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Abstract

XQuery, the defacto XML query language, is typically comgb®f highly nested expressions. Iterative
execution of such expressions tends to be intuitive bufigieft. Instead, decorrelation of nested XQuery ex-
pressions opens up the opportunity for significant querynapation. Although several algorithms have been
proposed to optimize nested XQueries, these works pag &ttention to the ordered semantics of XQuery ex-
pressions. The appropriate extension of decorrelationQoiety with multiple level orderby clauses and other
order sensitive functions hence represents an importahban-trivial task. We propose an algebraic rewriting
technique of nested XQuery expressions containing expliderby clauses. The proposed work successfully ad-
dresses the challenges caused by the hierarchical natditbeordered semantics of XQuery expressions. Using
a running example, our decorrelation algorithm is illustda Further, we show the performance gain achievable
by our approach via an experimental study.

1 Introduction

The XQuery language [21] and the XML path language [20] hasth bbeen widely accepted for querying XML
data. Several optimization technigues have been propasexiHath expressions, such as XPath containment [7],
answering XPath queries using views [1] and XPath satidifialpl0]. Beyond the features of XPath, XQuery
provides more powerful query support by nested express$iavisig correlated variable bindings, and multiple level
ordering overwriting the source document order. On therotfaend, the direct applicability of the well known
optimization techniques to the XQuery langudgis precluded by these new features. How to enable the usage
of existing optimization techniques to XQuery processirithwested and order sensitive semantics becomes an
important and non-trivial task. Our work in this paper irderto provide a practical approach to fill the gap between
the existing work of XPath query optimization and the XQuepyimization with order semantics.

XQuery expressions are typically composed of highly nesied/OR (short for thefor, let, where orderby
and return) blocks to retrieve and reconstruct hierarchical XML dai#e call such nested XQuery expression

correlatedif an inner FLWOR block refers to a bound variable defined idetshis block. The intuitive method

H1n this paper, we use the term XQuery to refer to the complexiX§ expression that cannot be rewritten as an XPath expness



of an iterative execution of correlated queries tends toelss Efficient than an equivalent optimized set-oriented
execution strategy. Decorrelation has been used as aniwdfepproach for optimization of nested queries in
relational databases [9, 4, 16].

Unlike in relational databases, order is important for XMlieges. By default, both the XPath and XQuery
languages are order sensitive. The XPath language hassmdsitive functions such assition(), first() and
last(). All the order sensitive functions used in the XPath languagrk on the document order. In addition
XQuery expressions may contain multiglelerbyclauses that overwrite the document order. XQuery deairoal
needs to preserve the ordered semantics.

Some early works on XQuery unnesting were done by FegaraanfbMay et al. [12]. Fegaras extended the
rule-based unnesting algorithm used in Object Orientedbdaes to the XQuery language in stream processing
without considering order. Inspired by [3], May et al. pred a rule-based rewriting solution for XQuery unnest-
ing based on an order preserving algebra. However, theydlidiscuss order beyond the document order and how
the order affects the unnesting. These previous works gedviewriting rules for only certain classes of nested
XQuery expressions. These works did not solve the XQuengstimg problem under the order semantics thor-
oughly, especially for the multiple level orderings anderdensitive functions.

Below we list the issues that must be considered for effick&piery decorrelation.

e Typically, an XQuery expression may have multiple leveleslyy clauses among subqueries. The decorrela-
tion approach must preserve the order specifications inriggmal XQuery.
¢ In case of duplicate elements existing in variable bindingere may be repeated computation. For better

performance, the decorrelation approach must avoid sysgtated computations.

e The Left Outer Join operator has been widely used to avoidriact removal of tuples of the outer query
block after decorrelation. In XQuery decorrelation, exmste of empty collection makes this problem much

more common. The decorrelation approach must keep thenaliguery semantics.

Considering these issues, in this paper we propose an algabed decorrelation algorithm that not only works
correctly for arbitrarily nested XQuery expressions withltiple orderby clauses, but also generates an efficient
query plan. Our work can be easily extended to existing algblased query engines. Our work is inspired by
the magic decorrelation proposed by Seshadri et al. [16}e lttee authors proposed a SQL decorrelation method

designed to generate more efficient rewritten queries fompdex correlated SQL queries.



The basic idea in [16] is that first the duplicate free valuethe outer referenced column are extracted. Then
based on these values, all possible results from the supaoercomputed once and then materialized. Thereafter
materialized results are joined with the outer query blackie outer referenced column to restore the duplication.

Our approach, calledlagic branch is an extension and adaption of this technique towards raffigent
XQuery decorrelation. The new challenges come from: (1)tipial level orderings in XQuery vs. single level
ordering (at most) for SQL, and (2) the hierarchical natdr¥ML vs. the flat relational tables. For the first chal-
lenge, we treat the multiple level orderings as special faggte functions” and process accordingly. For the second

challenge, some extensions are needed for correctnessidéothe following XQuery.

for $a in Doc("a.xm")/a
return <tag>
{for $b in Doc("b.xm")/b
where $b = $a/c
return $b}

</tag>

The reason of adding an extiastinctto the Magic Set decorrelation in [16] is that the correlatetimn may
not be the key of the table and duplications may exist. In abt@uery example, the navigatio$i(/c) may generate
more complex situation due to the hierarchical nature anidi+set semantics of XML. Consider two instances$af
having distinct node IDx; andas in the input XML document. Suppose that the navigaiaric generates tuples:
(a1, c1), (a1, o), (a2, c3) and @2, cy4). Since the predicate of the Where clause in above XQuergrigarison on
values, we need to retrieve the string value for each ofthe nodes. Assume that, c; andcs have the same
string valuev{, while ¢4 has the string values. To save repeated computation in the subquery, one naiveofvay
using magic decorrelation here is adding an extra valueddasinct upon the$a/c and conducting a value based
Join with $b. Supposeh; has string value{ andbs has string values. After rebuilding the duplications by a
value based Join (or Left Outer Join if the count bug exisiff) the whole$a/c, the result tuples area(, c1, b1),
(a1, ca2,b1), (as, c3,b1) @and @, c4, b2). According to the semantics of the example XQuery, two |amois need to be
fixed: (1)b; should not appear two times fag, even if it joins with differenta/c nodes; and (2); andb, should
be combined together far,. Such situation cannot be handled by original Magic Set tetzgion.

