
WPI-CS-TR-04-19 July 2004

Updating XML Views Published over Relational Databases:
Towards the Existence of a Correct Update Mapping

by

Ling Wang
Elke A. Rundesnteiner and Murali Mani

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Updating XML Views Published over Relational Databases:

Towards the Existence of a Correct Update Mapping

Ling Wang, Elke A. Rundesnteiner and Murali Mani
Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA 01609
Tel.: (508) 831–5857, Fax: (508) 831–5776
{lingw, rundenst, mmani}@cs.wpi.edu

Abstract

XML data management using relational database systems has been intensively studied in the last few years.
However, in order for such systems to be viable, they must support not only queries, but also updates over virtual
XML views that wrap the relational data. While view updating is a long-standing difficult issue in the relational
context, the flexible XML data model and nested XML query language both pose additional challenges for view
updating.

This paper addresses the question, if for a given update over an XML view, a correct relational update translation
exists. First, we propose a clean extended-source theory as criteria for determining whether a given translation
mapping is correct. To determine the existence of such a correct mapping, we classify a view update as either un-
translatable, conditionally or unconditionally translatable under a given update translation policy. This classification
depends on several features of the XML view and the update: (a) granularity of the update at the view side, (b)
properties of the view construction, and (c) types of duplication appearing in the view. These features are represented
in the Annotated Schema Graph. This is further utilized by our Schema-driven Translatability Reasoning algorithm
(STAR) to classify a given update into one of the three above update categories. The correctness of the algorithm is
proven using our clean extended-source theory. This technique represents a practical approach that can be applied
by any existing view update system in industry and academia for analyzing the translatability of a given update
statement before translation of it is attempted. To illustrate the working algorithm, we provide a concrete case
study on the translatability of XML view updates.

Keywords: XML View, XQuery, Update Translatability.

1

1 Introduction

XML has become the standard for interchanging data between web applications. Recent XML management

systems [9, 14, 28] combine the strengths of the XML data model with the maturity of relational database technology

to provide both reliable persistent storage as well as flexible query processing and publishing. To bridge the gap

between relational databases and XML applications, such systems typically support the creation of XML views

that wrap the relational base and querying against them. Update operations against such wrapper views, however,

are not well supported in most of these systems [9, 14].

Motivation. The problem of updating XML views published over relational data comes with new challenges

beyond those of updating relational [1, 2, 12, 13, 16, 17] or even object-oriented [4] views. The first challenge

relates to the update translatability problem. That is, the mismatch between the hierarchical XML view model

and the flat relational base model raises the question whether the given view update is even mappable into SQL

updates. For instance, the nested structure imposed by an XML view may be in conflict with the constraints of

the underlying relational schema, so that updates that are valid on the view may not be achieved on the base. The

second challenge concerns the translation strategy issue. That is, assuming the view update is indeed identified as

being translatable, we need to devise a strategy to identify the minimal mapping update. This mapping has to

best bridge the two query and update languages (updates with diverse granularity on the XML view versus flat

tuple-based SQL updates on the relational base).

The translation strategy issue has been explored to some degree in recent work. [22] studies the execution

performance of translated updates. They assume in their work that the given update is indeed translatable, i.e.,

that the update translatability question has already been resolved positively. Two, one fixed loading strategy,

namely, inlining loading strategy [15], is assumed. Third, this work assumes that XML updates have already

been translated into SQL updates over a relational database, and they focus only on how to make such a set of

SQL statements efficient. XML view management systems such as SQL-Server2000 [21], Oracle [3] and DB2 [10]

provide system-specific solutions for limited update support, again under the assumption of updates always being

translatable. For instance, instead of using update statements, [21] uses a before and after image of the view to

compute the corresponding SQL statements.

However, the first issue, update translatability question, remains largely unexplored. Studying update trans-

latability is important in terms of both correctness and performance. Without translatability checking, blindly

translating a given view update into relational updates can be dangerous. Such blind translation may result in

unintended view side effects. To identify this, the view before the update and after the update would have to be

compared. To adjust for such an error, the view update would have to be rejected and the relational database

2

would have to be recovered for example by rolling back. This would be time consuming and depends on the size

of the database. However, by performing an update translatability analysis, such ill-behaved updates could be

identified early on and rejected at compile time. The latter would be less costly, depending only on the view query

size.

State-of-Art. Update translatability checking has been a long standing difficult issue even in the relational

context. [12, 2] propose a complementary theory that requires a correct mapping to avoid view side effects as

well as database side effects. That is, for a translation to be considered correct, it cannot affect any part of the

database that is “outside” the view. This correctness criteria, however, is too restrictive to be practical. [13]

relaxes this condition to only requires that no view side effect occurs. In other words, a translation is correct as

long as it corresponds exactly to the specified update, and it does not affect anything else in the view. Using the

concept of “clean source”, it also characterizes the schema conditions under which an update of a relational view is

translatable. Under this relaxed criteria, [16, 17, 1] study the view update translation mechanism for SPJ queries

on relations that are in BCNF.

Using the complementary theory, in our earlier work [25], we study the update translatability of XML views

over the relational database in the special “round-trip” case, which is characterized by a pair of reversible lossless

mappings for (i) first loading the XML document into the relational database for storage, and (ii) extracting an

XML view identical to the original XML document back out of it. We prove that any valid update operation over

such XML views, given a pair of round-trip mappings, is always translatable.

To the best of our knowledge, however, no result in the literature focuses on a general method to assess the

translatability of updates on an arbitrary XML view published over relational data. That is, given a relational

database and an XML view definition on top of it, we now propose to tackle the question whether a given update

over the virtual XML view can be mapped into relational SQL updates without any view side effect.

Our Approach on Schema-driven Update TrAnslatability Reasoning (STAR) . With the hierarchical

structure of the XML data model in consideration, our work first extends the concepts of a “clean source” for

relational databases [13] into the concept of a “clean extended-source” suitable for XML. We propose a clean-

extended source theory for determining the existence of a correct relational update translation for a given XML

view update.

Based on this theoretical foundation, a practical algorithm is developed to address the update translatability

issue specific to the XML views. Given an update translation policy, we classify updates over an XML view as

un-translatable, conditionally translatable or unconditionally translatable. This classification depends on several

features of the XML view and of the update: (a) granularity of the update at the view side, (b) properties of

3

the view construction, and (c) types of duplication appearing in the view. These features are represented in the

Annotated Schema Graphs(ASG). These ASGs are utilized by our STAR algorithm to classify a given update into

one of the three update categories. First, a STAR marking step pre-codes each node in the ASG with a pair of

labels (UContext|UPoint) to indicate its update properties. This analysis is performed only once at compile time.

The STAR checking step will use resulting labels classify the given view update into one of the three translatability

categories by a. Our STAR algorithm depends only on the view and database schema knowledge instead of on

the actual database content. It rejects un-translatable updates, requests additional conditions for conditionally

translatable updates, and passes unconditionally translatable updates to the later update translation step. The

correctness of our STAR approach is proven utilizing our clean extended-source theory.

Contributions. The preliminary work in [26] has the following contributions: (1) We characterize the update

translatability problem for XML views and identify key factors affecting the translatability. (2) We propose the

clean extended-source theory for determining whether a correct view update translation exists. (3) We present a

schema-driven translatability reasoning algorithm for deciding if an update on an XML view is un-translatable,

conditionally or unconditionally translatable, when the construction consistency is the major concern. That is, the

conflict between the view hierarchy and the relational foreign key constraints.

Beyond this work, we now have made the following additional contributions in this full manuscript:

• We now propose a complete schema-driven translatability Reasoning algorithm (STAR) that handles updates

(especially delete) on XML views with both content and structural duplication.

• We prove the correctness of our clean extended source theory, which is criteria for determining whether a

given translation mapping is correct. This theory now serves as a solid foundation for our STAR approach.

• Using the clean extended source theory, we prove our schema-driven translatability reasoning algorithm

(STAR) for deciding whether an update on an XML view is translatable.

• We provide case studies to apply proposed algorithm to analyze the translatability of updates in various

XML views.

Outline. The view update problem is formalized in Section 2. In Section 3 we propose the “clean extended-

source” theory as theoretical foundation of our proposed solution. Section 4 analyzes the factors deciding the

translatability of updates on XML views. Our schema-driven translatability reasoning algorithm is depicted in

Section 5. its correctness is proven in Section 6. Section 7 provides an evaluation of our STAR algorithm. Section

8 reviews related work while Section 9 provides our conclusions and future directions.

4

2 Formalizing the Problem of XML View Updatability

Intuitively, the translatability of XML view update question can be described as follows. Given a relational

database and an XML view definition over it, can we decide whether an update against the XML view is trans-

latable into corresponding updates against the underlying relational database without violating any consistency?

Intuitively, by consistency, we mean that (i) the requested view update is valid. That is, it agrees with the implied

XML view schema. (ii) The translated updates against the relational database comply with the relational schema,

namely, to keep the relational database consistent by update propagation if necessary. (iii) The XML view recon-

structed on the updated relational database using the view definition is exactly the same as the result that would

be generated by directly updating the materialized view, namely, without view side-effects. In this section, we now

formally model this problem.

2.1 XML View over Relational Database

The structure of a relation is described by a relation schema R(N ,A,F), where N is the name of the

relation, A = {a1, a2, ..., am} is its attribute set, and F is a set of constraints. A relation R is a finite subset of

dom(A), a product of all the attribute domains. A relational database, denoted as D, is a set of n relations

R1, ..., Rn. A relational update operation uR ∈ 0
R is a deletion, insertion or replacement on a database D.

A sequence of relational update operations, denoted by UR = {uR
1 , uR

2 , ..., uR
p } is also modeled as a function

UR(D) = uR
p (uR

p−1(..., u
R
2 (uR

1 (D)))). Fig. 1 depicts an example of a relational schema and database which contains

a list of books by titles and their (optional) prices.

98003

98003

98001

pid

www.bookpool.com45.60

www.amazon.com56.00

63.70

amount

www.amazon.com

website

Programming in Unix98002

Data on the Web98003

TCP/IP Illustrated98001

titlebookid

price

book

Primary
Key

Non Key

Legend:

CREATE TABLE book(
bookid VARCHAR2(20),
title VARCHAR2(100) NOT NULL,
CONSTRAINTS BookPK

PRIMARYKEY (bookid))

CREATE TABLE price(
bookid VARCHAR2(20),
amount DOUBLE,
website VARCHAR2(100),
CONSTRAINTS PricePK

PRIMARYKEY (bookid, website),
FOREIGNKEY (bookid)

REFERENCES book (bookid))

t1
t2
t3

t1
t2
t3

Fig. 1. Relational database

<DB>
<book>

<row>
<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>

</row> ...
</book>
<price>

<row>
<bookid>98001</bookid>
<amount>63.70</amount>
<website>www.amazon.com</website>

</row> ...
</price>

<DB>

Fig. 2. Default XML view of database shown
in Figure 1

Recent XML systems (XPERANTO [9], SilkRoute [14] and Rainbow [28]) use a basic XML view, called default

XML view, to define the one-to-one XML-to-relational mapping. Fig. 2 is the default XML view of the relational

database shown in Fig. 1.

5

Table 1. Notations for XML view update problem
D relational database R(N ,A,F) schema of relation

R relation 0R domain of relational update operations

uR relational update operation UR sequence of relational update operations

V XML view DEF V XML view definition

uV view update 0
V domain of view update operations

On top of this default XML view, a (virtual) XML view V is defined by a view definition DEFV to publish

user-specific data. In our case, DEFV is an XQuery expression (e.g. [23]) called a view query. Fig. 3 lists some

example view queries used as running examples in this paper. The domain of the view is denoted by dom(V).

