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Abstract

XQuery, the defacto XML query language, is typically composed of highly nested expressions. Iterative
execution of such expressions tends to be intuitive but inefficient. Instead, decorrelation of nested XQuery ex-
pressions opens up the opportunity for significant query optimization. Although several algorithms have been
proposed to optimize nested XQueries, these works pay little attention to the ordered semantics of XQuery ex-
pressions. The appropriate extension of decorrelation to XQuery with multiple level orderby clauses and other
order sensitive functions hence represents an important and non-trivial task. We propose an algebraic rewriting
technique of nested XQuery expressions containing explicit orderby clauses. The proposed work successfully ad-
dresses the challenges caused by the hierarchical nature and the ordered semantics of XQuery expressions. Using
a running example, our decorrelation algorithm is illustrated. Further, we show the performance gain achievable
by our approach via an experimental study.

1 Introduction

The XQuery language [21] and the XML path language [20] have both been widely accepted for querying XML

data. Several optimization techniques have been proposed for XPath expressions, such as XPath containment [7],

answering XPath queries using views [1] and XPath satisfiability [10]. Beyond the features of XPath, XQuery

provides more powerful query support by nested expressionshaving correlated variable bindings, and multiple level

ordering overwriting the source document order. On the other hand, the direct applicability of the well known

optimization techniques to the XQuery language1 is precluded by these new features. How to enable the usage

of existing optimization techniques to XQuery processing with nested and order sensitive semantics becomes an

important and non-trivial task. Our work in this paper intends to provide a practical approach to fill the gap between

the existing work of XPath query optimization and the XQueryoptimization with order semantics.

XQuery expressions are typically composed of highly nestedFLWOR (short for thefor, let, where, orderby

and return) blocks to retrieve and reconstruct hierarchical XML data.We call such nested XQuery expression

correlated if an inner FLWOR block refers to a bound variable defined outside this block. The intuitive method
1In this paper, we use the term XQuery to refer to the complex XQuery expression that cannot be rewritten as an XPath expression.
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of an iterative execution of correlated queries tends to be less efficient than an equivalent optimized set-oriented

execution strategy. Decorrelation has been used as an effective approach for optimization of nested queries in

relational databases [9, 4, 16].

Unlike in relational databases, order is important for XML queries. By default, both the XPath and XQuery

languages are order sensitive. The XPath language has ordersensitive functions such asposition(), first() and

last(). All the order sensitive functions used in the XPath language work on the document order. In addition

XQuery expressions may contain multipleorderbyclauses that overwrite the document order. XQuery decorrelation

needs to preserve the ordered semantics.

Some early works on XQuery unnesting were done by Fegaras [6]and May et al. [12]. Fegaras extended the

rule-based unnesting algorithm used in Object Oriented databases to the XQuery language in stream processing

without considering order. Inspired by [3], May et al. provided a rule-based rewriting solution for XQuery unnest-

ing based on an order preserving algebra. However, they did not discuss order beyond the document order and how

the order affects the unnesting. These previous works provided rewriting rules for only certain classes of nested

XQuery expressions. These works did not solve the XQuery unnesting problem under the order semantics thor-

oughly, especially for the multiple level orderings and order sensitive functions.

Below we list the issues that must be considered for efficientXQuery decorrelation.

• Typically, an XQuery expression may have multiple level orderby clauses among subqueries. The decorrela-

tion approach must preserve the order specifications in the original XQuery.

• In case of duplicate elements existing in variable bindings, there may be repeated computation. For better

performance, the decorrelation approach must avoid such repeated computations.

• The Left Outer Join operator has been widely used to avoid incorrect removal of tuples of the outer query

block after decorrelation. In XQuery decorrelation, existence of empty collection makes this problem much

more common. The decorrelation approach must keep the original query semantics.

Considering these issues, in this paper we propose an algebra based decorrelation algorithm that not only works

correctly for arbitrarily nested XQuery expressions with multiple orderby clauses, but also generates an efficient

query plan. Our work can be easily extended to existing algebra based query engines. Our work is inspired by

the magic decorrelation proposed by Seshadri et al. [16]. Here the authors proposed a SQL decorrelation method

designed to generate more efficient rewritten queries for complex correlated SQL queries.
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The basic idea in [16] is that first the duplicate free values of the outer referenced column are extracted. Then

based on these values, all possible results from the subquery are computed once and then materialized. Thereafter

materialized results are joined with the outer query block on the outer referenced column to restore the duplication.

Our approach, calledMagic branch, is an extension and adaption of this technique towards moreefficient

XQuery decorrelation. The new challenges come from: (1) multiple level orderings in XQuery vs. single level

ordering (at most) for SQL, and (2) the hierarchical nature of XML vs. the flat relational tables. For the first chal-

lenge, we treat the multiple level orderings as special “aggregate functions” and process accordingly. For the second

challenge, some extensions are needed for correctness. Consider the following XQuery.

for $a in Doc("a.xml")/a

return <tag>

{for $b in Doc("b.xml")/b

where $b = $a/c

return $b}

</tag>

The reason of adding an extraDistinct to the Magic Set decorrelation in [16] is that the correlatedcolumn may

not be the key of the table and duplications may exist. In above XQuery example, the navigation ($a/c) may generate

more complex situation due to the hierarchical nature and multi-set semantics of XML. Consider two instances of$a

having distinct node IDa1 anda2 in the input XML document. Suppose that the navigation$a/c generates tuples:

(a1, c1), (a1, c2), (a2, c3) and (a2, c4). Since the predicate of the Where clause in above XQuery is comparison on

values, we need to retrieve the string value for each of the$a/c nodes. Assume thatc1, c2 andc3 have the same

string valuevc
1, while c4 has the string valuevc

2. To save repeated computation in the subquery, one naive wayof

using magic decorrelation here is adding an extra value based Distinct upon the$a/c and conducting a value based

Join with $b. Supposeb1 has string valuevc
1 and b2 has string valuevc

2. After rebuilding the duplications by a

value based Join (or Left Outer Join if the count bug exists) with the whole$a/c, the result tuples are: (a1, c1, b1),

(a1, c2, b1), (a2, c3, b1) and (a2, c4, b2). According to the semantics of the example XQuery, two problems need to be

fixed: (1)b1 should not appear two times fora1, even if it joins with different$a/c nodes; and (2)b1 andb2 should

be combined together fora2. Such situation cannot be handled by original Magic Set decorrelation.