Another observation about the naive application of magwodelation in the above example is that the Left
Outer Join with$a/c may not remove all the “count bugs”. It can only deal with tlteation that somea/c

instances may not have any matct$édnstancé. The semantics of the example XQuery require the empty tags i

2Since there is no aggregation in this particular query, tiie Quter Join is actually a Join only.
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the result even if some instances$af do not have anga/c instance at all. Thus another Left Outer Join with the
whole sequence dfa may be necessary.

Our work successfully addresses these challenges caust thyerarchical nature of XML documents. By
employing grouping operations (see Section 4.4), repeaiatputation is avoided correctly; and by utilizing a ID
based Outer Join with the binding variable only when necgstizge correctness and efficiency are achieved. Our

work brings forth the following novel contributions to XQuedecorrelation:

We extend and adapt the magic decorrelation method from $Qhet XQuery language, and propose an

algebra based decorrelation algorithm.

Our approach preserves the correct order semantics acrogglenlevel nested XQuery expressions.

We propose to use groupings to avoid repeated computatiok®uery expressions.

Our algorithm proposes a hybrid evaluation distinguishiddgpased operators and string value based operators

for optimization purposes.

We employ an algebraic framework discussed in Section 3 algebra extends relational algebra by allowing
collection-valued columns and being order-preservinglsk introduces new operators to express necessary XQuery
semantics. However, the main idea of our approach is geard@an be applied to other similar algebras like NAL
[12] and SAL [2].

This paper is organized as follows. We first give a descriptid the related work in Section 2 and briefly
describe the algebraic framework used in this paper in &e&i A running example illustrating the magic branch
decorrelation algorithm and a detailed explanation of ¢dgor&hm is discussed in Section 4 and 5. In Section 6 we
focus on several additional issues specific to complex X@decorrelation. We turn to implementation and present

experimental results in Section 7, while Section 8 conduties paper.

2 Related Work

Modern database systems [9, 5, 16] attempt to merge subhlosks into the outer query block, thereby eliminating
correlations and avoiding nested iteration evaluationchSdecorrelation” is typically done by introducing outer
join and grouping operations.

More recently, methods that focus on the efficiency of dedated subqueries have been proposed. In [16],

the authors proposed a technique called magic decormelfiicnested SQL queries. By materializing results from



subqueries and postponing the Outer Join, this approactupes a typically more efficient query plan. Our proposal
is conceptually inspired by this technique.

Decorrelation of XQuery expressions has also been studieglationship to native XML query engines. One
effort is by Paparizos et al. [13] in the TIMBER system. Hdre authors pointed out the implicit use of grouping
constructs in the XQuery's result construction. Recogjznd explicitly adding the grouping operation can lead to
unnesting of XQuery expressions. Their work is based orrdeegtigebra in TIMBER. However they do not consider
ordering and their grouping operator is defined on sets e§fr&hich makes it expensive. Another drawback of this
approach is that their transformation from the XQuery lamguto the TAX tree is complex and not complete, as
pointed out in [12].

Fegaras [6] and May et al. [12] have studied XQuery unnediagged on the unnesting techniques from object-
oriented query languages [3, 5]. These works do not discassrtklation of XQuery expressions containargerby
clauses, which is now tackled by our work.

There are also some works in the literature about publiskidd documents from relational data that mention
decorrelation in processing. In [17], magic decorrelai®extended and used in XPERANTO to decorrelate the
XML view query and user XQuery. This approach is closest tograposal, while the major difference is that the
correlated attribute eventually comes from a column of tiggeulying flat relational table, instead of XML nodes of

subtrees. Thus certain challenges we identified, such awdee issue have not been observed.

3 Preliminaries

XQuery: In this paper, we consider a subset of the XQuery languagedgfined by the grammar in Fig. 1. This
subset, plus some extensions of user-defined functioncesuto express the XMark benchmark query set [15].
Besides the basiELWORclauses, the XQuery fragment we consider also includes-oetited functions (e.g., the
position function), and quantifiers. Our approach is notiapble to recursively nested XQuery expressions.
XA Algebra: Our XML algebra KA) expresses the subset of the XQuery language shown in Fi¥Alis an
order-preserving extension of the relational algebragtesi to handle ordered XML data. For the purpose of
decorrelation, this algebra is similar to NAL [12], SAL [2hé the algebra proposed in [14]. Hence our approach
can be easily extended to these algebras.

XA extends the relational algebra mainly in two key aspeotster-preservation and nested tuples. XA works

on sequences of tuples where every column corresponds tdadleaor to a generated column of an intermediate



Ezxpr = c /latomic constants
$var /Ivariable
(Ezpr, Expr) llsequence construction
Expr/a:n /Inavigation step (axis a, node test n)
tag(Expr) /lelement constructor: tagger
FLWOR /lquery block
QFEzxpr Illexpression with quantifier
CompExpr /lcomparison expression for predicates
Order Expr /lorder-sensitive function. eg. position()

(For | Let)t [W here] [Orderby] return Ezpr

for $var in Expr

let $var := Expr

whereEzpr

order byEzpr

(some| every) $var in Expr satisfiesExpr

Expr CompOp Expr

/ICompOp is any comparison operator. eg. “="

FLWOR
For

Let

Where
Orderby
QFExpr
CompExpr

Figure 1: Syntax of XQuery Subset

result. To avoid ambiguity, we assume all the variable arldnesn names are unique in processing of the XQuery.
We use theXATableto represent such ordered sequences of tuples. The inpuiugjpgt of each operator are both
XATables. An XATable may contain nested tuples, that is,dbitent of a column may be a sequence of zero or
more tuples. In other words, XATable allows collectionued columns. The collection-value can be set, multi-
set (bag) or sequence of atomic data types according to Xa@enantics. The formal definition of the XATable

schema is given next.