For the view definition DEFV , we do not consider any aggregation and recursion. These operations make

views non-updatable, as enunciated in [16]. Also, the predicate used in the view query expression is a conjunction

of non-correlation or correlation predicates defined as below. Given a predicate p of the form a θ b, where

θ ∈ {=, 6=, <,≤, >,≥}. We say that p is a non-correlation predicate if b is a literal, otherwise, p is said to be

a correlation predicate. For example, $price/website = “www.amazon.com” is a non-correlation predicate while

$book/bookid = $price/bookid is an equi-correlation predicate.

Each XML view is associated with an XML view schema generated by analyzing both the view definition

DEFV and the schema of the underlying relations [5, 6].

This view schema can also be represented by a graph similar to SilkRoute [14] and other XML publishing

work [7, 8]. Fig. 4 shows the view schema for the view query V 1 as well as its graph representation. Let rel be

a function to extract the relations in D referenced by DEFV , then rel(DEFV) = {Ri1 , Ri2 , ..., Rip
} ⊆ D. For

example, let DEFV be the query Q1, then rel(DEFV) = {book, price}. For each node in the schema graph, we

define two functions Update Context Binding, denoted by UCBinding(), and Update Point Binding, denoted by

UPBinding(). UCBinding(n) will extract all the relations referred up to n in DEFV . UPBinding(n) includes all

the relations referred below n. The UCBinding and UPBinding for different schema nodes are shown in Fig. 4.

Note that UCBinding(n) ⊆ rel(DEFV) and UPBinding(n) ⊆ rel(DEFV).

Further, the domain constraints of the XML view schema are consistent with the relational schema. For

example, amount has the data type decimal, thus takes the domain of decimal. The hierarchical constraints

are extracted from the view query. The cardinality constraints such as “minOccurs=1” and “maxOccurs=1”

are extracted by combining both the view query and the relational database schema. For instance, bookid has

“minOccurs=1” and “maxOccurs=1” since it is the key of the underlying relational table book. While price info

has “maxOccurs=unbounded” since the view query defines price info elements inside of book info element. Recent

works [5, 6] study the XML view schema publishing over the relational database. We thus omit the discussion

of how to publish the view schema given a view query and the underlying relational database schema. Instead

6

<bib>
FOR $book IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,
FOR $price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$price/amount, $price/website

</price_info>}
</book_info>

</bib> }

Q1

<bib>
<book_info>

<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com</website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com</website>

</price_info>
<price_info>

<amount>45.60</amount>
<website>

www.bookpool.com
</website>

</price_info>
</book_info>

</bib>

V1

(a) V 1 defined by Q1

<bib>
FOR $book IN document("default.xml")/book/row,

$price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$price/amount, $price/website,
<book_info>

$book/bookid, $book/title
</book_info>

</price_info>
</bib> }

Q2

<bib>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com </website>
<book_info>

<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>

</book_info>
</price_info>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com </website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>
<price_info>

<amount>45.60</amount>
<website> www.bookpool.com </website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>

</bib>

V2

(b) V 2 defined by Q2

<bib>
FOR $book IN document("default.xml")/book/row,

$price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<book_info>
$book/bookid, $book/title,
<price_info>

$price/amount, $price/website
</price_info>

</book_info>
</bib>}

Q3

V3

<bib>
<book_info>

<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com</website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com </website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>45.60</amount>
<website> www.bookpool.com </website>

</price_info>
</book_info>

</bib>

(c) V 3 defined by Q3

Q4

<bib>
FOR $book IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,
FOR $price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$book/bookid, $price/amount, $price/website

</price_info>}
</book_info>

</bib> }

V4
<bib>

<book_info>
<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>
<price_info>

<bookid>98001</bookid>
<amount>63.70</amount>
<website> www.amazon.com</website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

<price_info>
<bookid>98003</bookid>
<amount>56.00</amount>
<website> www.amazon.com </website>

</price_info>
<price_info>

<bookid>98003</bookid>
<amount>45.60</amount>
<website> www.bookpool.com </website>

</price_info>
</book_info>

</bib>

(d) V 4 defined by Q4
Q5

<bib>
FOR $book1 IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,

</book_info>},
FOR $book2 IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,

</book_info>}
</bib> }

V5

<bib>
<book_info>

<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>

</book_info>
<book_info>

<bookid>98002</bookid>
<title>Programming in Unix</title>

</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>

<book_info>
<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>

</book_info>
<book_info>

<bookid>98002</bookid>
<title>Programming in Unix</title>

</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</bib>

(e) V 5 defined by Q5

Fig. 3. View V1 to V5 defined by XQuery Q1 to Q5 respectively

7

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:complexType name="price_info_type">

<xs:sequence>
<xs:element name="amount" type="xs:decimal"/>
<xs:element name="website" type="xs:string"/>

<xs:sequence>
</xs:complexType>
<xs:complexType name="book_info_type">

<xs:sequence>
<xs:element name=“bookid" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="title" type="xs:string" minOccurs="1"/>
<xs:element name="price_info" type="price_info_type" maxOccurs="unbounded"/>

</xs:sequence>
<xs:complexType>
<xs:element name="book_info" type="book_info_type" maxOccurs="unbounded"/>

</xs:schema>

book_info

book/row/bookid book/row/title price_info

bib 1

2

3 4

7

price/row/website

5

price/row/amount

6

*

?
? *

? ?

book/row/bookid=price/row/bookid

UCBinding = {book}
UPBinding = {price}

UCBinding = {book,price}
UPBinding = {}

Fig. 4. View Schema and its graph representation for V1 in Fig. 3(a)

we concentrate on the influence that the view schema has on the existence of the view update translation. Some

constraints in the view schema, e.g., domain constraints, can be used to check if the given view updates are valid.

Other constraints may affect the update translatability of the view, in particular, when the constraints extracted

from view definition and relational schema are not consistent with each other.

2.2 XML View Update Problem

2.2.1 Update Operations over XML View

Let uV ∈ 0
V be an update on the view V . An insertion adds while a deletion removes an element from the

XML view. A replacement replaces a view element with another view element. Although W3C is adding update

capabilities to the XQuery language [23], to date there is no one standard update XQuery syntax. For illustration

purposes, our work adopts the update XQuery syntax introduced in [22]. Fig. 5 shows several examples of view

updates expressed in this XQuery like language from [22].

A valid view update is an insert, delete or replace operation that satisfies all constraints in the view schema.

All updates in Fig. 5 are valid updates since they agree with all constraints of the view schema. Figure 6 contains

several examples of invalid updates which violate either the Null constraints or the domain constraints. Assuming

we have constraints for the relational database in Figure 1 as shown in Figure 6(a), then u13 in Figure 6(b) is

not a valid update because it conflicts with the NOT NULL constraints for the “title” attribute in the “book”

relation. u13 in Figure 6(c) is not a valid update either because it disagrees with the domain constraints in the

“price” relation.

2.2.2 Update Translation Policy

Clearly, the update translation policy chosen for a given translation system is essential for the decision of view

update translatability. A given update may be translatable under one policy, while not under another one. We

8

FOR $root IN document("V1.xml"),
$book IN $root/book_info

WHERE $book/title/text() = " TCP/IP Illustrated"
UPDATE $root {

DELETE $book }

uV
1

FOR $root IN document("V2.xml"),
$book IN $root/price_info/book_info

WHERE $book/title/text() = " TCP/IP Illustrated"
UPDATE $root {

DELETE $book }

uV
2

FOR $root IN document("V3.xml"),
$book IN $root/book_info

WHERE $book/title/text() = " Data on the Web"
AND $book/price_info/website = " www.amazon.com"
UPDATE $root {

DELETE $book }

uV
3

FOR $root IN document("V4.xml"),
$book IN $root/book_info

WHERE $book/title/text() = "Data on the Web"
AND $book/price_info/website = " www.amazon.com"
UPDATE $root {

DELETE $book/price_info}

uV
4

FOR $root IN document("V2.xml"),
$price IN $root/price_info

WHERE $price/book_info/title/text() = “Data on the Web“
AND $price/website = “www.amazon.com"

UPDATE $root {
DELETE $price }

uV
5

FOR $root IN document("V3.xml"),
$book IN $root/book_info

WHERE $book/title/text() = " Data on the Web“
AND $book/price_info/website = " www.amazon.com"
UPDATE $root {

DELETE $book/price_info }

uV
6

FOR $root IN document("V4.xml"),
$book IN $root/book_info

WHERE $book/title/text() = "Data on the Web"
AND $book/price_info/website = " www.amazon.com"
UPDATE $root {

DELETE $book }

uV
7

FOR $root IN document("V5.xml"),
$book IN $root/book_info

WHERE $book/title/text() = "Data on the Web"
UPDATE $root {

DELETE $book }

uV
8

Fig. 5. Update operations on XML views defined in Fig.3

FOR $root IN document("V1.xml"),
$book IN $root/book

UPDATE $root {
DELETE $book/title

}

uV
13

FOR $root IN document("V1.xml")
UPDATE $root {

INSERT
<book>

<bookid>"98004"<bookid>
<title>" Data on the Web "</title>
<price>

<amount> -100.00 </amount>
<website>www.ebay.com</website>

</price>
</book>

}

uV
14

Constraints for Book relation:
title VARCHAR2(100) NOT NULL

Constraints for price relation:
amount DOUBLE CHECK (amount > 0.00)

(a)

(b)

(c)

Fig. 6. Example of valid update checking

now enumerate common policies observed in the literature [4, 22, 20] and in practice [28].

Policies for update type selection. (1) Same type. The translated update always has the same update type as the

given view update. 2) Mixed type. The type of the translated updates could be different from the original view

update.

Policies for maintaining referential integrity of the relational database under deletion. (1) Cascade. The directly

translated relational updates cascade to update the referencing relations as well. 2) Restrict. The relational update

is restricted to the case when there are no referencing relations. Otherwise, reject the view update. 3) Set Null.

The relational update is performed as required, while the foreign key is set to be NULL in each dangling tuple.

In our discussion throughout the paper, when not stated otherwise, we will pick the most commonly used policy

[11]. That is, (i) translated updates have the same type as the view update and (ii) delete cascading is applied

in maintaining referential integrity of the relational database. If a different translation policy were to be used,

such as a restrict deletion policy in maintaining referential integrity, then our discussion would need to be adjusted

accordingly. However, the overall approach will still stay the same irrespective of the policies used.

9

2.2.3 Update Translatability

A correct translation means the “rectangle” rules shown in Fig. 7 hold. Intuitively, it implies the translated

relational updates “exactly” perform the view update, that is, without view side effects.

Definition 1 Let D be a relational database and V be a virtual view defined over D by the view definition

DEFV . A relational update sequence UR is a correct translation of a valid update uV iff uV (DEFV (D)) =

DEFV (UR(D)).

If a correct translation does not exist under the current update translation policy, uV is said to be un-

translatable. Otherwise, it is said to be translatable. If additional conditions are required to hold true for

finding a correct translation, uV is said to be conditionally translatable. A potential extra condition may be

translated update minimization. A valid update uV is said to be unconditionally translatable otherwise.

The problem of XML view update translatability is to determine whether an update can be classified as

either unconditionally translatable, conditionally translatable or un-translatable. This typical partition of the view

update domain 0
V into classes of update translatable types is shown in Fig. 8.