Another observation about the naive application of magic decorrelation in the above example is that the Left

Outer Join with$a/c may not remove all the “count bugs”. It can only deal with the situation that some$a/c

instances may not have any matched$b instance2 . The semantics of the example XQuery require the empty tags in

2Since there is no aggregation in this particular query, the Left Outer Join is actually a Join only.
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the result even if some instances of$a do not have any$a/c instance at all. Thus another Left Outer Join with the

whole sequence of$a may be necessary.

Our work successfully addresses these challenges caused bythe hierarchical nature of XML documents. By

employing grouping operations (see Section 4.4), repeatedcomputation is avoided correctly; and by utilizing a ID

based Outer Join with the binding variable only when necessary, the correctness and efficiency are achieved. Our

work brings forth the following novel contributions to XQuery decorrelation:

• We extend and adapt the magic decorrelation method from SQL to the XQuery language, and propose an

algebra based decorrelation algorithm.

• Our approach preserves the correct order semantics across multiple level nested XQuery expressions.

• We propose to use groupings to avoid repeated computations in XQuery expressions.

• Our algorithm proposes a hybrid evaluation distinguishingID based operators and string value based operators

for optimization purposes.

We employ an algebraic framework discussed in Section 3. This algebra extends relational algebra by allowing

collection-valued columns and being order-preserving. Italso introduces new operators to express necessary XQuery

semantics. However, the main idea of our approach is genericand can be applied to other similar algebras like NAL

[12] and SAL [2].

This paper is organized as follows. We first give a description of the related work in Section 2 and briefly

describe the algebraic framework used in this paper in Section 3. A running example illustrating the magic branch

decorrelation algorithm and a detailed explanation of our algorithm is discussed in Section 4 and 5. In Section 6 we

focus on several additional issues specific to complex XQuery decorrelation. We turn to implementation and present

experimental results in Section 7, while Section 8 concludes this paper.

2 Related Work

Modern database systems [9, 5, 16] attempt to merge subqueryblocks into the outer query block, thereby eliminating

correlations and avoiding nested iteration evaluation. Such “decorrelation” is typically done by introducing outer

join and grouping operations.

More recently, methods that focus on the efficiency of decorrelated subqueries have been proposed. In [16],

the authors proposed a technique called magic decorrelation for nested SQL queries. By materializing results from
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subqueries and postponing the Outer Join, this approach produces a typically more efficient query plan. Our proposal

is conceptually inspired by this technique.

Decorrelation of XQuery expressions has also been studied in relationship to native XML query engines. One

effort is by Paparizos et al. [13] in the TIMBER system. Here the authors pointed out the implicit use of grouping

constructs in the XQuery’s result construction. Recognizing and explicitly adding the grouping operation can lead to

unnesting of XQuery expressions. Their work is based on the tree algebra in TIMBER. However they do not consider

ordering and their grouping operator is defined on sets of trees, which makes it expensive. Another drawback of this

approach is that their transformation from the XQuery language to the TAX tree is complex and not complete, as

pointed out in [12].

Fegaras [6] and May et al. [12] have studied XQuery unnestingbased on the unnesting techniques from object-

oriented query languages [3, 5]. These works do not discuss decorrelation of XQuery expressions containingorderby

clauses, which is now tackled by our work.

There are also some works in the literature about publishingXML documents from relational data that mention

decorrelation in processing. In [17], magic decorrelationis extended and used in XPERANTO to decorrelate the

XML view query and user XQuery. This approach is closest to our proposal, while the major difference is that the

correlated attribute eventually comes from a column of the underlying flat relational table, instead of XML nodes of

subtrees. Thus certain challenges we identified, such as theorder issue have not been observed.

3 Preliminaries

XQuery: In this paper, we consider a subset of the XQuery language [21] defined by the grammar in Fig. 1. This

subset, plus some extensions of user-defined functions, suffices to express the XMark benchmark query set [15].

Besides the basicFLWORclauses, the XQuery fragment we consider also includes order-related functions (e.g., the

position function), and quantifiers. Our approach is not applicable to recursively nested XQuery expressions.

XA Algebra: Our XML algebra (XA) expresses the subset of the XQuery language shown in Fig. 1.XA is an

order-preserving extension of the relational algebra designed to handle ordered XML data. For the purpose of

decorrelation, this algebra is similar to NAL [12], SAL [2] and the algebra proposed in [14]. Hence our approach

can be easily extended to these algebras.

XA extends the relational algebra mainly in two key aspects:order-preservation and nested tuples. XA works

on sequences of tuples where every column corresponds to a variable or to a generated column of an intermediate
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Expr ::= c //atomic constants
$var //variable
(Expr,Expr) //sequence construction
Expr/a :: n //navigation step (axis a, node test n)
tag(Expr) //element constructor: tagger
FLWOR //query block
QExpr //expression with quantifier
CompExpr //comparison expression for predicates
OrderExpr //order-sensitive function. eg. position()

FLWOR ::= (For | Let)+ [Where] [Orderby] returnExpr
For ::= for $var in Expr
Let ::= let $var := Expr
Where ::= whereExpr
Orderby ::= order byExpr
QExpr ::= (some| every) $var in Expr satisfiesExpr
CompExpr ::= Expr CompOp Expr

//CompOp is any comparison operator. eg. “=”

Figure 1: Syntax of XQuery Subset

result. To avoid ambiguity, we assume all the variable and column names are unique in processing of the XQuery.