Definition 1 LetT = {a4, ..., a,, } be a finite set of columns. XATable schefhaverT is defined recursively as:
1. Ifay, ..., a,, are atomic columns, theR = (ay, ..., a,) is an XATable schema ovérhavingdepth(R) = 0.
2. Ifaq, ..., a, are atomic columns anfty, ..., R,,, are XATable schemas having columns denoted(ds, ), ..., A(R,,),

thenR = (aq, ..., an, R1, ..., Ry,) is an XATable schema.

Since XA is not designed for type inference purposes, we bale two kinds of atomic values in an XATable:
the ID of an XML node, which globally identifies the XML nodejdthe string value of an XML node, which is
the text content of the subtree rooted at the XML node. Wendjaish the ID based operations from the string
value based operations. The XML data storage provides csiovefunctions from the node ID of the input XML
document to the associated string value. For newly cortstlu€ML nodes, the storage has a skeleton function to
assign unique ID to the nodes.

To define the order-preserving semantics of XA operatorsyiVese a sequence abstraction of the XATable. For
an input XATableR, h(R) denotes the first tuple (head) of the XATable @(&) denotes the remaining tuples (tail)

of the XATable. The symbab is used for the concatenation (ordered union) of two XATablEhe concatenation



of XATable columns is denoted by. We define the algebraic operators recursively on theirtingATable(s).
For binary operators, we use left hand side (LHS) and righttsde (RHS) to distinguish between the two input
XATables. We use to denote an empty XATable.

The XA algebra inherits all operators from the relationgedira, such aSelect(c,), Project(IL4,), Join (<),

Left Outer Join(LOJ, x), Natural Join(/NJ, IX), Cartesian Produc{C P, x), etc. Except for the addition of order
preserving semantics, these operators have similar sexmastin the relational context.

For the XQuery functioristinct-values()we introduce a value-based duplicate elimination oper@iatinct.
This operator is not order preserving and has semanticsidgdéio its relational counterpart. We also have an ID-
based duplicate removal operatgr,. We also define the operator®rderbyandPosition The Orderby operator
sorts the tuples in the input XATable by the string value adfied column(s). The Position operator gets the row
number (beginning from 1) of each tuple and puts it as expladue into a new column.

The XA algebra also introduces new operators to represenK@uery semantics, such dvigation(¢,,),
Tagger(Tagpattern), NeSt(N), Unnest(U), etc. We will define these operators below.

Since in this paper we do not focus on complex XPath procgssia use a “powerful” Navigation operator that
can extract XML nodes and process XPath expressions over ddtuments. We denote the Navigation operator

as follows:

¢$colj:xp($coli)(R) = (h(R) X RN(M)) @ ¢$colj:xp($coli)(t(R))

where the schema @y, is {col;}, Rna, IS the sequence of extracted XML nodes from the XML nodevif) of
h(R) by applying XPathep processing.

The Tagger operator accepts a pattern to add open tags aedats around the content of certain columns in the
input XATable. A pattern includes the tag’s name and assetieolumn names. Unlike the Groupify-GroupApply
operators [18], our Tagger operator is a simple operatoe. THgger does not build the result hierarchy; instead the
result structure is built by a sequence of grouping, nestimdy Tagger operators.

Given a tuple with a sequence-valued coludir, we define the Unnest operator as:

Uattr(R) = (M(R)r 4y, X Rawr(R(R))) © Uagr (t(R))

wherel- 44, removes thedt¢tr column fromR and R 44 (h(R)) retrieves the sequence of column valuestiityr.

The Nest operator, the inverse of Unnest, can be defineddingty. Note that the XQuery expressions have an



interesting property that the result of each XQuery expoesis merged into a single sequence by dropping empty
elements. The Nest operator captures such semantics byirepmull elements from input XATable.

To clarify the translation of FLWOR expressions into the Xgebra, we introduce thielap operator. The Map
operator basically implements the for-iteration. It is adsy operator with the LHS input XATable capturing the

guery expression of the for-variable and the RHS an algetpeessiore. The Map operator is defined as follows:

Mapa:e(Attr) (R) = (h(R) © CL) ©® Mapa:e(Attr) (t(R))

wherea is the new column whose value is calculated by applying esgiwee to the instance ofittr of h(R).
Intuitively the Map operator forces a nested loop evaluasitategy. At the algebraic level the goal of our work is
to remove all Map operators and to do so correctly.

The last operator discussed here is @eupby(G B) operator, denoted aSB.y;;col;;0p(R). This operator is
introduced for the purpose of decorrelation. This GB operatan extension of the groupby in the relational context.
The Groupby operator will group the tuples of the input XAlEaby the columncol;, then perform the operatop
on col; of each group of tuples, finally concatenate all the groupsttwer as output. The Groupby operator can
group on multiple columns.

In our magic branch decorrelation, we use the Groupby opefat the following three purposes: (1) To keep
the correct variable context during decorrelation. (2) Giddbhierarchical XML results. (3) To get duplicate-free
columns in order to remove repeated computations.

Some operators are only ID based, eg. the Navigation and Miaite some operators are both ID-based and
value-based. For example, the Groupby operator can grgwpirihe string values of thel;, or on the ID value of
the col;. We will explicitly distinguish ID-based and value-baseqgbators in this paper.

XQuery Normalization: Prior to translating the XQuery expressions into the XA bhigeexpression, we use a
syntax-level normalization step applied to the original 06Qy expressions. Similar normalizations are also dis-
cussed in [11]. To focus the discussions in this paper, thelaeses are treated as a special case of the For clause.
The For clause defining more than one for-variable will bé& gpib a sequence of nested For clauses.