V

D

uV(V)

DEFv DEFv

(2) uV

(3) UR
UR(S)

(1) (4)

Fig. 7. Correct translation of view update
to relational update

Valid Invalid

Untranslatable Unconditionally
Translatable

Conditionally
Translatable

View Update

Fig. 8. The partition of view update domain 0V

3 Theoretical Foundation for Translatability of XML Views

Much work has been done on the existence of a correct translation for various classes of view specifications [2, 13]

in the relational context. Especially, Dayal and Bernstein [13] use the concept of “clean source” to characterize

the schema conditions under which a relational view over a single relational table is updatable.

However, the relational view update translatability problem addressed in [13] is different from the XML view

update translatability problem for two different reasons.

First, update operation can be specified on any element of the XML view, so called different update granularity.

This flexibility in turn causes more concerns in the translatability study. For example, consider V 3 in Fig. 3(c), we

10

can specify an update on a book info element. We also can specify it on a price info element. Deleting price info

will not be translatable since it will cause the book info to disappear from the view.

Second, Dayal and Bernstein [13] only consider the functional dependencies inside a single relation. However,

we notice that the constraints existing in a relational database schema are a main cause of making a view update

un-translatable. Especially the integrity constraints such as foreign keys deserve careful consideration since (i)

in most practical cases, nesting in XML views is done through the Join operation between Key and Foreign Key

constrained hierarchies and (ii) the update propagation through the foreign key, which is used to maintain the

referential integrity, is one major reason causing view side effect. Considering integrity constraints makes the view

update problem harder than considering only updates over a single relation, for such propagated updates may again

cause view side effects.

In this section, we propose a clean extended source theory to whether a correct translation of a given XML view

update exists.

3.1 Extended Source and Clean Extended Source

The key concepts used by our clean extended source theory include extended source and clean extended source.

Recall the UCBinding() function for a node in the view schema graph introduced in Section 2. The tuples in

the UCBinding relation set, which are used to generate a view element, form its generator as defined below.

Definition 2 Given a relational database D and an XML view V over D. Let v be a view element of V , whose

schema node is n. Let g = {Tk | 1 ≤ k ≤| UCBinding(n) |}, where Tk = {ti | ti ∈ Rk} and DEFV (g) generates

v. We say g is the generator of v, and ∀ti ∈ g is a source-tuple in D of v.

As an example, in V 1 of Fig. 3, consider the book info element with bookid=98001, UCBinding(book info) =

{book}. Its generator is given by g = {book.t1}, where book.t1 is the book tuple (98001,TCP/IP Illustrated). And

book.t1 is a source-tuple. The generator for price info element is {book.t1, price.t1}.

Definition 3 Let V 0 be a set of view elements in a given XML view V . Let G(V 0) be the set of generators of

V 0 defined by G(V 0) = {g | g is a generator of a view-element in V 0}. For each g ∈ G(V 0), let H(g) be some

nonempty subset of g. Then ∪g∈G(V 0)H(g) is a source in D of V 0. If G(V 0) = ∅, then V 0 has no source in D.

Definition 4 Let S be a source of V 0. Let E be the set of tuples {tj} from the relations rel(DEFV), where ∃ti ∈ S

such that tj refers to ti through foreign key constraint(s). We say Se = S∪E is an extended source in D of V 0.

A source includes the underlying relational part of a set of view elements V 0, which is sufficient to decide

the appearance of V 0. For example, in V1 in Fig. 3, consider V 0 as all the price info elements of the second

11

book info (bookid=98003). We have G(V 0) = {g1, g2}, where g1 = {book.t3, price.t2}, g2 = {book.t3, price.t3}.

Then H(g1)1 = {book.t3}, H(g1)2 = {price.t2}, H(g1)3 = {book.t3, price.t2}. And H(g2)1 = {book.t3}, H(g2)2 =

{price.t3}, H(g2)3 = {book.t3, price.t3}. Any combination of H(g1)i and H(g2)j will be a source of V 0, for example,

S1 = {book.t3} and S2 = {price.t2, price.t3}. The extended source of S1 is given by Se1 = {book.t3, price.t2, price.t3},

while Se2 = S2.

Definition 5 Let D = {R1, ..., Rn} be a relational database. Let V 0 be a set of view elements in a given XML

view V and Se be an extended source in D of V 0. Se is a clean extended source in D of V 0 iff (∀v ∈ V − V 0),

(∃g) such that g is a generator in (R1 − Se1, ..., Rn − Sen) of v. Or, equivalently, Se is a clean extended source in

D of V 0 iff (∀v ∈ V − V 0)(Se ∩ g = ∅), where g is the generator of v.

A clean extended source defines an extended source that is only referenced by the given view element itself. For

instance, in V1 in Fig. 3, consider V 0 as the second book info element (bookid=98003). Its source S = {book.t3},

and its extended source is Se = {book.t3, price.t2, price.t3}. Se is a clean extended source of V 0. For the book info

element (bookid = 98001) in V 2 (Fig. 3), its extended source is {book.t1, price.t1}, which is not a clean extended

source since it is also part of the generator of its parent price info element.

3.2 Clean Extended Source Theory

We now establish a connection between clean extended source and update translatability by introducing series

of theorems. The following theorems form an clean extended source theory. This serves as the base theory

for identifying whether an update is translatable. Although somewhat similar to [13], the theorems below differ

in several important ways. Most notably, (i) the key concepts, such as the generator, source, extended source and

clean extended source, now follow the new definitions from Section 3.1 and (ii) XML view elements have different

granularity, instead of just the uniform granularity for relational view tuples. For example, in V1 in Fig. 3, one can

delete book info element, which also deletes its child price info elements. Or, delete only the price info element.

We assume view update uV is a valid view update and the update translation policy is the same as before, that

is, same type update translation and delete cascading.

Lemma 1, 2 and 3 below are used to prove Theorem 1 and Theorem 2. Let relational database D = {R1, ..., Rn}.

Let V 0 be a set of XML view elements in a given XML view V and v ∈ V 0 indicates that v is a view-element

inside V 0.

Lemma 1

(a) Se is an extended source in D of V 0 iff DEFV (R1 − Se1
, ..., Rn − Sen

) ⊆ V − V 0.

12

(b) Se is a clean extended source in D of V 0 iff DEFV (R1 − Se1
, ..., Rn − Sen

) = V − V 0.

Lemma 2 Given a view V defined by DEFV over D. Let uV and UR be updates on V and D (respectively).

Let v ∈ V . Then (UR deletes an extended source of v and UR does not insert an source-tuple of v) iff v /∈

DEFV (UR(D)).

Lemma 3 Let uV , UR, V, D be as in Lemma 2. Let v ∈ dom(V) − V . Then UR inserts source-tuples of v iff

v ∈ DEFV (UR(D)).

The following theorems form the core of the clean-extended source theory. The intuition behind is that the

relational update sequence correctly translates a view update if and only if it deletes or inserts a clean extended

source of the view element. In other words, a deletion or insertion is translatable as long as there is a clean extended

source of the view element being deleted or inserted.

Theorem 1 Let uV be the deletion of a set of view elements V d ⊆ V . Let τ be a translation procedure, τ(uV , D) =

UR. Then τ correctly translates uV to D iff UR deletes a clean extended source of V d.

By Definition 1, a correct delete translation is one without any view side effect. This is exactly what deleting a

clean extended-source guarantees by Definition 5. Thus Theorem 1 follows.

Theorem 2 Let uV be the insertion of a set of view elements V i into V . Let V − = V − V i, V u = V i − V . Let τ

be a translation procedure, τ(uV , D) = UR. Then τ correctly translates uV to D iff (i) (∀v ∈ V u)(UR inserts

a source tuple of v) and (ii) (∀v ∈ dom(V) − (V u ∪ V −))(UR does not insert a source tuple of v).

Since dom(V)− (V u ∪ V −) = (dom(V)− (V i ∪ V))∪ (V i ∩ V), Theorem 2 indicates a correct insert translation

is one without any duplicate insertion (insert a source of V i ∩ V) and any extra insertion (insert a source of

dom(V) − (V i ∪ V)). That is, it inserts a clean extended source for the new view-element. Duplicate insertion

is not allowed by BCNF, while extra insertion will cause a view side effect. For example, for uV
8 in Fig. 5, let

uR
1 = {Insert (98003,Data on the Web) into book}, uR

2 = {Insert (98003,56.00,www.ebay.com) into price}. Then

UR = {uR
1 , uR

2 } is not a correct translation since it inserts a duplicate source tuple into book. On the other hand,

UR′

= {uR
2 } is a correct translation.

4 Deciding Factors for Translatability of XML View Updates

Using examples, we now illustrate what factors affect the update translatability, and in particular which features

of XML specifically cause new view update translation issues. We only consider insertion and deletion in our

13

discussion. A replacement can be treated as a deletion followed by an insertion and is not specifically discussed in

our update translatability study.

In our discussion below, when not stated otherwise, we will pick the most commonly used policy. That is,

(i) translated updates have the same type as the view update and (ii) delete cascading is applied in maintaining

referential integrity of the relational database. If a different translation policy is used, such as a restrict deletion

policy in maintaining referential integrity, then the discussion on update translatability below can be adjusted

accordingly. Also, we do not indicate the order of the translated relational updates. However, for a given execution

strategy, the correct order can be easily decided [16, 17, 1, 22, 25].

<bib>
FOR $book IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,
FOR $price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$price/amount, $price/website

</price_info>}
</book_info>

</bib> }

Q1

<bib>
<book_info>

<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com</website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com</website>

</price_info>
<price_info>

<amount>45.60</amount>
<website>

www.bookpool.com
</website>

</price_info>
</book_info>

</bib>

V1

(a) The XML view V 1 defined by Query Q1

FOR $root IN document("V1.xml"),
$book IN $root/book_info

WHERE $book/title/text() = " TCP/IP Illustrated"
UPDATE $root {

DELETE $book }

uV
1

(b) View update u1 over V 1

<bib>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website>www.amazon.com</website>

</price_info>
<price_info>

<amount>45.60</amount>
<website>www.bookpool.com</website>

</price_info>
</book_info>

</bib>

(c)V 1′: The user expected updated XML view

u1
R: DELETE FROM book

WHERE book.ROWID IN (
SELECT DISTINCT book.ROWID FROM book
WHERE (book.title = 'TCP/IP Illustrated'))

u2
R: DELETE FROM price

WHERE price.ROWID IN (
SELECT DISTINCT price.ROWID FROM book,price
WHERE (book.title = 'TCP/IP Illustrated') AND

(book.bookid = price.pid))

(d) UR: The translated update sequence

98003

98003

pid

www.bookpool.com45.60

www.amazon.com56.00

amount website

Programming in Unix98002

Data on the Web98003

titlebookid

price

book

Legend:

Primary Key

Non Key

(e) D′: The updated relational database

(f) Q1(D′): The regenerated view is the same as (c).

Fig. 9. Example of Translating Update uV
1

on V 1.

14

<bib>
FOR $book IN document("default.xml")/book/row,

$price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$price/amount, $price/website,
<book_info>

$book/bookid, $book/title
</book_info>

</price_info>
</bib> }

Q2

<bib>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com </website>
<book_info>

<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>

</book_info>
</price_info>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com </website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>
<price_info>

<amount>45.60</amount>
<website> www.bookpool.com </website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>

</bib>

V2

(a) The XML view V 2 defined by Query Q2

FOR $root IN document("V2.xml"),
$book IN $root/price_info/book_info

WHERE $book/title/text() = " TCP/IP Illustrated"
UPDATE $root {

DELETE $book }

uV
2

(b) An view update uV
2

over V 2

<bib>
<price_info>

<amount>63.70</amount>
<website>www.amazon.com</website>

</price_info>
<price_info>

<amount>56.00</amount>
<website>www.amazon.com</website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>
...