We use theXATableto represent such ordered sequences of tuples. The input andoutput of each operator are both

XATables. An XATable may contain nested tuples, that is, thecontent of a column may be a sequence of zero or

more tuples. In other words, XATable allows collection-valued columns. The collection-value can be set, multi-

set (bag) or sequence of atomic data types according to XQuery semantics. The formal definition of the XATable

schema is given next.

Definition 1 LetT = {a1, ..., an} be a finite set of columns. XATable schemaR overT is defined recursively as:

1. If a1, ..., an are atomic columns, thenR = (a1, ..., an) is an XATable schema overS havingdepth(R) = 0.

2. If a1, ..., an are atomic columns andR1, ..., Rm are XATable schemas having columns denoted asA(R1), ..., A(Rm),

thenR = (a1, ..., an, R1, ..., Rm) is an XATable schema.

Since XA is not designed for type inference purposes, we onlyhave two kinds of atomic values in an XATable:

the ID of an XML node, which globally identifies the XML node, and the string value of an XML node, which is

the text content of the subtree rooted at the XML node. We distinguish the ID based operations from the string

value based operations. The XML data storage provides conversion functions from the node ID of the input XML

document to the associated string value. For newly constructed XML nodes, the storage has a skeleton function to

assign unique ID to the nodes.

To define the order-preserving semantics of XA operators, wewill use a sequence abstraction of the XATable. For

an input XATableR, h(R) denotes the first tuple (head) of the XATable andt(R) denotes the remaining tuples (tail)

of the XATable. The symbol⊕ is used for the concatenation (ordered union) of two XATables. The concatenation
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of XATable columns is denoted by◦. We define the algebraic operators recursively on their input XATable(s).

For binary operators, we use left hand side (LHS) and right hand side (RHS) to distinguish between the two input

XATables. We useǫ to denote an empty XATable.

The XA algebra inherits all operators from the relational algebra, such asSelect(σp), Project(ΠAttr), Join (1p),

Left Outer Join(LOJ , ⋉), Natural Join(NJ , 1), Cartesian Product(CP , ×), etc. Except for the addition of order

preserving semantics, these operators have similar semantics as in the relational context.

For the XQuery functiondistinct-values(), we introduce a value-based duplicate elimination operator Distinct.

This operator is not order preserving and has semantics identical to its relational counterpart. We also have an ID-

based duplicate removal operatorδID. We also define the operators:OrderbyandPosition. The Orderby operator

sorts the tuples in the input XATable by the string value of specified column(s). The Position operator gets the row

number (beginning from 1) of each tuple and puts it as explicit value into a new column.

The XA algebra also introduces new operators to represent the XQuery semantics, such asNavigation(φxp),

Tagger(TagPattern), Nest(N ), Unnest(U ), etc. We will define these operators below.

Since in this paper we do not focus on complex XPath processing, we use a “powerful” Navigation operator that

can extract XML nodes and process XPath expressions over XMLdocuments. We denote the Navigation operator

as follows:

φ$colj :xp($coli)(R) := (h(R) × RNav) ⊕ φ$colj :xp($coli)(t(R))

where the schema ofRNav is {colj}, RNav is the sequence of extracted XML nodes from the XML node incoli of

h(R) by applying XPathxp processing.

The Tagger operator accepts a pattern to add open tags and close tags around the content of certain columns in the

input XATable. A pattern includes the tag’s name and associated column names. Unlike the Groupify-GroupApply

operators [18], our Tagger operator is a simple operator. The Tagger does not build the result hierarchy; instead the

result structure is built by a sequence of grouping, nestingand Tagger operators.

Given a tuple with a sequence-valued columnAttr, we define the Unnest operator as:

UAttr(R) := (h(R)⊢Attr
× RAttr(h(R))) ⊕ UAttr(t(R))

where⊢Attr removes theAttr column fromR andRAttr(h(R)) retrieves the sequence of column values inAttr.

The Nest operator, the inverse of Unnest, can be defined accordingly. Note that the XQuery expressions have an
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interesting property that the result of each XQuery expression is merged into a single sequence by dropping empty

elements. The Nest operator captures such semantics by removing null elements from input XATable.

To clarify the translation of FLWOR expressions into the XA algebra, we introduce theMapoperator. The Map

operator basically implements the for-iteration. It is a binary operator with the LHS input XATable capturing the

query expression of the for-variable and the RHS an algebra expressione. The Map operator is defined as follows:

Mapa:e(Attr)(R) := (h(R) ◦ a) ⊕ Mapa:e(Attr)(t(R))

wherea is the new column whose value is calculated by applying expressione to the instance ofAttr of h(R).

Intuitively the Map operator forces a nested loop evaluation strategy. At the algebraic level the goal of our work is

to remove all Map operators and to do so correctly.

The last operator discussed here is theGroupby(GB) operator, denoted asGBcoli;colj ;op(R). This operator is

introduced for the purpose of decorrelation. This GB operator is an extension of the groupby in the relational context.

The Groupby operator will group the tuples of the input XATable by the columncoli, then perform the operatorop

on colj of each group of tuples, finally concatenate all the groups together as output. The Groupby operator can

group on multiple columns.

In our magic branch decorrelation, we use the Groupby operator for the following three purposes: (1) To keep

the correct variable context during decorrelation. (2) To build hierarchical XML results. (3) To get duplicate-free

columns in order to remove repeated computations.

Some operators are only ID based, eg. the Navigation and Map,while some operators are both ID-based and

value-based. For example, the Groupby operator can grouping on the string values of thecoli, or on the ID value of

thecoli. We will explicitly distinguish ID-based and value-based operators in this paper.

XQuery Normalization: Prior to translating the XQuery expressions into the XA algebra expression, we use a

syntax-level normalization step applied to the original XQuery expressions. Similar normalizations are also dis-

cussed in [11]. To focus the discussions in this paper, the Let clauses are treated as a special case of the For clause.

The For clause defining more than one for-variable will be split into a sequence of nested For clauses.