Translating Normalized XQuery Expressions to XA Algebra: Normalized XQueries are translated into their
corresponding XA algebra representation in two steps:stating XPath expressions and translating the FWOR
(without the Let clause) query expressions.

The translation pattern of a flat FWOR query block to the XAehlgic expression is illustrated in Fig. 2. A



nested XQuery block can be translated recursively usirggghitern. In this translation pattern, the Map operator
introduces one for-variable from the for clause in the LHBression. This for-variable can be referred to in the
nested query blocks in the RHS. The Orderby operator sdrthalreturns and the Nest operator on top of it is
used to construct a sequence of all intermediate resulthidmpattern, we put the Where clause to the RHS of the
Map operator. Here we take the same pattern as the trams|aditbern of the correlated join in the XPERANTO
system [17]. Such pattern provides a more general suppodoimplex Where clause translation, e.g. a Where
clause including position function. For the simple Wherask, the Where clause can also be put in the LHS of the
Map operator, after the For clause.

1

Nest($ret_col)

orderby Clause

?

S$for-var /o Map o\

for Clause return Clause

?

where Clause

Figure 2: Build Algebra Tree for XQuery FWOR Expression.

The algebraic operators generated during translation XA algebra tree. We also allow the sharing of
common subexpressions (e.g., multiple use of a let-vaa)adohong multiple operators. This turns the XA tree into

a DAG. In this paper, we do not emphasize the difference mtleem and just generally call them XA tree.

4 Magic Branch: Running Example

The flexibility of XQuery brings new challenges to XQuery degelation, such as: (a) complex nested subqueries
can appear at any position in the FLWOR expression, (b) serigimay have multiple correlated variables, (c) cor-
related variables can be referred to in multiple levels argulocks, (d) subqueries may have universal quantifiers,
aggregate functions, result constructors and ordersansinctions. In this section we propose an algorithm for
decorrelating nested XQuery expressions by transforniagorresponding XA algebra tree. After such rewriting,
the original semantics of the XQuery (including the ordenagtics) are preserved.

After XQuery normalization and translation, the corralatin an XQuery expression is represented in the XA
tree by theMap operator andinking operators. The Map operator introduces the for-varialenfthe LHS For

clause and the linking operator refers to it in the RHS. tivelly the Map operator forces a nested loop evaluation

9



strategy. Hence, eliminating the nested loop iteratioat i, the Map operator in the XA tree transformation is
the main goal of the proposed decorrelation algorithm. ddscorrectness, generating an efficient decorrelated XA
tree is also important. As mentioned before, our techniguesn extension of magic decorrelation [16]; and these
extensions are designed to ensure correct and efficient @eeorrelation.

Briefly speaking, our approach performs the following thogéimization steps during decorrelation. (1) The
Map operator on the top of the XA tree will be pushed down altregLHS whenever possible. (2) The Groupby
operator is inserted to keep the correct context for spegatators like Nest and aggregation functions. (3) The
Groupby operator is also used to remove duplication fronirthat XATable of the linking operator and the Unnest
is used to restore the original semantics.

We perform our tree transformation by pushing down or pgllip operators and by inserting or removing
operators in the XA tree. Furthermore, each transformagiep maintains the semantic consistency of the given
query. Thus this algorithm can be stopped at any time gangratpartially decorrelated query. This offers more
control to the query optimizer to consider benefit and caatdroffs of various decorrelation decisions determined
by the physical plan of operators.

Below we show our magic branch decorrelation and optinoratising a running example. The normalized
XQuery in Fig. 3 will be used as our running example to illatgrthe Magic branch decorrelation. The XA algebra
tree for this query is shown in Fig. 4. In all the XA trees instipiaper, we will use underlined operator to indicate
value-based operations. Other operators are ID-basedtapes. For simplicity, we omit the transfer functions from

ID to string value in the XA tree.

for $a in doc("a.xm")/a
order by $alc
return <tag>
{for $c in doc("c.xm")/c
order by $c/e
where $c=%$a/d
return $c/ e}
</ tag>

Figure 3: Example XQuery having Correlated Subquery.

4.1 Pushing Computation out of the RHS

The idea here is to separate out computation from the RHSeolt#p operator and perform it outside the RHS:
either in the LHS or on top of the Map operator. If we think o tRHS computation of the Map operator as a

function operating on an input variab$: that ends by applying a selectienon $z, then this selection can be
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Nest($col_1)

4
Orderby($ac)
—_—

Psac:garic

4

}p e O'\
$col_1:Tagger(<tag>,$ce)
%a::sszla

$s2:doc(“a.xml”) Nest($ce)

Orderby($ce)

$c /9 Map q\

@se:gs3c Oge=sgad
S

$s3:doc(“c.xml”) Psaq-said

Poce:scre

Figure 4: XA Tree for Example XQuery in Fig. 3.

applied in the LHS of the Map. We then can find a minimal sub§&twoin terms of the selection, so that we can
perform the RHS computation correctly.

Intuitively if a unary operatoOp, in the RHS of the Map does not “use” any column generated byodiitg
descendan®p-, and all operators “in betweer®p, and the Map (ancestors 6fp; but descendants of the Map) do
not use any column adp, either, then we can pushp; and all upper operators above the Map.

The illustration of this step is shown in Fig. 5. Here the RHShe lower Map operator in Fig. 4 is pushed

above the Map operator. As a consequence, the Map operatdd Wwave an empty RHS. Such Map operator can

be removed.