</bib>

(c) V 2′: The user expected updated XML view

u1
R: DELETE FROM book

WHERE book.ROWID IN (
SELECT DISTINCT book.ROWID FROM book
WHERE (book.title = 'TCP/IP Illustrated'))

u2
R: DELETE FROM price

WHERE price.ROWID IN (
SELECT DISTINCT price.ROWID FROM book,price
WHERE (book.title = 'TCP/IP Illustrated') AND

(book.bookid = price.pid))

(d) UR: The translated update

98003

98003

pid

www.bookpool.com45.60

www.amazon.com56.00

amount website

Programming in Unix98002

Data on the Web98003

titlebookid

price

book

Legend:

Primary Key

Non Key

(e) D′: The updated relational database

<bib>
<price_info>

<amount>56.00</amount>
<website>www.amazon.com</website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>
...

</bib>

(f) Q2(D′): The regenerated view

Fig. 10. Example of Translating Update uV
2

on V 2.

15

<bib>
FOR $book IN document("default.xml")/book/row,

$price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<book_info>
$book/bookid, $book/title,
<price_info>

$price/amount, $price/website
</price_info>

</book_info>
</bib>}

Q3

V3

<bib>
<book_info>

<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com</website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com </website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>45.60</amount>
<website> www.bookpool.com </website>

</price_info>
</book_info>

</bib>

(a) The XML view V 3 defined by Query Q3

FOR $root IN document("V3.xml"),
$book IN $root/book_info

WHERE $book/title/text() = " Data on the Web"
AND $book/price_info/website = " www.amazon.com"
UPDATE $root {

DELETE $book }

uV
3

(b) An view update uV
3

over V 3

<bib>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com </website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>45.60</amount>
<website> www.bookpool.com </website>

</price_info>
</book_info>

</bib>

(c) V 3′: The user expected updated XML view

u1
R: DELETE FROM book

WHERE book.ROWID IN (
SELECT DISTINCT book.ROWID FROM book
WHERE (book.title = 'Data on the Web'))

u2
R: DELETE FROM price

WHERE price.ROWID IN (
SELECT DISTINCT price.ROWID FROM book,price
WHERE (book.title = 'Data on the Web')AND

(book.bookid = price.bookid)AND
(price.website = " www.amazon.com“))

(d) UR: The directly translated update sequence

u2
R: DELETE FROM price

WHERE price.ROWID IN (
SELECT DISTINCT price.ROWID FROM book,price
WHERE (book.title = 'Data on the Web')AND

(book.bookid = price.pid)AND
(price.website = " www.amazon.com“))

(e) UR′
: The translated update sequence after condition checking

www.amazon.com63.798001

98003

pid

www.bookpool.com45.60

amount website

TCP/IP Illustrated98001

Programming in Unix98002

Data on the Web98003

titlebookid

price

book

Legend:

Primary
Key

Non Key

(f) D′: The updated relational database

(g) Q3(D′): The regenerated view is the same as (c).

Fig. 11. Example of Translating Update uV
3

on V 3.

16

Example 1 : View construction consistency.

Given the two XQuery view definitions Q1 and Q2 in Fig. 3. Both define views representing all books with its

price (if any), though each with a different XML view hierarchy. Two view updates uV
1 and uV

2 (Fig. 5) delete a

“book info” element from V 1 and V 2 respectively.

(i) uV
1 is unconditionally translatable as shown by Fig. 9. The translated relational update sequence UR in Fig.

9(d) will delete the first book from the “book” relation using uR
1 , and its price information from the “price” relation

through uR
2 . By re-applying the view query Q1 on the updated database D′ in Fig. 9(e), the user would get the

updated XML view in Fig. 9(f). This regenerated XML view is equal to the expected updated view V 1′ in Fig. 9(c).

Hence UR in Fig. 9(d) is a correct translation of uV
1 .

(ii) uV
2 is un-translatable as shown by Fig. 10. First, the relational update uR

1 in Fig. 10(d) is generated to

delete the book (bookid=98001) from the “book” relation. We note the existing foreign key from the “price” relation

to the “book” relation as shown by the relational database schema (Fig. 1). Then according to our selected update

translation policy, the second update operation uR
2 will be generated by the update translator to keep the relational

database consistent. That is, the corresponding price of the deleted book will be deleted as well. By reapplying Q2

on this updated database in Fig. 10(e), we will produce the updated view in Fig. 10(f). This view is different than

the expected updated view V 2′ in Fig. 10(c). Also, it can be shown that no other translation is available which

could preserve consistency either, since the translated update can not be further minimized. Thus uV
2 is said to be

un-translatable.

As can be seen here, this difference in the existence of a correct translation is caused by the mismatch between

the XML hierarchical view model and the underlying flat relational base model. This view construction consis-

tency property, namely, whether the XML view hierarchy agrees with the hierarchical structure implied by the base

relational schema, is one of the key factors for deciding XML view update translatability.

Example 2 : Content duplication.

Next we compare the two virtual XQuery views V 1 and V 3 in Fig. 3. The book (bookid=98003) with two prices is ex-

posed twice in V 3, while only once in V 1. The update uV
3 in Fig. 11 will delete the second “book info” element, which

is from the website “www.amazon.com”, while keeping the third “book info” element from “www.bookpool.com” (Fig.

11(c)). A direct translation for this update is given in Fig. 11(d), that is, to delete both the book tuple as well as

the price tuple. However, the book tuple (bookid=98003) in the “book” table is still being referenced to by another

part of the view (the third “book info” element). Thus deleting this book tuple will cause view side effects. By using

an additional condition, such as an extra translation rule like “No underlying tuple is deleted if it is still referenced

by any other part of the view”, we can minimize UR so that it deletes the price only (Fig. 11(e)). The updated

relational database is shown in Fig. 11(f). The regenerated view (Fig. 11(g)) will be the same as expected by the

17

user. Thus UR′

now makes the update uV
3 translatable. We thus say that uV

3 is conditionally translatable.

The “duplication” causing this ambiguity is introduced by the XQuery “FOR” expressions. We call it content

duplication. While not unique to XML, it is rather common here due to XML views being generated by nested

XQuery expressions. It may appear in relational views as well, for example in Join views. Some extra deletion

rule such as the zero reference deletion in our example is also commonly used for handling content duplication in

the relational context.

Q4

<bib>
FOR $book IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,
FOR $price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$book/bookid, $price/amount, $price/website

</price_info>}
</book_info>

</bib> }

V4
<bib>

<book_info>
<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>
<price_info>

<bookid>98001</bookid>
<amount>63.70</amount>
<website> www.amazon.com</website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

<price_info>
<bookid>98003</bookid>
<amount>56.00</amount>
<website> www.amazon.com </website>

</price_info>
<price_info>

<bookid>98003</bookid>
<amount>45.60</amount>
<website> www.bookpool.com </website>

</price_info>
</book_info>

</bib>

(a) The XML view V 4 defined by Query Q4

FOR $root IN document("V4.xml"),
$book IN $root/book_info

WHERE $book/title/text() = "Data on the Web"
AND $book/price_info/website = " www.amazon.com"
UPDATE $root {

DELETE $book/price_info}

uV
4

(b) An view update uV
4

over V 4

<bib>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<bookid>98003</bookid>
<amount>56.00</amount>
<website> www.amazon.com </website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<bookid>98003</bookid>
<amount>45.60</amount>
<website> www.bookpool.com </website>

</price_info>
</book_info>

</bib>

(c) V 4′: The user expected updated XML view

u1
R: DELETE FROM book

WHERE book.ROWID IN (
SELECT DISTINCT book.ROWID FROM book
WHERE (book.title = 'Data on the Web'))

u2
R: DELETE FROM price

WHERE price.ROWID IN (
SELECT DISTINCT price.ROWID FROM book,price
WHERE (book.title = 'Data on the Web')AND

(book.bookid = price.bookid)AND
(price.website = " www.amazon.com“))

(d) UR: The directly translated update sequence

u2
R: DELETE FROM price

WHERE price.ROWID IN (
SELECT DISTINCT price.ROWID FROM book,price
WHERE (book.title = 'Data on the Web')AND

(book.bookid = price.pid)AND
(price.website = " www.amazon.com“))

(e) UR′
: The translated update sequence after condition checking

www.amazon.com63.798001

98003

pid

www.bookpool.com45.60

amount website

TCP/IP Illustrated98001

Programming in Unix98002

Data on the Web98003

titlebookid

price

book

Legend:

Primary
Key

Non Key

(f) D′: The updated relational database

(g) Q4(D′): The regenerated view is the same as (c).

Fig. 12. Example of Translating Update uV
4

on V 4

18

Example 3 : Structural duplication.

As shown in Fig. 12, the bookid element is exposed twice by Q4. Hence each “price info” within the “book info”

element will also have a “bookid” element. The update uV
4 deletes the first price of the specified book is ambiguous

in translation. Since the update operation touches the primary key “book.bookid”, a directly translation, as shown

by UR in Fig. 12(d), will delete the corresponding book tuple. This will cause the side effect, since the bookid and

title in the view will also disappear. However, with an additional condition, such as knowledge of the user intention

about the update, or having the assumption of a zero reference deletion, the new update translation UR′

in Fig.

12(e) would only delete the price tuple, leaving the book tuple untouched. This update is classified as conditionally

translatable. Structural duplication, as illustrated above, is another case causing update translatability problem.

Example 4 : Update granularity.

In some sense, the importance of the update granularity on translatability has been illustrated by the examples

above. The following example now highlights it specifically.

Compared with the failure of translating uV
2 in Example 1, the update uV

5 in Fig. 5 on the same view V 2 is

conditionally translatable as shown by Fig. 13. uV
5 deletes the whole “price info” element instead of just the sub-

element “book info” from V 2 (Fig. 13(c)). The directly translated relational update sequence UR in Fig. 13(d)

deletes the book (bookid=98003) and its price from amazon. This will cause a view side effect since the book is

also referenced by another book info element with a price from bookpool. By using an additional condition, such as

an extra translation rule like “No underlying tuple is deleted if it is still referenced by any other part of the view”,

we can minimize UR as deleting the price only (Fig. 13(e)). The updated relational database is shown in Fig.

13(f). The regenerated view (Fig. 13(g)) will be the same as user expected. Thus UR′

now makes the update uV
5

translatable. Thus, for the same view V 2, updates on different elements have different translatability.

Here the difference in translatability is not just caused by the shape of the view structure as in Example 1, but

also by the granularity of the update operation. That is the effects that updates have on the view. The update uV
5

has a larger granularity than uV
2 , covering the “top” element of the XML view. It thus “resolves” the inconsistency

between the two hierarchies respectively from the view and the relational schema mentioned by Example 1. The

XML hierarchical structure offers an opportunity for different update granularity. This is an issue that does not

arise for relational views.