Translating Normalized XQuery Expressions to XA Algebra: Normalized XQueries are translated into their

corresponding XA algebra representation in two steps: translating XPath expressions and translating the FWOR

(without the Let clause) query expressions.

The translation pattern of a flat FWOR query block to the XA algebraic expression is illustrated in Fig. 2. A
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nested XQuery block can be translated recursively using this pattern. In this translation pattern, the Map operator

introduces one for-variable from the for clause in the LHS expression. This for-variable can be referred to in the

nested query blocks in the RHS. The Orderby operator sorts all the returns and the Nest operator on top of it is

used to construct a sequence of all intermediate results. Inthis pattern, we put the Where clause to the RHS of the

Map operator. Here we take the same pattern as the translation pattern of the correlated join in the XPERANTO

system [17]. Such pattern provides a more general support for complex Where clause translation, e.g. a Where

clause including position function. For the simple Where clause, the Where clause can also be put in the LHS of the

Map operator, after the For clause.

Nest($ret_col)

Map

for Clause

$for-var

orderby Clause

where Clause

return Clause

Figure 2: Build Algebra Tree for XQuery FWOR Expression.

The algebraic operators generated during translation forman XA algebra tree. We also allow the sharing of

common subexpressions (e.g., multiple use of a let-variable) among multiple operators. This turns the XA tree into

a DAG. In this paper, we do not emphasize the difference between them and just generally call them XA tree.

4 Magic Branch: Running Example

The flexibility of XQuery brings new challenges to XQuery decorrelation, such as: (a) complex nested subqueries

can appear at any position in the FLWOR expression, (b) subqueries may have multiple correlated variables, (c) cor-

related variables can be referred to in multiple levels of query blocks, (d) subqueries may have universal quantifiers,

aggregate functions, result constructors and order-sensitive functions. In this section we propose an algorithm for

decorrelating nested XQuery expressions by transforming the corresponding XA algebra tree. After such rewriting,

the original semantics of the XQuery (including the order semantics) are preserved.

After XQuery normalization and translation, the correlation in an XQuery expression is represented in the XA

tree by theMap operator andlinking operators. The Map operator introduces the for-variable from the LHS For

clause and the linking operator refers to it in the RHS. Intuitively the Map operator forces a nested loop evaluation
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strategy. Hence, eliminating the nested loop iteration, that is, the Map operator in the XA tree transformation is

the main goal of the proposed decorrelation algorithm. Besides correctness, generating an efficient decorrelated XA

tree is also important. As mentioned before, our techniquesare an extension of magic decorrelation [16]; and these

extensions are designed to ensure correct and efficient XQuery decorrelation.

Briefly speaking, our approach performs the following threeoptimization steps during decorrelation. (1) The

Map operator on the top of the XA tree will be pushed down alongthe LHS whenever possible. (2) The Groupby

operator is inserted to keep the correct context for specialoperators like Nest and aggregation functions. (3) The

Groupby operator is also used to remove duplication from theinput XATable of the linking operator and the Unnest

is used to restore the original semantics.

We perform our tree transformation by pushing down or pulling up operators and by inserting or removing

operators in the XA tree. Furthermore, each transformationstep maintains the semantic consistency of the given

query. Thus this algorithm can be stopped at any time generating a partially decorrelated query. This offers more

control to the query optimizer to consider benefit and cost trade-offs of various decorrelation decisions determined

by the physical plan of operators.

Below we show our magic branch decorrelation and optimization using a running example. The normalized

XQuery in Fig. 3 will be used as our running example to illustrate the Magic branch decorrelation. The XA algebra

tree for this query is shown in Fig. 4. In all the XA trees in this paper, we will use underlined operator to indicate

value-based operations. Other operators are ID-based operations. For simplicity, we omit the transfer functions from

ID to string value in the XA tree.

for $a in doc("a.xml")/a
order by $a/c
return <tag>

{for $c in doc("c.xml")/c
order by $c/e
where $c=$a/d
return $c/e}

</tag>

Figure 3: Example XQuery having Correlated Subquery.

4.1 Pushing Computation out of the RHS

The idea here is to separate out computation from the RHS of the Map operator and perform it outside the RHS:

either in the LHS or on top of the Map operator. If we think of the RHS computation of the Map operator as a

function operating on an input variable$x that ends by applying a selectionσ on $x, then this selection can be
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Nest($col_1)

Map$a

$col_1:Tagger(<tag>,$ce)

Map

Nest($ce)

$s3:doc(“c.xml”)

σ$c=$ad

φ$ad:$a/d

$c

φ$ce:$c/e

φ$c:$s3/c

φ$ac:$a/c

Orderby($ac)

Orderby($ce)

$s2:doc(“a.xml”)

φ$a:$s2/a

Figure 4: XA Tree for Example XQuery in Fig. 3.

applied in the LHS of the Map. We then can find a minimal subset of $x, in terms of the selection, so that we can

perform the RHS computation correctly.

Intuitively if a unary operatorOp1 in the RHS of the Map does not “use” any column generated by anyof its

descendantOp2, and all operators “in between”Op1 and the Map (ancestors ofOp1 but descendants of the Map) do

not use any column ofOp2 either, then we can pushOp1 and all upper operators above the Map.

The illustration of this step is shown in Fig. 5. Here the RHS of the lower Map operator in Fig. 4 is pushed

above the Map operator. As a consequence, the Map operator would have an empty RHS. Such Map operator can

be removed.

Map

$s3:doc(“c.xml”)

σ$c=$ad

φ$ad:$a/d

$c

φ$ce:$c/e

φ$c:$s3/c

Map

$s3:doc(“c.xml”)

σ$c=$ad

φ$ad:$a/d

$c

φ$ce:$c/e

φ$c:$s3/c

$s3:doc(“c.xml”)

σ$c=$ad

φ$ad:$a/d

φ$ce:$c/e

φ$c:$s3/c

Figure 5: Removing Map after Pushing up Computation.
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4.2 Generation of the Magic Branch

Now we focus on removing the Map operator whose LHS introduces the variable$a. First we informally define the

linking operator. We say thatOp is a linking operatorfor its ancestorMap operator on variable$x if Op “uses”

this correlated variable$x to refer to a column in the LHS input XATable ofMap. Op′ is (recursively) said to be

relatively correlatedto its ancestorMap if a descendant ofOp′ is a linking operator toMap.