4
0§c:$ad y
4 + 0§c=§ad
$c /p Map q\ Psad:sard t
t (\Qsag:fsa/d
Bsc:gs3/c Ogc=sad Bscesore
I = 4 @sce:scre
$s3:doc(“c.xml”) Gsag-sa/d $c /9 Map ©
T Psc:$s31c
@353/
Bsce:scre T

$s3:doc(“c.xml”)
$s3:doc(“c.xml”)

Figure 5: Removing Map after Pushing up Computation.
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4.2 Generation of the Magic Branch

Now we focus on removing the Map operator whose LHS introdilse variablesa. First we informally define the
linking operator. We say thabp is alinking operatorfor its ancestorM ap operator on variabl&z if Op “uses”
this correlated variabl8z to refer to a column in the LHS input XATable dffap. Op’ is (recursively) said to be
relatively correlatedo its ancesto\/ap if a descendant abp’ is a linking operator ta// ap.

In the running examplerg._s,q iS @ linking operator and all operators between it and the Mdpe RHS are
relatively correlated operators. In the case of multigheel correlation, one Map operator may have multiple ligkin
operators in the RHS. The linking operators and relativelyelated operators can be obtained by one Depth First
Search (DFS) traversal of the XA tree.

In this generation step, we first make a copy of the LHS of the Mperator and then prepare to propagate
this Magic branchto the linking operators. Here we traverse the XA tree in a DF®iner. The magic branch is
propagated beginning from the “highest” relatively caatetl operator and ends with the “lowest” linking operator.
In Fig. 6, we add the generated magic branch to the XA treegusinew Map operator immediately on top of
the current operator. To ensure correctness, we need at ple@tor on top of the new Map. Otherwise the
correspondence relationship between the correlatedblesian the original XQuery will be lost. This Select and
the original Map can be merged into a LOJ, which is used tmreshe order of the result defined originally by the
for-variable$a.

Different with the original Magic decorrelation for nest8®L queries, we do not insert the Distinct operator
in the branch below the Rename. As pointed out in Sec. 1, sisimEt may not preserve the original XQuery
semantics. Instead, we use a Groupby operator and an |RHuhgdicate removal operator to avoid repeated

computations, as shown later in Fig. 9.

4
$a o LOJ($a=$a1¢>\

Oga=gal
$i $a $al Mapq\
$al Mapq\ = $col_1:Tagger(<tag>,$ci
Togertag

* Magic Branch

Magic Branch

Figure 6: Generate the Magic Branch

12



4.3 Propagation of the Magic Branch

The intuitive idea of the magic branch decorrelation is torenall relatively correlated operators out of the correla-
tion. As a result the linking operator and the Map operatdrlveicome parent and child. Then the linking operator
can be rewritten into either a Join, Semijoin or Antijoinpdading on the query semantics. To achieve this, we need
to propagate the Map operator down the XA tree to the linkipgrator.

The propagation of the magic branch oweple-orientedoperators is different from that ovéable-oriented
operators (See Definition 2 in Section 5). A table-orientgerator is defined on groups of tuples and its result cannot
be calculated without the group boundary. All the operatongrited from relational algebra except aggregations,
as well as many other operators such as Tagger, are tupletedi Aggregations, Nest and order-sensitive position
functions are table-oriented.

For a tuple-oriented operator we can simply pushMag® down over it as shown in Fig.7 for the Tagger.

A
4 $col_1:Tagger(<tag>,$ce)

$al x~2Map 4
Q.\ $al g~ Map \
$co Ll.Tagger(<tag>,$ceJ@
Nest($ce;
Rename )
Nest($ce) -

4

Magic Branch
Magic Branch

Figure 7: Propagation over Tuple-Oriented Operator: Tagge

For table-oriented operators, we need to perform an eximargéon of a magic branch as done in Section 4.2.
The propagation step for the table-oriented operator Nestiown in Fig. 8. The intuition is to insert another LOJ
to keep completeness of the for-variable column in the d@Table. Without such LOJ the empty collection bug
may occur, which is similar but more general to the count Hugpdy studied in the literature [8]. By repeatedly
performing the generation (if needed) and propagation agaverse the XA tree downwards, we will eventually
push all the relatively correlated operators out of the RH®B® Map.

Now the Orderby operator coming from the orderby clause become the RHS ohitde Map operator. The
Orderby operator is a special table-oriented operatontiibsort all the tuples within the input table. As for other
table-oriented operators, propagating the Magic Brandradidl a Groupby operator and a LOJ operator to the query
tree. Different with other table-oriented operators, tbdeal LOJ operator will also be used to restore the correct
tuple order from the LHS magic branch, since the originalewpder may be destroyed by the Groupby operator to

remove repeated computations.
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Figure 8: Propagation over Table Oriented Operator: Nest

4.4 Absorption of Magic Branch

Now the linking operatotg¢._g,s becomes the child of the Map operator. The last portion ofpitopagation is

to absorb the magic branch into the linking operator. A JomSemijoin, Antijoin) is formed to connect both the
branches. To form the branches, other operators may alscobedraccordingly. For example, th8,g.5q3/4 IS
moved from RHS to LHS in Fig. 9. In order to avoid repeated cotation by the Join operator, a Groupby operator
grouping on the referred variable in the Join and a ID-basgdichtion removal operator are inserted. At the same
time, an Unnest is also inserted to keep the semantic censistThis step guarantees that no repeated computation
exists for the Join operator. This transformation of the Xgetis shown in Fig. 9.

! t

GB$a3—(Orderby($ce)) GB$a3(Orderby($ce))

f t
/o i % UnNest($a3))
Oc=sad 4
ﬁ Joing$c:$ad)i
=>
Psad:3a3/d GBgadNestfp($a3))) Bsce:sc/e
1 o t
(p.sc;:&:/e (p:sa(#$a3/d Psc:3s3/c

$a3

Poc:gs3ic $s3:doc(“c.xml”)

$s3:doc(“c.xml”)

Figure 9: Absorption of Magic Branch by Linking Operator

45 Removal of Redundant Left Outer Join

During the magic branch generation and propagation, thedp@dator is generated to rebuild the tuple order defined
by the for-variable and to maintain completeness of thevésiable column in the XATable. Some of the LOJs may

be redundant and could be removed. We perform a top downrsavef the XA tree and remove the redundant
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LOJ operators. In the example XA tree, the top LOJ can be renhgince the lower LOJ already would restore
the correct tuple order and the Tagger operator is ordeepreg. As to the other two LOJs, there is no empty
collection associated with a certain instancebofthat would get lost. Either one is sufficient to avoid the gmpt
collection issue.