5 STAR: Schema-driven Update Translatability Reasoning

As depicted in Section 4, several factors can affect translatability of updates on XML views. In this section,

we propose a schema-driven update translatability reasoning (STAR) algorithm to identify these factors

19

<bib>
FOR $book IN document("default.xml")/book/row,

$price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$price/amount, $price/website,
<book_info>

$book/bookid, $book/title
</book_info>

</price_info>
</bib> }

Q2

<bib>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com </website>
<book_info>

<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>

</book_info>
</price_info>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com </website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>
<price_info>

<amount>45.60</amount>
<website> www.bookpool.com </website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>

</bib>

V2

(a) The XML view V 2 defined by Query Q2

FOR $root IN document("V2.xml"),
$price IN $root/price_info

WHERE $price/book_info/title/text() = “Data on the Web“
AND $price/website = “www.amazon.com"

UPDATE $root {
DELETE $price }

uV
5

(b) An view update uV
5

over V 5

<bib>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com </website>
<book_info>

<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>

</book_info>
</price_info>
<price_info>

<amount>45.60</amount>
<website> www.bookpool.com </website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>

</bib>

(c) V 2′: The user expected updated XML view

u1
R: DELETE FROM book

WHERE book.ROWID IN (
SELECT DISTINCT book.ROWID FROM book
WHERE (book.title = 'Data on the Web'))

u2
R: DELETE FROM price

WHERE price.ROWID IN (
SELECT DISTINCT price.ROWID FROM book,price
WHERE (book.title = 'Data on the Web')AND

(book.bookid = price.bookid)AND
(price.website = " www.amazon.com“))

(d) UR: The directly translated update sequence

u2
R: DELETE FROM price

WHERE price.ROWID IN (
SELECT DISTINCT price.ROWID FROM book,price
WHERE (book.title = 'Data on the Web')AND

(book.bookid = price.pid)AND
(price.website = " www.amazon.com“))

(e) UR′
: The translated update sequence after condition checking

www.amazon.com63.798001

98003

pid

www.bookpool.com45.60

amount website

TCP/IP Illustrated98001

Programming in Unix98002

Data on the Web98003

titlebookid

price

book

Legend:

Primary
Key

Non Key

(f) D′: The updated relational database

(g) Q2(D′): The regenerated view is the same as (c).

Fig. 13. Example of Translating Update uV
5

on V 2

20

and their effects on the update translatability based on the clean extended source theory introduced in Section

3. The STAR algorithm includes two major steps. A STAR Marking Step first pre-codes each node in the ASG

with a pair of labels (UContext|UPoint) to indicate its update properties. This analysis is performed only once at

compile time. The resulting labels will be used to classify the given view update into one of the three translatability

categories by a STAR checking step.

We assume the relational database is in the BCNF form and no cyclic dependency caused by integrity constraints

among relations exists. The reason for this requirement is that in our approach we use the functional dependencies

and integrity constraints of the relational database (such as keys, foreign keys, etc.) to determine the update

propagation.

5.1 The Annotated Schema Graph

Intuitively, the update translatability problem is closely related with constraints existing in the underlying

relational database or enforced by the view definition. In other words, the constraint knowledge will help us to

decide whether a given update is valid, or even translatable. The non-correlation predicates in the view query

form local constraints, while the other constraints in the view query, such as correlation predicates, cardinality

constraints and hierarchical structure form global constraints.

In the relational schema, the local constraints include all the constraints specified over one single relation, such

as domain constrains, NOT NULL constraints, Key, UNIQUE and Check constraints for the domain. The global

constraints include constraints specified over multiple relations in the relational schema, in our case these are

foreign key constraints.

Intuitively, constraints that affect only one tuple of a base relation or one view element are called local constraints.

Otherwise, they are called global constraints. Figure 14 lists all the constraints considered affecting the update

translatability.

We use Annotated Schema Graphs (ASG) to model these constraints. The constraints can be analyzed at compile

time, as soon as the view query and relational schema are available. Thereafter they can be reused for any future

update checking specified over this same view. The local constraints are used to decide whether the given update

is valid. Since our focus in this paper is on whether a valid update is translatable, for simplicity, we thus omit the

local constraints in our graph representation. For details of utilizing constraints please refer to [27].

The view ASG, denoted by GV , is a forest representing the hierarchical structure of the XML view. Let NGV

and EGV
respectively denote the nodes and edges of GV . Computing GV is done similarly as in SilkRoute [19]. An

internal node, n ∈ NGV
, represented by a triangle △, identifies a view element or attribute labeled by its XML

tag name. A leaf node n ∈ NGV
, represented by a small circle ◦, is an atomic type, labeled by both the XPath

21

Relational Database SchemaView Query

• Foreign key constraints

• Assertion

• Hierarchical structure

• Cardinality between elements

• Correlation predicates

Global
Constraints

• Domain constraints
• Not Null
• Key constraints
• Unique constraints
• Check constraints

• Non-correlation predicates

Local
Constraints

Fig. 14. Constraints considered in update translatability study

expressed in the view query and the name of its corresponding relational column.

Given two nodes n1, n2 ∈ NGV
, the edge e(n1, n2) ∈ EGV

represents that n1 is a parent of n2 in the view

hierarchy. Each edge is annotated by its cardinality type (inferred from the view query) and its condition (if

any), extracted from the correlation predicate in the view query. The cardinality type is one of types from the

enumeration domain {?, ∗}, representing 1 : {0, 1} (single), and 1 : n (multiple) respectively. Figures 15(a) to 15(e)

depict the view ASGs for V 1 to V 5 respectively.

Note that we assume there is always a root tag to enclose the FLWR expression in the view query. Otherwise,

we would add a “dummy” root node instead. Also, without loss of generality, given an edge (n1, n2), we assume

that |UCBinding(n2) − UCBinding(n1)| ≤ 1. That is there is at most one more relation referred for defining n2

than n1. Otherwise, dummy nodes are added to split the edge and guarantee this property.

The Base ASG GD is a graph that captures the hierarchical and cardinality constraints inferred from the key

and foreign key constraints. Let NGD
denote the nodes and EGD

denote the edges. GD is computed as follows.

For each leaf node in the view ASG, there exists a corresponding relational attribute. The union of all these

relational attributes forms the leaf nodes of the base ASG. A leaf node labeled by the primary key attribute of a

relation is called a key node (depicted by a black circle •). For a leaf node nl labeled with R.a, we introduce a

node n corresponding to R and an edge (n, nl).

For any two nodes n1, n2 that correspond to relations R, S respectively, we introduce an edge (n1, n2), if there

is a foreign key from S to R. The base ASGs of the view queries Q1 to Q4 are identical as shown in Fig. 16(a),

since all of them are defined over the same base relations. Fig. 16(b) is the GD(V) of V5.

5.2 Closure

We use the concept of closure in GV and GD to indicate the effect of an update on the view and on the relational

database respectively. For simplicity, the cardinality of ? are omitted.

The closure of a node n in view ASG GV , denoted by n+, is defined as follows: (1) If n is a leaf node,

n+ = {n}. (2) Otherwise, n+ is the union of its children’s closures grouped by their hierarchical relationship and

22

<bib>
FOR $book IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,
FOR $price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$price/amount, $price/website

</price_info>}
</book_info>

</bib> }

Q1

book_info
(clean | safe)

book/row/bookid
book.bookid
(dirty | safe)

book/row/title
book.title

(dirty | safe)

price_info
(clean | safe)

bib 1

2

3 4

7

price/row/website
price.website
(dirty | safe)

5

price/row/amount
price.amount
(dirty | safe)

6

*

?
?

*

? ?

con

(a) GV of V1

<bib>
FOR $book IN document("default.xml")/book/row,

$price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$price/amount, $price/website,
<book_info>

$book/bookid, $book/title
</book_info>

</price_info>
</bib> }

Q2

price_info
(dirty | safe)

book/row/title
book.title

(dirty | unsafe)

book_info
(dirty | unsafe)

price/row/amount
price.amount
(dirty | safe)

book/row/bookid
book.bookid

(dirty | unsafe)

bib1

2

3 4

6 7

price/row/website
price.website
(dirty | safe)

5

*

?? ?

? ?

con

(b) GV of V2

<bib>
FOR $book IN document("default.xml")/book/row,

$price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<book_info>
$book/bookid, $book/title,
<price_info>

$price/amount, $price/website
</price_info>

</book_info>
</bib>}

Q3

book_info
(dirty | safe)

book/row/bookid
book.bookid

(dirty | unsafe)
book/row/title

book.title
(dirty | unsafe)

price_info
(clean | unsafe)

bib
1

2

3 4

7

price/row/website
price.website
(dirty | safe)

5

price/row/amount
price.amount
(dirty | safe)

6

*

?
? ?

? ?

con

(c) GV of V3

Q4

<bib>
FOR $book IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,
FOR $price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$book/bookid, $price/amount, $price/website

</price_info>}
</book_info>

</bib> }

book_info
(dirty | safe)

book/row/bookid
book.bookid

(dirty | unsafe)
book/row/title

book.title
(dirty | safe)

price_info
(dirty | safe)

bib1

2

3 4

8

price/row/website
price.website
(dirty | safe)

5

price/row/amount
price.amount
(dirty | safe)

*

? ?
*

?

7

?

con

book/row/bookid
book.bookid

(dirty | unsafe)

6

?

(d) GV of V4

Q5

<bib>
FOR $book1 IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,

</book_info>},
FOR $book2 IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid, $book/title,

</book_info>}
</bib> }

book_info
(clean | unsafe)

book/row/bookid
book.bookid

(dirty | unsafe)
book/row/title

book.title
(dirty | unsafe)

bib1

2

3 4

*

? ?

book_info
(clean | unsafe)

book/row/bookid
book.bookid

(dirty | unsafe)
book/row/title

book.title
(dirty | unsafe)

5

6 7

? ?

*

(e) GV of V5

*Note: con = (book/row/bookid=price/row/bookid)

Fig. 15. GV of V1 to V5 as shown by (a) to (e)

23

book

book/row/bookid
book.bookid

book/row/title
book.title

price

price/row/amount
price.amount

1

2 3

price/row/website
price.website

5

4

con?
? *

??

6

(a) *Note: con = (book.bookid=price.bookid)

book

book/row/bookid
book.bookid

book/row/title
book.title

1

2 3

? ?

(b)

Fig. 16. (a) GD of V1 – V4 (b) GD of V5

marked by their cardinality. For example, in Figure 15(a), (n3)
+
GV

= {n3}, while (n5)
+
GV

= {n6, n7}, (n2)
+
GV

=

{n3, n4, (n6, n7)
∗}. To reduce the closure definition, the group mark “()” can be eliminated if its cardinality mark

is “?”. For example, in Figure 15(c), (n2)
+
GD

= {n3, n4, (n6, n7)} = {n3, n4, n6, n7}. Especially when we compute

the closure of the root, if there is a single * edge e = (root, nk) starting from the root, that is without any predicate

condition, then we define root+ = n+
k . For example, in Fig. 15(a), n+

1 = n+
2 .

The closure of an internal node in base ASG GD is defined as the union of its children leaf nodes and the closure of

its non-leaf child nodes. For instance, in Fig. 16(a), since (n4)
+
GD

= {n5, n6}, we have (n1)
+
GD

= {n2, n3, (n5, n6)
∗}.

As the relational database is a tuple-based data model, the closure of a leaf node is the same as the closure of its

parent node. For example, (n2)
+
GD

= (n3)
+
GD

.

Note that this closure definition is based on the pre-selected update policy: same type and delete cascade. In

the same type policy, a delete (insert) can only be translated to one or more deletes (inserts). An alternative is

the mixed type policy, where a delete (insert) can also be translated into replacements. For example, the delete on

n6 in Fig. 15(a) can be translated to replace the price.amount with NULL. In this mixed type policy, the closure

definition in the base ASG GD needs to be adjusted as follows: “the leaf node with property as key has the same

closure as its parent, otherwise, its closure includes only itself.” For example, in Fig. 16(a), under the mixed policy

(n3)
+
GD

= {n3}, while (n2)
+
GD

= {n2, n3, (n5, n6)
∗}.

book_info
(dirty | safe)

book/row/bookid
book.bookid

(dirty | unsafe)
book/row/title

book.title
(dirty | safe)

price_info
(dirty | safe)

bib1

2

3 4

8

price/row/website
price.website
(dirty | safe)

5

price/row/amount
price.amount
(dirty | safe)

*

? ?
*

?

7

?

con

price/row/bookid
price.bookid
(dirty | safe)

6

?