In the running example,σ$c=$ad is a linking operator and all operators between it and the Mapin the RHS are

relatively correlated operators. In the case of multiple-level correlation, one Map operator may have multiple linking

operators in the RHS. The linking operators and relatively correlated operators can be obtained by one Depth First

Search (DFS) traversal of the XA tree.

In this generation step, we first make a copy of the LHS of the Map operator and then prepare to propagate

this Magic branchto the linking operators. Here we traverse the XA tree in a DFSmanner. The magic branch is

propagated beginning from the “highest” relatively correlated operator and ends with the “lowest” linking operator.

In Fig. 6, we add the generated magic branch to the XA tree using a new Map operator immediately on top of

the current operator. To ensure correctness, we need a Select operator on top of the new Map. Otherwise the

correspondence relationship between the correlated variables in the original XQuery will be lost. This Select and

the original Map can be merged into a LOJ, which is used to restore the order of the result defined originally by the

for-variable$a.

Different with the original Magic decorrelation for nestedSQL queries, we do not insert the Distinct operator

in the branch below the Rename. As pointed out in Sec. 1, such Distinct may not preserve the original XQuery

semantics. Instead, we use a Groupby operator and an ID-based duplicate removal operator to avoid repeated

computations, as shown later in Fig. 9.

LOJ($a=$a1)
Map

Map

σ$a=$a1

Magic Branch

$a1

Rename

$a

$col_1:Tagger(<tag>,$ce)

Map

Magic Branch

$a1

Rename

$a

$col_1:Tagger(<tag>,$ce)

Figure 6: Generate the Magic Branch
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4.3 Propagation of the Magic Branch

The intuitive idea of the magic branch decorrelation is to move all relatively correlated operators out of the correla-

tion. As a result the linking operator and the Map operator will become parent and child. Then the linking operator

can be rewritten into either a Join, Semijoin or Antijoin, depending on the query semantics. To achieve this, we need

to propagate the Map operator down the XA tree to the linking operator.

The propagation of the magic branch overtuple-orientedoperators is different from that overtable-oriented

operators (See Definition 2 in Section 5). A table-oriented operator is defined on groups of tuples and its result cannot

be calculated without the group boundary. All the operatorsinherited from relational algebra except aggregations,

as well as many other operators such as Tagger, are tuple-oriented. Aggregations, Nest and order-sensitive position

functions are table-oriented.

For a tuple-oriented operator we can simply push theMap down over it as shown in Fig.7 for the Tagger.

Map

Magic Branch

$a1

Rename
$col_1:Tagger(<tag>,$ce)

Nest($ce)

Map

Magic Branch

$a1

Rename

$col_1:Tagger(<tag>,$ce)

Nest($ce)

Figure 7: Propagation over Tuple-Oriented Operator: Tagger

For table-oriented operators, we need to perform an extra generation of a magic branch as done in Section 4.2.

The propagation step for the table-oriented operator Nest is shown in Fig. 8. The intuition is to insert another LOJ

to keep completeness of the for-variable column in the output XATable. Without such LOJ the empty collection bug

may occur, which is similar but more general to the count bug already studied in the literature [8]. By repeatedly

performing the generation (if needed) and propagation as wetraverse the XA tree downwards, we will eventually

push all the relatively correlated operators out of the RHS of the Map.

Now theOrderbyoperator coming from the orderby clause become the RHS childof the Map operator. The

Orderby operator is a special table-oriented operator thatwill sort all the tuples within the input table. As for other

table-oriented operators, propagating the Magic Branch will add a Groupby operator and a LOJ operator to the query

tree. Different with other table-oriented operators, the added LOJ operator will also be used to restore the correct

tuple order from the LHS magic branch, since the original tuple order may be destroyed by the Groupby operator to

remove repeated computations.
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Map$a1

Nest($ce)

Map$a1

Nest($ce)
LOJ($a1=$a2)

Map

σ$a1=$a2

Magic Branch

$a2

Rename

Map

Magic Branch

$a2

Rename

$a1

GB$a2(Nest($ce))

Orderby($ce)

Orderby($ce)

Orderby($ce)

Figure 8: Propagation over Table Oriented Operator: Nest

4.4 Absorption of Magic Branch

Now the linking operatorσ$c=$ad becomes the child of the Map operator. The last portion of thepropagation is

to absorb the magic branch into the linking operator. A Join (or Semijoin, Antijoin) is formed to connect both the

branches. To form the branches, other operators may also be moved accordingly. For example, theφ$ad:$a3/d is

moved from RHS to LHS in Fig. 9. In order to avoid repeated computation by the Join operator, a Groupby operator

grouping on the referred variable in the Join and a ID-based duplication removal operator are inserted. At the same

time, an Unnest is also inserted to keep the semantic consistency. This step guarantees that no repeated computation

exists for the Join operator. This transformation of the XA tree is shown in Fig. 9.

Map

σ$c=$ad

GB$a3(Orderby($ce))

$s3:doc(“c.xml”)

φ$ad:$a3/d

φ$ce:$c/e

φ$c:$s3/c
$a3

Join($c=$ad)

φ$ad:$a3/d

$s3:doc(“c.xml”)

φ$ce:$c/e

φ$c:$s3/c

GB$a3(Orderby($ce))

GB$ad(Nest(δID($a3)))

UnNest($a3))

Figure 9: Absorption of Magic Branch by Linking Operator

4.5 Removal of Redundant Left Outer Join

During the magic branch generation and propagation, the LOJoperator is generated to rebuild the tuple order defined

by the for-variable and to maintain completeness of the for-variable column in the XATable. Some of the LOJs may

be redundant and could be removed. We perform a top down traversal of the XA tree and remove the redundant
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LOJ operators. In the example XA tree, the top LOJ can be removed since the lower LOJ already would restore

the correct tuple order and the Tagger operator is order preserving. As to the other two LOJs, there is no empty

collection associated with a certain instance of$a that would get lost. Either one is sufficient to avoid the empty

collection issue.