We obtain the final decorrelated XA tree as shown in Fig. 10ciriguexecution, the content of colun$ia and

its alias$a2 are all XML node IDs. Thus a cheap ID-based LOJ can be achieved

Nest($col_1)

Orderby($ac)
—_—

Psac:saic
4

$col_1:Tagger(<tag>,$ce)

y LOJ($a:$a2b,\

GBg(Nest($ce
(p$a:*$52/a $62(4 (Sce)
$s2:doc(-axml” GB$a2(O;derby($ce))
UnNest($a2))
4
? Join($c:$ad)i

GBg,dNestfp($a2))) (p$ce:$c/e
4 A

$a;\%ad:ﬂiazld Pse:3s3/c

!
$s3:doc(“c.xml”)

Figure 10: Decorrelated XA algebra tree

5 Magic Branch: The Basic Algorithm

In Section 4, we have illustrated our Magic branch decdtimaalgorithm using a running example. For description
purposes we follow an algorithm treating all nested XQuseuigiformly. That is, we first generate all LOJs and then
later remove unnecessary ones. Actually in the implemientahese two steps are done together without generating

redundant LOJs.

5.1 Pushing Computation out of the RHS of Map Operator

The idea here is to factor out computation from the RHS of tlag Mperator and perform it outside the RHS: either
in the LHS or on top of the Map operator. For this purpose, vt ftlentify the subset of the columns in the input

XATable that an operator or block of operators needs to fanatorrectly. We call the XATable schema composed
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of this subset of columns thmin-schemdor that operator or the block of operators. The min-schamdgcates all
the input columns used by the operator(s), directly or gatly. The min-schema can be computed recursively as

follows:

e For each leaf operator, the min-schema is the correlatedaiwable column or empty (if this operator refers

to an XML document).

e For any other operator, min-schema includes the column (®gnteises in its operation and the union of the

min-schemay(s) of the operator(s) generating the column(s)

e For a block of operators, min-schema is the union of the mirema of every operator in the block minus the

columns generated by the operators in the block.

Now we can move a block of operators out of the RHS of the Mapgusie following rule.

Rule 1 A block of operators can be pushed out of the RHS of the Ma@tpeif: 1) the min-schema of this block
of operators only includes the correlated for-variablewnin, 2) any output column generated by the operators does
not appear in the min-schema of other operators outside tbekdn the RHS, and 3) there is no table-oriented

operator in this block.

The above rule enforces that no table-oriented operatobeanoved outside the RHS of Map. This prevents
the empty collection bug that could result from such tramafgion. We have to use the magic branch to decorrelate
such operators, as shown previously in Fig. 8. After pushingputation out of the RHS of the Map, the RHS XA

tree might be empty. In that case the Map operator can be oy the following rule.
Rule 2 If the RHS subtree of a Map operator is empty, g operator can be removed.

For a simple XQuery having flat FLWR clauses only, a linear Xéetis expected after using Rules 1 and 2.

Example is shown in Fig. 5.

5.2 Generating and Propagating the Magic Branch

The main task of our decorrelation algorithm is to genetagemhagic branch and to propagate the branch down the

RHS subtree. Introducing an extra Select and Map pair to Hi8 & the Map operator will happen in the generation
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step. Similarly introducing the Select and Map pair alsopesys when propagating the magic branch down a table-
oriented operator. Eventually the propagated magic brasathes the linking operator and can be rewritten into a
Join or a variant of the Join operator. During the magic bnafexorrelation, extra LOJs will be generated to restore
the order of tuples and to avoid the empty collection bug. Wéswsthe correctness of the generation and propagation

steps below.

Lemma 1 (Generation Lemma) Consider a query) having a MapM,.. . ($vo) with ez, as LHS appearing under
a Nest. Now consider another May,,. . ($v1) with e, as LHS ancky, is a magic branch renamingu as $v; .

Introducing M’ into e and a Selectyg,,—s,, as parent ofd’ does not change the evaluation®f In other words:

Nest(...Mg.ep, (3v0)) = Nest(...3vg LOJgy=$0, M(;:GR($U1)).

Intuitively Lemma 1 is correct since: (1) the LOJ insertedDsbased operator, and bofv, and $v, are ID
distinct; (2) the upper Nest removes null elements from inpATable.
In the propagation step of the magic branch, we need to dehltuple-oriented and table-oriented operators

differently.

Definition 2 A tuple-oriented operator is one whose output correspamdina tuple in the input XATable depends
only on that tuple. Any operator that is not tuple-orientsagaid to be table-oriented. In other words, the output of

a table-oriented operator depends on multiple tuples ofrpat XATable.

The table-oriented operators in our algebra include: NesterBy, Groupby, Distinct and all relational aggre-
gation functions. Since “order” semantics in XQuery haveealefined on a sequence of tuples, all order-sensitive
operators are classified as table-oriented operators also.

Table-oriented operators need to be handled differenttingyropagation of the magic branch. We use the

for-variable defined in the magic branch as the correlatmtext for the table-oriented operator.

Lemma 2 (Propagate Lemma) The Map M., ) ($v0) appearing under a Nest, wherg is a table-oriented

operator whose correlation context {$v, } can be rewritten as:

Nest(...Mg:op(er) (3v0))

= Nest(...8v9 LOJgyy=gv, (GBsy, a:0p M(;ZBR($U1)))‘
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with M’ havingey,, as LHS andt;, is a magic branch renamingu, as$v;.

Intuitively the added grouping operator in Lemma 2 separ#ite whole column used by the table-oriented
operatorop into partitions according to the context varialile,. Thus each partition keeps the group boundary of
the column correctly. For the tuple-oriented operatorspaition of the used column need to be kept and thus the

magic branch can be simply propagated down.