(a) *Note: con = (book/row/bookid=price/row/bookid)

book

book/row/bookid
book.bookid

book/row/title
book.title

price

price/row/amount
price.amount

1

2 3

price/row/website
price.website

6

4

con?
? *

??

7

price/row/bookid
price.bookid

5

?

(b) *Note: con = (book.bookid=price.bookid)

Fig. 17. (a) An Example View ASG GV and (b) The Base ASG GD for View in (a)

24

Similarly, for the Set Null policy, the closure of an internal node is the union of its children leaf nodes and other

descendant nodes which would be set as NULL. For example, consider a view defined by view ASG in Fig. 17(a),

its base ASG is shown in Fig. 17(b). Node n5 represents the price.bookid attribute and will be set NULL when

the foreign key constraint is maintained. According to the integrity maintenance policy Set Null, we would now

have n+
1 = {n2, n3, n5}.

Note that the policy used affects only the closure definitions of the base ASG, while the rest of our steps for

translatability checking remain the same.

Closure Comparison. Let getNodes() be a function to extract all the nodes from a given closure, while

Distinct() removes duplicates. We define C1 ⊆ C2, if C1 appears in C2. In Fig. 16(a), n+
4 = {n5, n6} and

n+
1 = {n2, n3, (n5, n6)

∗con}, thus n+
4 ⊆ n+

1 . Two closures C1 and C2 are equal, denoted by C1 ≡ C2, if C1 ⊆ C2

and C1 ⊇ C2. In Fig. 16(a), n+
5 ≡ n+

6 .

Mapping Closure. While above we defined the closure for a single node n, we now define the closure of

a set of nodes N , denoted by N+, as N+ =
⊔

(ni∈N) n+
i , where

⊔
is a “Union-like” operation that combines

the nodes but eliminates duplicates. That is, if n+
k ⊆ n+

j , N+ =
⊔

(ni∈N,i6=k) n+
i . For instance, in Fig. 16,

(n1, n4)
+ = (n1)

+
⊔

(n4)
+ = (n1)

+ = {n2, n3, (n5, n6)
∗con}.

For a node n in the view ASG GV , we define its mapping closure in GD as follows. First we compute CV = n+

in GV . Let N = Distinct(getNodes(CV)). For each node ni ∈ N , its mapping leaf node n′
i in GD is the one

with the same annotation as ni. Let N ′ denote the set of mapping nodes for all nodes in N . Let CD = N ′+

in GD. We call CD as the mapping closure of n. For example, the mapping closure of n2 in Fig. 15(a) is

CD = {n2, n3, (n5, n6)
∗con)}.

5.3 STAR Marking Step

As shown by our motivation example in Section 4, the construction consistency and duplication are two major

reasons causing view side effect. The update translatability algorithm needs to detect the appearance of these

factors.

The closure defined in both ASGs captures the construction consistency feature. Duplication in the view,

however, exists in different formats. First, a single view element instance might include duplications inside.

Second, two instances of the same view element might include duplicate sub-elements. Third, two instances of

different view elements might also include duplicate sub-elements.

We use two marks, namely, the update point type and the update context type to indicate the appearance of both

construction consistency and duplication in the view. Our STAR marking step encodes each node in GV using a

25

pair of labels (UPoint|UContext). This mark is then used to determine the translatability of updates specified

on the nodes. In this paper, we only mark view ASG nodes according to the translatability of delete operations

specified over each node. Our algorithm can also be adjusted to mark the view ASG according to the translatability

of insert operations.

5.3.1 Update Context Type

The update context type (UContext) of a node in GV determines whether view side effect might appear when

deleting this node. A node is said to be safe if deleting its instance will not cause any view side effect. Otherwise

it is said to be unsafe.

The following rules are used to determine the UContext of a node. Rules 1 and 2 are used to identify unsafe

leaf nodes. Rule 3 is used to identify unsafe internal nodes according to unsafe leaf nodes. Rule 4 identifies the

unsafe internal nodes caused by the second type of duplications. That is the duplication between two instances of

the same view element. Rule 5 identifies the unsafe internal nodes caused by the third type of duplications. That

is the duplication between two instances of different view elements. Finally Rule 6 marks all the remaining nodes.

Rule 1:Consider two leaf nodes n1, n2 ∈ NGV
with n1 6= n2. If n+

1 ≡ n+
2 then UContext(n1) = unsafe and

UContext(n2) = unsafe.

Rule 1 indicates that if two leaf nodes have exactly the same closure in GV , then they both are unsafe. This

means the relational data is explicitly exposed more than once in the view query. For instance, in Fig. 15(e), nodes

n3, n4, n6, n7 are all unsafe.

In Fig. 18(a), we can not delete a book info element, because the same book could appear multiple times in

the view. Such cases are captured by our Rule 2 and Rule 3. First, we define an operation over closure as “dis-

tribution”, denoted by ∐, to distribute the cardinality mark and condition into each of the individual nodes in it.

The equivalence rules used in distribution are listed in Table 2. Further we denote the occurrence of each node n

in a distribution as ∐n. As an example, in Fig. 15(b), ∐(n+
1) = ∐((n3, n4, (n6, n7))

∗con) = n∗con
3 , n∗con

4 , n∗con
6 , n∗con

7 .

Table 2. Distribution Rules
C = a∗con where a = (b, c) ⇒ ∐(C) = (b∗con, c∗con)
C = acon where a = (b, c) ⇒ ∐(C) = (bcon, ccon)
C = (n∗con1)∗con2 ⇒ ∐(C) = (n∗con1∧con2)
C = (n∗con1)con2 ⇒ ∐(C) = (n∗con1∧con2)
C = (ncon1)∗con2 ⇒ ∐(C) = (n∗con1∧con2)
C = (ncon1)con2 ⇒ ∐(C) = (ncon1∧con2)

26

Rule 2: Let CV denote the closure of the root node in GV and CD denote its mapping closure in GD. For each

leaf node nl in GV and its mapping node n′
l in GD, if ∐nl

6≡ ∐n′
l
, then UContextnl

= unsafe.

price_info

book/row/title
book.title
(unsafe)

book_info
(unsafe)

price/row/amount
price.amount

(safe)
book/row/bookid

book.bookid
(unsafe)

bib1

2

3 4

6 7

price/row/website
price.website

(safe)

5

*

?? ?

? ?

con

(a) *Note: con = (book/row/bookid=price/row/bookid)

book

book/row/bookid
book.bookid

book/row/title
book.title

price

price/row/amount
price.amount

1

2 3

price/row/website
price.website

5

4

con?
? *

??

6

(b) *Note: con = (book.bookid=price.bookid)

Fig. 18. (a) View ASG GV of V2 and (b) Base ASG GD of V2

For instance, in Fig. 18(b), CV = r+ = bib+ = (price.amount, price.website, (book.bookid, book.title))∗con, and

∐(bib+) = (price.amount)∗con, price.website∗con, book.bookid∗con, book.title∗con.

Let getNodes(CV) = {price.amount, price.website, book.bookid, book.title}.

We have (CD =(book.bookid, book.title, (price.amount, price.website)∗con).

And, ∐(CD) =book.bookid, book.title, (price.amount)∗con, (price.website)∗con. Thus as shown in Fig. 18(a), we

say n6 (book.bookid) and n7 (book.title) are both unsafe.

Rule 3: Given an internal node n ∈ NGV
. Let C denote the set of its children. If ∀nk ∈ C, nk is unsafe, then

UContextn = unsafe.

Rule 3 means that if all the children of a given internal node are unsafe, that is, are part of a duplication, then

the current internal node will also be part of the duplication, thus unsafe. For example, in Fig. 18(a), after we

identified that n6 and n7 are unsafe, using Rule 5, we can reason that n5 is also unsafe.

Given an internal node n ∈ NGV
and its parent node p ∈ NGV

. We define the Current Relations of n as CR(n)

= UCBinding(n) - UCBinding(p). Also we define a proper Join condition Ri.a = Rj .b on an edge e = (n1, n2) as

below, that ensures no duplicates are introduced for n2 by this Join. This Join condition is said to be proper if (i)

Rj ∈ CR(n2) and (ii) Ri.a is a unique identifier of Ri ∈ CR(p).

Rule 4: Let e = (n1, n2) be an edge in GV with type “*” and n1 is not the root of GV . UContext of any node in

the subtree rooted at n2 is unsafe if e is not associated with a proper Join condition (as defined above).

27

Rule 4 can be used to identify any missing Join condition, which causes duplications. As an example of applying

this rule, assume that we ignore the WHERE clause in Q1. That is, the edge (n2, n5) in Fig. 15(a) is not annotated

with any condition any more. It is easy to tell that n5, n6, n7 are each unsafe since the whole price table is now

nested inside of each individual book, even if unrelated.

This rule can also identify any “improper” Join conditions, which cause duplications. As an example, assume

the WHERE clause of V1 in Fig. 3 is replaced by a correlated predicate “$book/title = $price/website”. Then the

edge (n2, n5) in Fig. 15(a) is annotated with a Join condition book.title = price.website. Since neither book.title

nor price.website is UNIQUE, we will need to mark all the nodes in the subtree of n5 as unsafe.

Rule 4 above identifies unsafe internal nodes, which could have duplicate instances in the view. Now assume

all * edges in GV are annotated with a proper Join condition (however, we still assume that they do not start

from the root of GV). Is it still possible for a side effect to appear? The answer is yes. Rule 5 below is used to

identify unsafe internal nodes, which could decide the appearance of its non-descendant nodes. As an example,

again consider n5 in 19(a). Rule 5 below will mark price info node as unsafe, because it determines the appearance

of its parent book info node. Recall the UCBinding defined in Section 2.1. Given a relation R, we also define

extend(R) ⊆ rel(DEFV) as a set of relations that refer to R through foreign key constraint(s).

Rule 5: Given an internal node n ∈ NGV
and its parent node p. Let CR = UCBinding(n) - UCBinding(p). If

6 ∃R ∈ CR such that ∀n′ ∈ NGV
that is a non-descendant node of n, extend(R) ∩ UCBinding(n′) = ∅, then

UContextn = unsafe.

The UCBinding difference between the node to be deleted and its parent, denoted by CR in Rule 5, indicates

the minimum searching space for a clean extended source. Deleting from any relation of this searching space will

all achieve the desired operation. However, only if all the potential extended sources are identified to be dangerous,

a view side effect might appear.

As an example, again consider n5 in 19(a). We have UCBinding(n5) = {book,price} and UCBinding(n2) =

{book,price}. Thus CR = ∅. The potential searching space is empty. Deleting a price node itself will cause a view

side effect. Namely, the book will also disappear or appear from the view. Thus UContextn5
= unsafe, as marked

in Fig. 19(b).

28

book_info

book/row/bookid
book.bookid

(unsafe)

book/row/title
book.title
(unsafe)

price_info

bib
1

2

3 4

7

price/row/website
price.website

(safe)

5

price/row/amount
price.amount

(safe)

6

*

?
? ?

? ?

con

(a)

book_info

book/row/bookid
book.bookid

(unsafe)

book/row/title
book.title
(unsafe)

price_info
(unsafe)

bib
1

2

3 4

7

price/row/website
price.website

(safe)

5

price/row/amount
price.amount

(safe)

6

*

?
? ?

? ?

con

(b)
*Note: con = (book/row/bookid=price/row/bookid)

Fig. 19. (a) GV of V3 after applying Rule 1 to 3 and (b) GV of V3 after applying Rule 5

5.3.2 Update Point Type

As we will shown in Section 5.4, the update context type of a node determines whether there exists a clean extended

source for a schema node. Below, we define the update point type (UPoint) of a node that determines whether the

mapping closure is the clean extended source we are looking for.