We obtain the final decorrelated XA tree as shown in Fig. 10. During execution, the content of column$a and

its alias$a2 are all XML node IDs. Thus a cheap ID-based LOJ can be achieved.

LOJ($a=$a2)

Join($c=$ad)

φ$ad:$a2/d

$s3:doc(“c.xml”)

φ$ce:$c/e

φ$c:$s3/c$a2
Rename

$col_1:Tagger(<tag>,$ce)

$a

$s2:doc(“a.xml”)

φ$a:$s2/a

Nest($col_1)

φ$ac:$a/c

Orderby($ac)

GB$a2(Orderby($ce))

UnNest($a2))

GB$a2(Nest($ce))

GB$ad(Nest(δID($a2)))

Figure 10: Decorrelated XA algebra tree

5 Magic Branch: The Basic Algorithm

In Section 4, we have illustrated our Magic branch decorrelation algorithm using a running example. For description

purposes we follow an algorithm treating all nested XQueries uniformly. That is, we first generate all LOJs and then

later remove unnecessary ones. Actually in the implementation, these two steps are done together without generating

redundant LOJs.

5.1 Pushing Computation out of the RHS of Map Operator

The idea here is to factor out computation from the RHS of the Map operator and perform it outside the RHS: either

in the LHS or on top of the Map operator. For this purpose, we first identify the subset of the columns in the input

XATable that an operator or block of operators needs to function correctly. We call the XATable schema composed
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of this subset of columns themin-schemafor that operator or the block of operators. The min-schema indicates all

the input columns used by the operator(s), directly or indirectly. The min-schema can be computed recursively as

follows:

• For each leaf operator, the min-schema is the correlated for-variable column or empty (if this operator refers

to an XML document).

• For any other operator, min-schema includes the column name(s) it uses in its operation and the union of the

min-schema(s) of the operator(s) generating the column(s).

• For a block of operators, min-schema is the union of the min-schema of every operator in the block minus the

columns generated by the operators in the block.

Now we can move a block of operators out of the RHS of the Map using the following rule.

Rule 1 A block of operators can be pushed out of the RHS of the Map operator, if: 1) the min-schema of this block

of operators only includes the correlated for-variable column, 2) any output column generated by the operators does

not appear in the min-schema of other operators outside the block in the RHS, and 3) there is no table-oriented

operator in this block.

The above rule enforces that no table-oriented operator canbe moved outside the RHS of Map. This prevents

the empty collection bug that could result from such transformation. We have to use the magic branch to decorrelate

such operators, as shown previously in Fig. 8. After pushingcomputation out of the RHS of the Map, the RHS XA

tree might be empty. In that case the Map operator can be removed by the following rule.

Rule 2 If the RHS subtree of a Map operator is empty, thisMap operator can be removed.

For a simple XQuery having flat FLWR clauses only, a linear XA tree is expected after using Rules 1 and 2.

Example is shown in Fig. 5.

5.2 Generating and Propagating the Magic Branch

The main task of our decorrelation algorithm is to generate the magic branch and to propagate the branch down the

RHS subtree. Introducing an extra Select and Map pair to the RHS of the Map operator will happen in the generation
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step. Similarly introducing the Select and Map pair also happens when propagating the magic branch down a table-

oriented operator. Eventually the propagated magic branchreaches the linking operator and can be rewritten into a

Join or a variant of the Join operator. During the magic branch decorrelation, extra LOJs will be generated to restore

the order of tuples and to avoid the empty collection bug. We show the correctness of the generation and propagation

steps below.

Lemma 1 (Generation Lemma) Consider a queryQ having a MapMa:eR
($v0) with eL0

as LHS appearing under

a Nest. Now consider another MapM ′
a:eR

($v1) with eL1
as LHS andeL1

is a magic branch renaming$v0 as$v1.

IntroducingM ′ into eR and a Selectσ$v0=$v1
as parent ofM ′ does not change the evaluation ofQ. In other words:

Nest(...Ma:eR
($v0)) = Nest(...$v0 LOJ$v0=$v1

M ′
a:eR

($v1)).

Intuitively Lemma 1 is correct since: (1) the LOJ inserted isID-based operator, and both$v0 and$v1 are ID

distinct; (2) the upper Nest removes null elements from input XATable.

In the propagation step of the magic branch, we need to deal with tuple-oriented and table-oriented operators

differently.

Definition 2 A tuple-oriented operator is one whose output corresponding to a tuple in the input XATable depends

only on that tuple. Any operator that is not tuple-oriented is said to be table-oriented. In other words, the output of

a table-oriented operator depends on multiple tuples of theinput XATable.

The table-oriented operators in our algebra include: Nest,OrderBy, Groupby, Distinct and all relational aggre-

gation functions. Since “order” semantics in XQuery have tobe defined on a sequence of tuples, all order-sensitive

operators are classified as table-oriented operators also.

Table-oriented operators need to be handled differently during propagation of the magic branch. We use the

for-variable defined in the magic branch as the correlation context for the table-oriented operator.

Lemma 2 (Propagate Lemma)The MapMa:op(eR)($v0) appearing under a Nest, whereop is a table-oriented

operator whose correlation context is{$v0} can be rewritten as:

Nest(...Ma:op(eR)($v0))

= Nest(...$v0 LOJ$v0=$v1
(GB$v1;a;op M ′

a:eR
($v1))).
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with M ′ havingeL1
as LHS andeL1

is a magic branch renaming$v0 as$v1.

Intuitively the added grouping operator in Lemma 2 separates the whole column used by the table-oriented

operatorop into partitions according to the context variable$v1. Thus each partition keeps the group boundary of

the column correctly. For the tuple-oriented operators, nopartition of the used column need to be kept and thus the

magic branch can be simply propagated down.