5.3 Remove the Redundant Left Outer Join Operator

The main reason for introducing the additional LOJ operdtoing decorrelation are: 1) to restore the order of the
result defined originally by the for-variable, and 2) to avthe empty collection bug caused by the table-oriented
operators.

In SQL query decorrelation, whenever aggregation funstioocur between query blocks, the unnested join
guery needs to consider unmatched outer tuples to avoiddberit Bug”. The unmatched tuples of the outer query
will generate a subquery result equal to the empty set. Wiserseich an empty set is significant in the predicate
expression or the result construction, we need to introduc®J to handle these unmatched outer tuples.

In the XQuery language, such problem will happen not onlgdragate functions occur between query blocks,
but also in many other cases as well. We call this the “EmptjeCiion Bug”. For example, consider the following

XQuery.
<resul t>{
for $book in (doc("bib.xm") //book)
return <book>$book|[ 2] </ book>

}</result>

Since the position function will always return “1” for eveitgration of$book, the expected result is a collection
of empty “<book/>" tags. This number of empty tags should be equal to the numbgrstances of th&book
variable. Without usindg.QJ, the Sel ect operator upon th@osi t i on operator will remove all the tuples in the
XA table and the final result will be wrong. We have to Wws@J to find all those$book instances in order to get the
correct number of £book/>" tags.

In the previous running example, we use a conservative approf addind-QJ for every table-oriented operator
to guarantee the correctness of the transformation. Alhesé¢ LOJ operators have the magic branch as left hand
side input. Some of these LOJ operators are redundant arliea@moved as discussed below.

We first traverse the XA tree in a top-down manner to find aluretant LOJs. A LOJX is redundant with

18



respect to a LOJs in the RHS ofL, if: (1) L, and L, have the same magic branches with the same variable
(possibly renamed); (2) all the operators abdyein the RHS ofL; will not remove any instance of the variable
introduced by the LHS ol.,; and (3) all the operators abo¥e in the RHS ofL; will not make use of the possibly
empty collection inserted b¥,. When we also consider the order preserving purpose of uka$OJ operator,

the following additional condition needs to be checked: gdtthe operators aboveé, in the RHS ofL; is order
preserving.

The redundant LOJs are removed as follows. We first form arecigid graph with the LOJs as nodes. We
define an edge betwedn andL; if L, is redundant with respect tb;. Then, from each component of this graph,
we keep only the topmost LOJ in the query tree, and discatti@ibther LOJs.

In XA algebra, the Select, Join and variants of Join are ekaroperators that may remove the instance of
the variable introduced by the magic branch; and the Taggerator is one example operator using the empty
collections generated by the lower LOJ.

This step needs to traverse the XA tree multiple times. Invibest case, the complexity of the step will be

O(In), where thd denotes the number of the LOJs and théenotes the number of nodes in the XA Tree.

6 Complex XQuery Decorrelation

In this section we will discuss the application of the magiantth decorrelation on complex XQueries. These

XQueries may have aggregations, order-sensitive furgtignantifications and multiple level nested subqueries.

6.1 Aggregation and Position Functions

XQuery language supports all the aggregation functionpated in the relational context, suchrai, max count
etc. The aggregations attract special attention in theioak context because they are table-based operations and
usually are associated with a grouping operation. In ouricnagainch decorrelation, all aggregation functions are
classified as table-oriented operators and thus can begzeateonsistently. In order to keep the partition boundary
of the aggregated column, we need to add an explicit groupiegator after the propagation. In order to avoid the
infamous “count bug”, we need to introduce a LOJ for aggiegdunctions.

Different from the relational and the object data model, XML data model is order-sensitive. In the XQuery
language, there are many order-sensitive functions tosugps feature. Among them, the sequence-based XQuery

expressions are popular, such as the Position function. Mese the Position function as an example to show how
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to use the magic branch to decorrelate order-sensitivaitngin XQuery expressions.

According to Definition 2, the Position function is a tabléemted operator. Using parentheses in XQuery
expression, the context of the Position function can be ifferehtly. Consider the following two XQueries; they
have different context for the Position function definedly parentheses. In XQuefyl the secondvame of every

author will be returned, while in XQuery)2 the secondvame node rooted byook will be returned.
XQuery QL:
for $b in doc("bib.xm")/book
return <nanme>$b/ aut hor/ nang[ 2] </ name>
XQuery Q:
for $b in doc("bib.xm")/book

return <nane>($b/ aut hor/ nane) [ 2] <nane>

The context of the Position function needs to be maintainefdrb and after decorrelation. To achieve this,
we need to propagate the magic branch over the GroupBy opefidie GroupBYy operator is also a table-oriented
operator. The XA trees before and after decorrelation ofGheupBy and Position functions are shown in Fig. 11

and 12 respectively.
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Figure 11: Decorrelate Position Function in XQuery Q1.

*
Ogp=2
) o
so1 9 LOJ($b1—$b2)fi

Map
$b:Vo c\ Magic Branch

$p::GBy,(Position($ban)

Magic Branch 0-$ -
+ —
$p::Position($han) %ban::ﬂsbzlauthor/name
$h24
Rename
@span:sb1/authoriname 4
$b1

Figure 12: Decorrelate Position Function of XQuery Q2.
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6.2 Existential and Universal Quantifications

In XQuery, we allow existential and universal quantifiersafipear in the predicates. The quantifiers used in the
XQuery Where clause includsomeandevery The primitive satisfiesis associated with the quantifiers. XQuery
expressions can also use the relational-Bkestsprimitive to test the emptiness of a collection.