Definition 6 Let n be a node in GV , CV is its closure in GV , and CD be its mapping closure in GD. Let UPoint(n)

denote its update point type. We define UPoint(n) = clean if CV ≡ CD. Otherwise, UPoint(n) = dirty.

For example, in Fig. 15(b), UPoint(n5) = dirty. In this case, deleting a book affects the prices that reference

to this book (a potential view side effect). In Fig. 15(b), we mark UPoint(n5) = clean. For each price, there is no

duplication among its descendants.

5.3.3 The Algorithm for STAR Marking Step

Every node in GV now has been marked by a pair of labels (UPoint|UContext), as shown in Fig. 15. Algorithm 1

incorporates those label pairs into the on-the-fly update translatability checking component. This analysis is done

once at compile time. Thereafter it can be reused to check the translatability of any update operation over the

view. Procedure markASG() in Algorithm 1 is the main function for this purpose. It first computes the closure

for all the nodes inside GV and GD using the function computeClosure(). Then the function markUPoint() is used

to mark the update point type for each node in GV . This marking is based on Definition 6. It distinguishes a node

as being dirty and clean using the closure comparison in Definition 6. The function markUContext() is then used

to mark the node context for the nodes in GV . This is based on the rules defined in Section 5.3.1. It applies Rules

in the order from 1 to 5. After this the remaining nodes are all marked as safe.

29

Algorithm 1 Algorithm for marking GV with the (UPoint|UContext)

/*Mark (UPoint|UContext) for GV */
PROCEDURE markViewASG (GV , GD)
computeClosure(GV , GD)
markUPoint(GV , GD)
markUContext(GV , GD)

/*Compute closure of node in GV and
its mapping closure in GD*/
PROCEDURE computeClosure (GV , GD)
Initiate CGV

and CGV
empty

while NGV
has more nodes do

Get the next node n ∈ NGV
Initiate CV and CD empty
CV = computeNodeClosure(n, GV)
while CV has more nodes do

Get the next node ni ∈ CV

CD = CD ∪ computeNodeClosure(ni, GD)
end while
Add CV into CGV
Add CD into CGD

end while

/* Mark UPointn as inconsistent, clear, dirty-c or dirty-s*/
PROCEDURE markUPoint(GV , GD)
while NGV

has more nodes do
Get the next node n ∈ NGV
Get CV = getClosure(n, GV)
Get CD = getClosure(CV , GD)
if CV ≡ CD then

UPoint(n) = clean

else
UPoint(n) = dirty

end if
end while

/* Mark UContextn as safe or unsafe*/
PROCEDURE markUContext (GV , GD)
Initiate rules set S for update context checking
Add rules 1 to 5 into S

while S has more rules to be evaluated do
Get the next rule r from S

evaluateRule(r,GV , GD)
end while
while NGV

has more unmarked nodes do
Get the next node n ∈ NGV
UContext(n) = safe

end while

/*Structural Duplication Checking (Rule 1)*/
PROCEDURE evaluateRule(rule1, GV , GD)
while NGV

has nodes left do
Get the next node n ∈ NGV
if n is not marked then

CR = getClosure(n, CGV
)

E = getMappingClosureNode(n, CGV
)

if E is not empty then
Mark all nodes ni ∈ E as unsafe

end if
end if

end while

/*Content Duplication by Correlation Predicate (Rule 2)*/
PROCEDURE evaluateRule(rule2, GV , GD)
Get the root r of GV

Get CR = getClosure(r, CGV
)

Distribute CR into ∐(CR)
Get CT = getClosure(CR, CGD

)
Distribute CT into ∐(CT)
N = getNode(∐(CR)) ∩ getNode(∐(CT))
while N has nodes left do

Get the next node n ∈ N

if n is not marked for safety then
if (getDistribution(n,∐(CR)) 6≡ getDistribu-
tion(n,∐(CT))) then

Mark n as unsafe
end if

end if
end while

/*Content Duplication by Internal Node Reasoning (Rule 3)*/
PROCEDURE evaluateRule(rule3, GV , GD)
while NGV

has more internal nodes do
Get the next internal node n ∈ NGV
if n is not marked then

if All children of n are unsafe then
UContext(n) = unsafe

end if
end if

end while

/*Missing or Improper Join Condition (Rule 4)*/
PROCEDURE evaluateRule(rule4, GV , GD)
while EGV

has edges left do
Get the next edge e ∈ EGV
Get end nodes of e into n1,n2

if (n1 6= root) ∧ (n2 6= root) then
if (e is a * edge without condition) then

Mark the subtree rooted from n2 as unsafe
else

if !(IS PROPER JOIN(n1)) then
Mark the subtree rooted from n2 as unsafe

end if
end if

end if
end while

/*View Side Effect (Rule 5)*/
PROCEDURE evaluateRule(rule5, GV , GD)
while NGV

has more internal nodes do
Get the next internal node n ∈ NGV

and its parent p

if n is not marked then
CR = UCBinding(n) − UCBinding(p)
DNS = n’s decendant nodes set
CNS = (NGV

- DNS)
SafeFlag = false

while CR has more relations do
Get the next relation R ∈ CR

CleanFlag = true

while CNS has more nodes do
Get the next internal node n′ ∈ CNS

if extend(R) ∩ UCBinding(n′) 6= ∅ then
CleanFlag = false

Exit while loop
end if

end while
if CleanFlag = true then

SafeFlag = true

Exit While Loop
end if

end while
if SafeFlag = false then

Mark n as unsafe
end if

end if
end while

30

5.4 STAR Checking Step

Once the given view is analyzed and marked by pairs of its update point type and its update context labels,

Observations 1, 2 can now be used to decide the update translatability as well as additional conditions required (if

any).

Observation 1 A deletion on a safe node is translatable. An deletion on an unsafe node is un-translatable.

Observation 2 A deletion on a (clean | safe) node is unconditionally translatable. A deletion on a (dirty |

safe) node is conditionally translatable. The condition required is translation minimization. That is, in the update

translation procedure, the generated SQL statements have to be minimized. This condition guarantees the translated

update sequence to avoid the view side effect from content duplication.

As shown below, we provide a concrete case study on translatability of deletions over the XML view, when the

challenge factors introduced in Section 4 appear.

Example 5 uV
2 is untranslatable since it deletes the schema node book info in Fig. 15(b), which is unsafe. uV

6

is untranslatable since it deletes the schema node price info in Fig. 15(c), which is unsafe. uV
8 is untranslatable

since it deletes the schema node book info in Fig. 15(e), which is unsafe.

Example 6 uV
1 is unconditionally translatable since it deletes the schema node book info in Fig. 15(a), which is

safe and clean.

Example 7 uV
5 is conditionally translatable since it deletes the schema node price info in Fig. 15(b), which is

safe but dirty. Translation minimization is required for this update to be translatable. Thus UR′

in Fig. 13(c)

is the correct translation. As another example, uV
3 is conditionally translatable since it deletes the schema node

book info in Fig. 15(c), which is safe but dirty. Again translation minimization is required for this update to be

translatable. The correct translation is shown in Fig. 11(c). uV
7 is conditionally translatable since it deletes the

schema node book info in Fig. 15(d), which is safe but dirty. uV
4 is conditionally translatable since it deletes the

schema node price info in Fig. 15(d), which is safe but dirty.

In addition, we do not emphasize the update operation for leaf nodes. Principally the leaf node is not updatable,

since the view is defined over a relational database. However, we still mark the leaf node for the purpose of reasoning

some internal nodes and for optimization purpose. In addition, when the view is defined over an XML document,

instead of the relational database, marking leaf nodes is essential.

31

6 Correctness of Algorithm

To prove the correctness of our STAR algorithm, we use the clean-extended source theory from Section 3.

The intuition behind Rule 5 is that if an element of a safe node is updated, no instance of any other node will

be affected. The correctness of this rule is proven by the following lemma. For a node n ∈ GV , we denote its set

of instances in V by I(n). For example, in Fig. 3(a) I(n2) consists of two book info elements in view V 1.

Lemma 4 Given an XML view V , its view ASG GV . Let n ∈ GV and V 0 ⊆ I(n). If UContextn = safe then

∃Se be an extended source of V 0 such that (Se ∩ g = ∅) holds, where ∀n′ ∈ GV and n′ 6= n, ∀v ∈ I(n′), g is the

generator of v.

The intuition behind Rule 4 is that if an element of a safe node is updated, no any other instance of the same

node will be affected. The correctness of this rule is proven by the following lemma.

Lemma 5 Let V, D,GV , n, V 0 be the same as lemma 4. If UContextn = safe then ∃Se be an extended source of

V 0 such that (Se ∩ g = ∅) holds, where ∀v ∈ I(n) − V 0, g is the generator of v.

Since we consider only relational sources, updates of individual leaf nodes is outside of our scope; we therefore

consider only updates of internal nodes. In other words, we show the correctness of our algorithm from Rules 4

and 5. Note that Rule 3 does not affect the correctness of our algorithm; it makes it more efficient. Theorem below

prove the connection between the safe node identified by our checking rules and the existence of a clean extended

source.

Theorem 3 Let V, D,GV , n, V 0 be the same as in lemma 4. There exists a clean extended source in D of V 0 if

UContextn = safe.

Theorem 3 indicates that a given view element v has a clean extended source if its schema node in GV is marked

as safe. As indicated by Theorems 1 and 2, the existence of a clean extended source for a given XML view element

implies that the update touching this element is translatable. We thus proved the correctness of our algorithm 1.

7 Discussion and Evaluation

The update translatability problem is well-known to be a difficult issue since even relational views are very often

not updatable. By analyzing the properties of the XML view, we now identify what kind of XML view is handled

by our schema-driven update translatability reasoning solution.

32

The XML views can be divided as Tree View, DAG View and Recursive View. The view ASG for a tree view

is a tree or a forest, and a directed acyclic graph for a DAG view. The recursive view can not be represented by a

view ASG.

We define an XML tree view to be a well-formed XML view if each correlated predicate is a key-foreign key

join. Any view beyond those with key-foreign key joins involves complex duplication handling, which is a major

contribution of [18]. Further, a well-formed view is non-resized if neither any aggregate function, such as max(),

min(), count(), nor any distinct-value function is used. These operations make views non-updatable, as enunciated

in [16]. The view considered in STAR is assumed to be a non-resized well-formed XML view.

Various internal representations are used by XML-to-SQL systems to support queries or updates through an

XML view expressed over a relational database, such as SilkRoute’s view forest [14], XPERANTO’s XQGM [9] and

Query Trees in [7, 8]. XPERANTO’s XQGM can express most queries in XQuery. The view forest from SilkRoute

is capable of expressing any query in the XQueryCore [24]. Query trees from [7, 8] are adapted from the view

forest. The Annotated Schema Graph used in STAR has the same capabilities and limitations as the view forest,

that is, it is also not capable of expressing if/then/else expressions, order and user-defined functions.

We conduct an evaluation on the expressiveness of our view ASG in order to be able to handle W3C use cases.

The evaluation result is shown in Table 3. Note that W3C “SEQ” use cases focus on order queries, “STRING”

use cases focus on string comparisons, “NS” use cases focus on metadata queries, “PARTS” use cases focuses on

recursive queries, “STRONG” use cases includes queries that exploit strongly typed data. We thus omit evaluation

of those use case groups.

The W3C’s “R” user case group is the one used to access data stored in relational databases through an XML

view. As we can see, 4 out of 18 queries can be represented by our view relationship graph. These 4 then in turn

can be checked by our schema-reasoning solution for update translatability checking. Most queries which cannot

be handled include aggregation functions, such as max(), count(), avg().