5.3 Remove the Redundant Left Outer Join Operator

The main reason for introducing the additional LOJ operatorduring decorrelation are: 1) to restore the order of the

result defined originally by the for-variable, and 2) to avoid the empty collection bug caused by the table-oriented

operators.

In SQL query decorrelation, whenever aggregation functions occur between query blocks, the unnested join

query needs to consider unmatched outer tuples to avoid the “Count Bug”. The unmatched tuples of the outer query

will generate a subquery result equal to the empty set. Whenever such an empty set is significant in the predicate

expression or the result construction, we need to introducea LOJ to handle these unmatched outer tuples.

In the XQuery language, such problem will happen not only if aggregate functions occur between query blocks,

but also in many other cases as well. We call this the “Empty Collection Bug”. For example, consider the following

XQuery.

<result>{

for $book in (doc("bib.xml") //book)

return <book>$book[2]</book>

}</result>

Since the position function will always return “1” for everyiteration of$book, the expected result is a collection

of empty “<book/>” tags. This number of empty tags should be equal to the numberof instances of the$book

variable. Without usingLOJ, theSelect operator upon thePosition operator will remove all the tuples in the

XA table and the final result will be wrong. We have to useLOJ to find all those$book instances in order to get the

correct number of “<book/>” tags.

In the previous running example, we use a conservative approach of addingLOJ for every table-oriented operator

to guarantee the correctness of the transformation. All of these LOJ operators have the magic branch as left hand

side input. Some of these LOJ operators are redundant and canbe removed as discussed below.

We first traverse the XA tree in a top-down manner to find all redundant LOJs. A LOJL1 is redundant with
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respect to a LOJL2 in the RHS ofL1 if: (1) L1 andL2 have the same magic branches with the same variable

(possibly renamed); (2) all the operators aboveL2 in the RHS ofL1 will not remove any instance of the variable

introduced by the LHS ofL2; and (3) all the operators aboveL2 in the RHS ofL1 will not make use of the possibly

empty collection inserted byL2. When we also consider the order preserving purpose of usingthe LOJ operator,

the following additional condition needs to be checked: (4)all the operators aboveL2 in the RHS ofL1 is order

preserving.

The redundant LOJs are removed as follows. We first form a undirected graph with the LOJs as nodes. We

define an edge betweenLi andLj if Li is redundant with respect toLj. Then, from each component of this graph,

we keep only the topmost LOJ in the query tree, and discard allthe other LOJs.

In XA algebra, the Select, Join and variants of Join are example operators that may remove the instance of

the variable introduced by the magic branch; and the Tagger operator is one example operator using the empty

collections generated by the lower LOJ.

This step needs to traverse the XA tree multiple times. In theworst case, the complexity of the step will be

O(ln), where thel denotes the number of the LOJs and then denotes the number of nodes in the XA Tree.

6 Complex XQuery Decorrelation

In this section we will discuss the application of the magic branch decorrelation on complex XQueries. These

XQueries may have aggregations, order-sensitive functions, quantifications and multiple level nested subqueries.

6.1 Aggregation and Position Functions

XQuery language supports all the aggregation functions supported in the relational context, such asmin, max, count,

etc. The aggregations attract special attention in the relational context because they are table-based operations and

usually are associated with a grouping operation. In our magic branch decorrelation, all aggregation functions are

classified as table-oriented operators and thus can be processed consistently. In order to keep the partition boundary

of the aggregated column, we need to add an explicit groupingoperator after the propagation. In order to avoid the

infamous “count bug”, we need to introduce a LOJ for aggregation functions.

Different from the relational and the object data model, theXML data model is order-sensitive. In the XQuery

language, there are many order-sensitive functions to support this feature. Among them, the sequence-based XQuery

expressions are popular, such as the Position function. We will use the Position function as an example to show how
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to use the magic branch to decorrelate order-sensitive functions in XQuery expressions.

According to Definition 2, the Position function is a table-oriented operator. Using parentheses in XQuery

expression, the context of the Position function can be set differently. Consider the following two XQueries; they

have different context for the Position function defined by the parentheses. In XQueryQ1 the secondname of every

author will be returned, while in XQueryQ2 the secondname node rooted bybook will be returned.
XQuery Q1:

for $b in doc("bib.xml")/book

return <name>$b/author/name[2]</name>

XQuery Q2:

for $b in doc("bib.xml")/book

return <name>($b/author/name)[2]<name>

The context of the Position function needs to be maintained before and after decorrelation. To achieve this,

we need to propagate the magic branch over the GroupBy operator. The GroupBy operator is also a table-oriented

operator. The XA trees before and after decorrelation of theGroupBy and Position functions are shown in Fig. 11

and 12 respectively.

Map
$b1

φ$ba:$b1/author

σ$p=2

φ$ban:$ba/name

$p::GB$ba(Position($ban))

Magic Branch

LOJ($b1=$b2)

Magic Branch

$b1

$b1

Rename
$b2

$p::GB$b2,$ba(Position($ban))

φ$ba::$b2/author

φ$ban::$ba/name

σ$p=2

Figure 11: Decorrelate Position Function in XQuery Q1.

Map
$b1

σ$p=2

φ$ban:$b1/author/name

$p::Position($ban)

Magic Branch

LOJ($b1=$b2)

Magic Branch

$b1

$b1

Rename
$b2

$p::GB$b2(Position($ban))

φ$ban::$b2/author/name

σ$p=2

Figure 12: Decorrelate Position Function of XQuery Q2.
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6.2 Existential and Universal Quantifications

In XQuery, we allow existential and universal quantifiers toappear in the predicates. The quantifiers used in the

XQuery Where clause includesomeandevery. The primitivesatisfiesis associated with the quantifiers. XQuery

expressions can also use the relational-likeexistsprimitive to test the emptiness of a collection.

