC over a wide,
practical range of traffic loads. AQMs using ECN, while
improving Web performance under light or moderate
congestion, can severely degrade small Web object ser-
vice times versus Drop-Tail for offered loads of 1.4 or
higher. In such a high traffic load, SFG with Drop-Tail
queue management shows the best Web performance.

Future work includes extending SFG to dynamically
adjust the number of bins per level (N) each epoch such
that the maximum allowed flow rate imposed by SFG is
set to an estimate of the TCP-friendly rate of the sys-
tem. Additional future work is to implement SFG and
SFA into the Linux kernel and measure the filtering over-
head.

References
[1] Anonymous, “Aggregate Rate Control for Efficient

and Practical Congestion Managment,” Work un-
der submission, 2004.

[2] G. Appenzeller, I. Keslassy, and N. McKeown,
“Sizing Router Buffers,” in Proceedings of ACM
SIGCOMM, Portland, OR, USA, Sept. 2004.

[3] M. Arlitt and T. Jin, “Workload Characterization
of the 1998 World Cup Web Site,” HP Laborato-
ries Palo Alto, Tech. Rep. HPL-1999-35R1, Sept.
1999.

[4] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin,
“REM: Active Queue Management,” IEEE Net-
work, May 2001.

[5] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang, and W. Weiss, “An Architecture for Dif-
ferentiated Services,” IETF Request for Comments
(RFC) 2475, Dec. 1998.

[6] B. Bloom, “Space/Time Trade-offs in Hash Cod-
ing with Allowable Errors,” Communications of
the ACM, vol. 13, no. 7, July 1970.

[7] B. Braden, D. Clark, J. Crowcroft, B. Davie,
S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson, K. Ramakr-
ishnan, S. Shenker, J. Wroclawski, and L. Zhang,
“Recommendations on Queue Management and
Congestion Avoidance in the Internet,” RFC-2309,
Apr. 1998.

[8] Z. Cao, Z. Wang, and E. Zegura, “Rainbow Fair
Queuing: Fair Bandwidth Sharing Without Per-
Flow State,” in Proceedings of IEEE Infocom, Tel-
Aviv, Israel, Mar. 2000, pp. 922 – 931.

[9] B.-Y. Choi, S. Moon, Z.-L. Zhang, K. Papagian-
naki, and C. Diot, “Analysis of Point-To-Point
Packet Delay in an Operational Network,” in Pro-
ceedings of IEEE INFOCOM, Hong Kong, Mar.
2004.

[10] J. Chung and M. Claypool, “Better-Behaved,
Better-Performing Multimedia Networking,” in
Proceedings of SCS Euromedia, May 2000.

[11] A. Demers, S. Keshav, and S. Shenker, “Analy-
sis and Simulation of a Fair Queueing Algorithm,”
in Proceedings of ACM SIGCOMM, Austin, TX,
USA, Sept. 1989.

[12] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue:
An Alternative Approach To Active Queue Man-
agement,” in Proceedings of the Workshop on Net-
work and Operating Systems Support for Digital
Audio and Video (NOSSDAV), June 2001.

[13] W. Feng, D. Kandlur, D. Saha, and K. Shin,
“Stochastic Fair Blue: A Queue Management Al-
gorithm for Enforcing Fairness,” in Proceedings
of IEEE Infocom, Anchorage, Alaska, USA, Apr.
2001, pp. 1520 – 1529.

[14] S. Floyd and V. Jacobson, “Random Early De-
tection Gateways for Congestion Avoidance,”
IEEE/ACM Transactions on Networking, Aug.
1993.

[15] S. Floyd and K. Fall, “Promoting the Use of
End-to-End Congestion Control in the Internet,”
IEEE/ACM Transactions on Networking, Feb.
1999.

[16] Y. Gao and J. Hou, “A State Feedback Control
Approach to Stabilizing Queues for ECN-Enabled
TCP Connections,” in Proceedings of IEEE INFO-
COM, San Francisco, CA, USA, Apr. 2003.