All the predicates having quantifications can be rewrittsm@ the aggregate function Count and the Select
operator. Such XQuery expressions then can be decorralated the magic branch decorrelation. The XQuery
having theexistsprimitive on a collection can also be rewritten using the @aoaperator. We use the following

example to show the rewriting of tlamequantifier. The XQuery)3:

for $a in doc("a.xm")/a
where some $b in doc("b.xm ")/ b[c=%alc]
satisfies $a/b = $b

return <tag>$a</tag>
can be rewritten aQ4:
for $a in doc("a.xm")/a

where count(for $b in doc("b.xm")/b[c=%alc]
where $a/b = $b return $b) >0

return <tag>$a</tag>

If the query engine support the efficient evaluation of thenfg®n and the Antijoin operators, the XQue€y3

can also be transformed during decorrelation using thasevddants.

6.3 Multiple Level Correlation

A complex XQuery can have multi-level nested subqueriesnigamultiple linking operators. There are multiple

Map operators in the translated algebra tree connectingdirelation variables and linking operators. In general,
we will face a bushy Map tree. For such XQuery, we decorredfitthe Map operators recursively in a post-order
traversal of the Map operators. That is, for each Map opgraifirst decorrelate the LHS, then the RHS and lastly
the subtree rooted by this Map operator. Such post-orderdgation avoids pushing a Map operator over another

Map operator.

7 Experimental Study

We have conducted experiments to illustrate the perforemgams achieved by our approach. We have implemented
the magic branch decorrelation and optimization algorithnthe RainbowCore project, a native XQuery engine

based on the XA algebra developed at WPI [22].
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We have run a set of experiments to evaluate the performasiceaghieved by the magic branch unnesting
algorithm. Experiments were run on a 1.2GHz PC with 512MB AMRrunning Windows 2000. We used XML
documents generated by the XMark benchmark [15] with 10esfzaitors from 0.001 (113KB) to 0.01 (1.11MB).
Each experiment was run five times, with lowest and highestitediscarded and and the remaining three averaged.

We propose a general solution for nested XQueries, and dmukabplied in any algebraic based XQuery en-
gine. Horizontal comparison with other engines will not bstiumental in evaluating the effectiveness. Thus, we

conducted a vertical evaluation comparison before and aftglication of our techniques on the same system.
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Figure 13: Comparison Before and After Decorrelation.

In our first set of experiments, we use two XQueries from theaXivbenchmark, namel@)8 and Q9. Each
represents a different category of complexity, namely, guery blocks with one level nesting, and three query
blocks with multiple level nestings. The results are showifrig. 13. We also conduct experiments on XMark
query Q10, Q11 and Q12 with results similar in overall trend confirming the effeetihess of our decorrelation.
Other XQueries of XMark are either not nested or not suppabote current RainbowCore due to the user defined
functions.

We can see that the decorrelation step gives significanbqmeaice gains. One of the reasons is that in our
experiment the navigations will be launched directly tofitefor every instance of the LHS of the Map operators.
After decorrelation, this repeated navigation in the sapguvill be saved and the total /0O cost will decrease
dramatically.

The second set of experiments try to show the effectivenksiearrelation for XQuery with multiple level
ordering and position functions. The following XQuery exggion sorts part of the authors by their last name and
groups books together with their first author, then sorté @athor’s book by publishing year. This query is adapted

from W3C XQuery Use Cases XMP Q4 [19] by adding the positiarcfion and orderby clauses.
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for $a in distinct-values(doc("bib.xm")/book/author[1])
order by $a/l ast
return <result>{$a

for $b in doc("bib.xm")/book

where $b/author[1] = $a

order by $b/year

return $b/title

}</resul t>

We have varied the input XML documents to have different neralof book elements. The results are shown in
Fig. 14. We clearly see the significant gains achieved by ooesting algorithm, especially the more complex the

nesting the larger the gain.

Before Unﬁesting —a—
After Unnesting —>—

XQuery Processing Time (Sec.)

200 400 600 800 1000
Number of Book Elements of Input XML

Figure 14: Performance Comparison of Different Query Rlans

The third set of experiments is designed to illustrate théop@ance gain of adding the Groupby operator to re-
move duplicates, we present a performance comparison kéthdive magic decorrelation for XQuery expressions,
where no duplicates are removed. In general, although ogicnb@anch decorrelation introduces additional group-
ing operator, we expect our decorrelation to be benefici@nwhany duplicates existing in the variable referred to in
the linking operator, or when there is considerable workgrared for each variable instance in the linking operator.

We measured the query execution times on the following XQuer

for $a in doc("a.xm")/a

return {for $b in doc("b.xm")/b
where $b=$a/b
return $b}

The experiment has the following settings: the total nunoibernodes in the “a.xml” is set to 1K; the total num-

ber ofb nodes in the “b.xml” is also set to 1K. By varying the numbeduoplicates ob nodes indoc(a.xml)/a/b, we

get the performance comparison shown in Fig. 15. The DupkcRatio is defined als— ##{itffgf%:%g‘;jses x 100%.
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Our magic branch decorrelation results in a huge perforemanprovement, especially for the case where there is a

large amount of duplicates.
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Figure 15: Decorrelation with/without Groupby |

We then lock the duplicates ratio 84 /b to 20% and change the cardinality bhode in “b.xml” from 1K to 6K,
which increases the computation for each nod&difb. As shown in Fig. 16, the relative performance gain of our

decorrelation increases accordingly.
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Figure 16: Decorrelation with/without Groupby I

8 Conclusion

In this paper we present a decorrelation algorithm, cdlfedjic branchalgorithm, based on an XQuery algebraic
framework. Our work provides a deterministic algorithmdionesting arbitrary nested XQuery with ordered seman-
tics. Our work extends previous work in three aspects. Forat unnesting algorithm represents a uniform solution
for removing correlated variables in a subquery. Secondypnesting algorithm provides an efficient decorrelated
query. This is possible by using a grouping operator to akepeated computations. Third, our unnesting algorithm
preserves correct ordered semantics. The experimentaestiliustrate the effectiveness of the proposed algorith

As part of our future work, we plan to study the order infereio€ different operators in the order sensitive query
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plan as well as optimization of the operators using it.
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