All the predicates having quantifications can be rewritten using the aggregate function Count and the Select

operator. Such XQuery expressions then can be decorrelatedusing the magic branch decorrelation. The XQuery

having theexistsprimitive on a collection can also be rewritten using the Count operator. We use the following

example to show the rewriting of thesomequantifier. The XQueryQ3:
for $a in doc("a.xml")/a

where some $b in doc("b.xml")/b[c=$a/c]

satisfies $a/b = $b

return <tag>$a</tag>

can be rewritten asQ4:
for $a in doc("a.xml")/a

where count(for $b in doc("b.xml")/b[c=$a/c]

where $a/b = $b return $b) >0

return <tag>$a</tag>

If the query engine support the efficient evaluation of the Semijoin and the Antijoin operators, the XQueryQ3

can also be transformed during decorrelation using these Join variants.

6.3 Multiple Level Correlation

A complex XQuery can have multi-level nested subqueries having multiple linking operators. There are multiple

Map operators in the translated algebra tree connecting thecorrelation variables and linking operators. In general,

we will face a bushy Map tree. For such XQuery, we decorrelateall the Map operators recursively in a post-order

traversal of the Map operators. That is, for each Map operator, we first decorrelate the LHS, then the RHS and lastly

the subtree rooted by this Map operator. Such post-order decorrelation avoids pushing a Map operator over another

Map operator.

7 Experimental Study

We have conducted experiments to illustrate the performance gains achieved by our approach. We have implemented

the magic branch decorrelation and optimization algorithmin the RainbowCore project, a native XQuery engine

based on the XA algebra developed at WPI [22].
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We have run a set of experiments to evaluate the performance gain achieved by the magic branch unnesting

algorithm. Experiments were run on a 1.2GHz PC with 512MB of RAM running Windows 2000. We used XML

documents generated by the XMark benchmark [15] with 10 scale factors from 0.001 (113KB) to 0.01 (1.11MB).

Each experiment was run five times, with lowest and highest results discarded and and the remaining three averaged.

We propose a general solution for nested XQueries, and couldbe applied in any algebraic based XQuery en-

gine. Horizontal comparison with other engines will not be instrumental in evaluating the effectiveness. Thus, we

conducted a vertical evaluation comparison before and after application of our techniques on the same system.
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Figure 13: Comparison Before and After Decorrelation.

In our first set of experiments, we use two XQueries from the XMark benchmark, namely,Q8 andQ9. Each

represents a different category of complexity, namely, twoquery blocks with one level nesting, and three query

blocks with multiple level nestings. The results are shown in Fig. 13. We also conduct experiments on XMark

query Q10, Q11 and Q12 with results similar in overall trend confirming the effectiveness of our decorrelation.

Other XQueries of XMark are either not nested or not supported by current RainbowCore due to the user defined

functions.

We can see that the decorrelation step gives significant performance gains. One of the reasons is that in our

experiment the navigations will be launched directly to thefile for every instance of the LHS of the Map operators.

After decorrelation, this repeated navigation in the subquery will be saved and the total I/O cost will decrease

dramatically.

The second set of experiments try to show the effectiveness of decorrelation for XQuery with multiple level

ordering and position functions. The following XQuery expression sorts part of the authors by their last name and

groups books together with their first author, then sorts each author’s book by publishing year. This query is adapted

from W3C XQuery Use Cases XMP Q4 [19] by adding the position function and orderby clauses.
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for $a in distinct-values(doc("bib.xml")/book/author[1])

order by $a/last

return <result>{$a,

for $b in doc("bib.xml")/book

where $b/author[1] = $a

order by $b/year

return $b/title

}</result>

We have varied the input XML documents to have different numbers of book elements. The results are shown in

Fig. 14. We clearly see the significant gains achieved by our unnesting algorithm, especially the more complex the

nesting the larger the gain.
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Figure 14: Performance Comparison of Different Query Plans.

The third set of experiments is designed to illustrate the performance gain of adding the Groupby operator to re-

move duplicates, we present a performance comparison with the naive magic decorrelation for XQuery expressions,

where no duplicates are removed. In general, although our magic branch decorrelation introduces additional group-

ing operator, we expect our decorrelation to be beneficial when many duplicates existing in the variable referred to in

the linking operator, or when there is considerable work performed for each variable instance in the linking operator.

We measured the query execution times on the following XQuery.

for $a in doc("a.xml")/a

return {for $b in doc("b.xml")/b

where $b=$a/b

return $b}

The experiment has the following settings: the total numberof a nodes in the “a.xml” is set to 1K; the total num-

ber ofb nodes in the “b.xml” is also set to 1K. By varying the number ofduplicates ofb nodes indoc(a.xml)/a/b, we

get the performance comparison shown in Fig. 15. The Duplicates Ratio is defined as1− # distinct b nodes
# total b nodes ×100%.
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Our magic branch decorrelation results in a huge performance improvement, especially for the case where there is a

large amount of duplicates.
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Figure 15: Decorrelation with/without Groupby I

We then lock the duplicates ratio of$a/b to 20% and change the cardinality ofb node in “b.xml” from 1K to 6K,

which increases the computation for each node in$a/b. As shown in Fig. 16, the relative performance gain of our

decorrelation increases accordingly.
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Figure 16: Decorrelation with/without Groupby II

8 Conclusion

In this paper we present a decorrelation algorithm, calledMagic branchalgorithm, based on an XQuery algebraic

framework. Our work provides a deterministic algorithm forunnesting arbitrary nested XQuery with ordered seman-

tics. Our work extends previous work in three aspects. First, our unnesting algorithm represents a uniform solution

for removing correlated variables in a subquery. Second, our unnesting algorithm provides an efficient decorrelated

query. This is possible by using a grouping operator to avoidrepeated computations. Third, our unnesting algorithm

preserves correct ordered semantics. The experimental studies illustrate the effectiveness of the proposed algorithm.

As part of our future work, we plan to study the order inference of different operators in the order sensitive query
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plan as well as optimization of the operators using it.
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