[17] F. Hernandez-Campos, K. Jeffay, and F. Smith,
“Tracing the Evolution of the Web Traffic: 1995-
2003,” in Proceedings of the 11th IEEE/ACM In-
ternational Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems (MASCOTS), Oct. 2003.

[18] Z. Heying, L. Baohong, and D. Wenhua, “De-
sign of a Robust Active Queue Management Al-
gorithm Based on Feedback Compensation,” in
Proceedings of ACM SIGCOMM, Karlsruhe, Ger-
many, Aug. 2003.

[19] C. Hollot, V. Misra, D. Towsley, and W. Gong, “On
Designing Improved Controllers for AQM Routers
Supporting TCP Flows,” in Proceedings of IEEE
Infocom, Anchorage, AK, USA, Apr. 2001.

[20] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley, “Inferring TCP Connection Charac-
teristics Through Passive Measurements,” in Pro-
ceedings of IEEE INFOCOM, Hong Kong, Mar.
2004.

[21] S. Kunniyur and R. Srikant, “Analysis and De-
sign of an Adaptive Virtual Queue,” in Proceedings
of ACM SIGCOMM, San Diego, CA, USA, Aug.
2001.

[22] L. Le, J. Aikat, K. Jeffay, and F. D. Smith, “The Ef-
fects of Active Queue Management on Web Perfor-
mance,” in Proceedings of ACM SIGCOMM, Karl-
sruhe, Germany, Aug. 2003.

[23] D. Lin and R. Morris, “Dynamics of Random Early
Detection,” in Proceedings of ACM SIGCOMM
Conference, Cannes, France, Sept. 1997.

[24] R. Mahajan, S. Floyd, and D. Wetherall, “Con-
trolling High-Bandwidth Flows at the Congested
Router,” in Proceedings of the 9th International

Conference on Network Protocols (ICNP), Nov.
2001.

[25] S. McCreary and K. Claffy, “Trends in Wide Area
IP Traffic Patterns: A View from Ames Internet
Exchange,” in Proceedings of ITC Specialist Sem-
inar on IP Traffic Measurement, Modeling and
Management, Monterey, CA, USA, Sept. 2000.

[26] P. McKenny, “Stochastic Fairness Queueing,” in
Proceedings of IEEE Infocom, San Francisco, CA,
USA, June 1990.

[27] D. Mitra, K. Stanley, R. Pan, B. Prabhakar,
and K. Psounis, “CHOKE, A Stateless Active
Queue Management Scheme for Approximating
Fair Bandwidth Allocation,” in Proceedings of
IEEE Infocom, Tel-Aviv, Israel, Mar. 2000.

[28] K. Papagiannaki, N. Taft, and C. Diot, “Impact
of Flow Dynamics on Traffic Engineering Design
Principles,” in Proceedings of IEEE INFOCOM,
Hong Kong, China, Mar. 2004.

[29] K. Ramakrishnan, S. Floyd, and D. Black,
“The Addition of Explicit Congestion Notification
(ECN) to IP,” RFC-3168, Sept. 2001.

[30] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Grib-
ble, and H. M. Levy, “An Analysis of Internet Con-
tent Delivery Systems,” in Usenix Operating Sys-
tems Design and Implementation (OSDI), Boston,
MA, USA, Oct. 2002, pp. 315 – 327. [Online].
Available: http://www.usenix.org/publications/
library/proceedings/osdi02/tech/saro%iu.html

[31] G. Silva, A. Datta, and S. P. Bhattacharyya, “PI
Stabilization of First-Order Systems with Time De-
lay,” Automatica, Dec. 2001.

[32] I. Stoica, S. Shenker, and H. Zhang, “Core-
Stateless Fair Queueing: Achieving Approx-
imately Fair Bandwidth Allocations in High
Speed Networks,” in Proceedings of ACM SIG-
COMM Conference, Vancouver, British Columbia,
Canada, Sept. 1998, pp. 118 – 130.