Other two test case groups “XMP” and “TREE” are defined over native XML documents and DTD, instead

of over relational databases. We here assume that the inline loading strategy was used to build an underlying

relational database. An extraction query is also used to extract exactly the same XML document, which is the

basis of the view query within the use case groups “XMP” and “TREE”. The evaluation of the expressiveness of

view ASGs thus includes the combination of the extraction query and view query. As we can see, 50% of queries

in “XMP” and one third of “TREE” can be expressed by ASGs, and thus handled by our update translatability

checking solution. Again, most failed cases are due to aggregation or distinct functions.

33

Table 3. Evaluation of W3C User Case
View Query Expressiveness Reason
XMP-{Q1-Q3, Q5, Q7-Q9, Q11} √
XMP-{Q4,Q10} × distinct-value()
XMP-Q6 × Aggregrate Function — Count()
XMP-Q12 × Self-Join

TREE-Q1
√

user-defined function is not recursive
TREE-Q2

√
TREE-{Q3,Q4,Q5,Q6} × Aggregation Function — Count()

R-{Q1,Q3,Q4,Q17} √
R-{Q2,Q5,Q6-Q15} × Aggregation Function — max(),avg(),count()
R-Q16 × if-then-else
R-Q18 × distinct-value()

8 Related Work

[1, 16, 17] study the view update translation mechanism for SPJ queries on relations that are in BCNF. These

works have been further extended for object-based views in [4].

[22] presents an XQuery update grammar. It also studies the performance of executing the translated updates,

assuming that the update is indeed translatable and has in fact already been translated into updates over a

relational database. Our work now addresses a different aspect of the view update problem, namely, the view

update translatability instead of the update translation strategy.

One of the earlier works [13] studies the view update translatability problem in the relational context. Based

on the notion of a clean source, it presents an approach for determining the existence of update translations by

performing a careful semantic analysis of the view definition. The XQuery update problem discussed in our paper

is more complex than that of a pure relational view update. Not only do all the problems in the relational context

still exist in XML semantics, but we also have to address the new update issues introduced by the XML hierarchical

data model and the flexible update language. Work in [26] extended [13] as a clean-extended source theory. It

serves as theoretical foundation for the schema-based XML view update translatability study. Our work in this

paper provides a practical approach with the flexibility of XML views and XQuery updates being considered.

Recent works [7, 8] study the XML view update problem using a nested relational algebra. They assume the

view is always well-nested, that is, joins are through keys and foreign keys, and nesting is controlled to agree with

the integrity constraints and to avoid duplication. The update over such a view is thus always translatable. Our

work is orthogonal to this work by addressing new challenges related to the decision of translation existence when

no restrictions have been placed on the defined view. That is, in general, conflicts are possible and a view cannot

always be guaranteed to be well-nested (as assumed in this prior work).

Commercial database systems, such as Oracle, DB2 and SQL-Server, also provide XML support. Oracle XML

DB [3] provides SQL/XML as an extension to SQL, using functions and operators to query and access XML content

34

as part of normal SQL operations, and also to provide methods for generating XML from the result of an SQL

Select statement. The IBM DB2 XML Extender [10] provides user-defined functions to store and retrieve XML

documents in XML columns, as well as to extract XML elements or attribute values. However, neither IBM nor

Oracle support update operations. [21] introduces XML view updates in SQL-Server2000, based on a specific

annotated schema and update language called updategrams. Instead of using update statements, the user provides

a before and after image of the view. The system computes the difference between the image and generates the

corresponding SQL statements to reflect changes on the relational database.

9 Conclusion

In this paper, we have formalized the XML view update problem and identified the typical factors deciding

the update translatability. A theoretical foundation for translation existence is proposed based on the extended

clean-source concept. A schema-driven update translatability reasoning algorithm for identifying the conditions,

under which an update over XML views is translatable, has been presented. Its correctness has also been proven.

A concrete case study about the update translatability of XML views is provided. As proof of viability, a system

framework solving the XQuery view update problem has been implemented within the XML data management

system Rainbow [28] using the XQuery update language proposed in [22]. Several experiments have been conducted

to assess various performance characteristics of our update solution [25].

Future Work. Our view update translatability checking solution is based on schema reasoning utilizing only

view schema knowledge. We note that the translated updates might still conflict with the real base data. For

example, even if an update inserting a book (bookid = 98002) is said to be unconditionally translatable by our

schema check procedure, conflicts with the base data in Fig. 1 may still arise. Depending on the selected update

translation policy, the translated update can then be either rejected or executed by replacing the existing tuple

with the newly inserted tuple. This run-time update translatability issue can only be resolved at execution time by

examining the actual data. Future work includes studying this run-time data-driven checking technique. Further,

we need to conduct a more detailed analysis for non-delete operations as well as for updates over multiple elements.

Acknowledgment. We would like to thank Professor Susan B. Davidson from University of Pennsylvania and
Vanessa P. Braganholo From UFRGS for fruitful discussion and feedback. We would also like to thank the colleagues
from Database System Research Group from Worcester Polytechnic Institute.

References

[1] A. M. Keller. The Role of Semantics in Translating View Updates. IEEE Transactions on Computers, 19(1):63–73, 1986.

[2] F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. In ACM Transactions on Database Systems, pages 557–575,
Dec 1981.

35

[3] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and R. Murthy. Oracle8i - The XML Enabled Data Management System. In
ICDE, pages 561–568, 2000.

[4] T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold. Updating Relational Databases through Object-Based Views. In
SIGMOD, pages 248–257, 1991.

[5] M. Benedikt, C. Y. Chan, W. Fan, and R. Rastogi. DTD-Directed Publishing with Attribute Translation Grammars. In VLDB,
pages 838–849, 2002.

[6] P. Bohannon, P. Buneman, B. Choi, and W. Fan. Incremental Evaluation of Schema-Directed XML Publishing. In SIGMOD,
pages 503–514, 2004.

[7] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. On the Updatability of XML Views over Relational Databases. In WEBDB,
pages 31–36, 2003.

[8] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML view updates to relational view updates: old solutions to a new
problem. In VLDB, pages 276–287, 2004.

[9] M. J. Carey, J. Kiernan, J.Shanmugasundaram, E. J. Shekita, and S. N. Subramanian. XPERANTO: Middleware for Publishing
Object-Relational Data as XML Documents. In The VLDB Journal, pages 646–648, 2000.

[10] J. M. Cheng and J. Xu. XML and DB2. In ICDE, pages 569–573, 2000.

[11] C.J.Date. An Introduction to Database Systems. Addison-Wesley, 1997.

[12] S. S. Cosmadakis and C. H. Papadimitriou. Updates of Relational Views. Journal of the Association for Computing Machinery,
pages 742–760, Oct 1984.

[13] U. Dayal and P. A. Bernstein. On the Correct Translation of Update Operations on Relational Views. In ACM Transactions on

Database Systems, volume 7(3), pages 381–416, Sept 1982.

[14] M. F. Fernandez, A. Morishima, D. Suciu, and W. C. Tan. Publishing Relational Data in XML: the SilkRoute Approach. IEEE

Data Engineering Bulletin, 24(2):12–19, 2001.

[15] J. Shanmugasundaram et al. Relational Databases for Querying XML Documents: Limitations and Opportunities. In VLDB,
pages 302–314, September 1999.

[16] A. M. Keller. Algorithms for Translating View Updates to Database Updates for View Involving Selections, Projections and Joins.
In Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 154–163, 1985.

[17] A. M. Keller. Choosing a View Update Translator by Dialog at View Definition Time. In VLDB, pages 467–474, 1986.

[18] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. Unraveling the Duplicate-Elimination Problem in XML-to-SQL Query
Translation. In WebDB, 2004.

[19] M. Fernandez et al. SilkRoute: A Framework for Publishing Relational Data in XML. ACM Transactions on Database Systems,
27(4):438–493, 2002.

[20] R. Ramakrishnan. Database Management Systems. McGraw-Hill, 1997.

[21] M. Rys. Bringing the Internet to Your Database: Using SQL Server 2000 and XML to Build Loosely-Coupled Systems. In VLDB,
pages 465–472, 2001.

[22] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In SIGMOD, pages 413–424, May 2001.

[23] W3C. XQuery: A Query Language for XML. http://www.w3.org/TR/xquery/, February 2001.

[24] W3C. XQuery 1.0 Formal Semantics. http://www.w3.org/TR/query-semantics/, June 2003.

[25] L. Wang, M. Mulchandani, and E. A. Rundensteiner. Updating XQuery Views Published over Relational Data: A Round-trip
Case Study. In XML Database Symposium, pages 223–237, 2003.

[26] L. Wang and E. A. Rundensteiner. On the Updatability of XQuery Views Publised over Relational Data. In ER, 2004.

[27] L. Wang, E. A. Rundensteiner, and M. Mani. UFilter: A Lightweight View Update Checker. Technical Report WPI-CS-TR-TBA,
Computer Science Department, WPI, 2004.

[28] X. Zhang, K. Dimitrova, L. Wang, M. EL-Sayed, B. Murphy, L. Ding, and E. A. Rundensteiner. RainbowII: Multi-XQuery
Optimization Using Materialized XML Views. In Demo Session Proceedings of SIGMOD, page 671, 2003.

Appendix

Below we list all the proofs for lemmas and theorems used by this paper.

Proof of Lemma 1.
(a) If. Suppose DEFV (R1 − Se1

, ..., Rn − Sen
) ⊆ V − V 0 but Se is not an extended source in D of V 0.

Let G(V 0) be the set of generators of V 0. From definition 4, ∃(t1, ..., tp) ∈ G(V 0) be a generator of v ∈ V 0,
such that (∀ti ∈ Rx) ⇒ ti /∈ Sex

. That is, ti ∈ Rx − Sex
. Thus v ∈ DEFV (R1 − Se1

, ..., Rn − Sen
). But, (t1, ..., tp)

is a generator of v ∈ V 0. That is v /∈ V −V 0. Hence, we have v ∈ DEFV (R1 − Se1
, ..., Rn −Sen

) and v /∈ V −V 0,
a contradiction with the hypothesis that DEFV (R1 − Se1

, ..., Rn − Sen
) ⊆ V − V 0.

36

Only if. Suppose Se is an extended source in D of V 0 but DEFV (R1 − Se1
, ..., Rn − Sen

) 6⊆ V − V 0.
Then, ∃v such that (v ∈ DEFV (R1 − Se1

, ..., Rn − Sen
)) ∧ (v ∈ V 0). This implies that there is a generator

(t1, ..., tp) of v ∈ V 0 such that {ti | ti ∈ Rx and Rx ∈ rel(DEFV)} ∩ Se = ∅, contradicting the hypothesis that Se

is an extended source in D of V 0.

(b) If. Suppose DEFV (R1 − Se1
, ..., Rn − Sen

) = V − V 0 but Se is not a clean extended source in D of V 0.
From (a), Se is an extended source in D of V 0. By Definition 5, (∃v ∈ V − V 0) such that there is no generator

g ∈
∏

Rx∈rel(DEF V)(Rx − Sex
of v, and hence v /∈ DEFV (R1 − Se1

, ..., Rn − Sen
), a contradiction.

Only if. Assume that Se is a clean extended source in D of V 0.
By (a), DEFV (R1−Se1

, ..., Rn−Sen
) ⊆ V −V 0. Assuming V −V 0 6⊆ DEFV (R1−Se1

, ..., Rn−Sen
), that is, (∃v ∈

V −V 0) such that (v /∈ DEFV (R1 −Se1
, ..., Rn −Sen

)). Then there is no generator g ∈
∏

Rx∈rel(DEF V)(Rx −Sex
)

of v. Hence, by Definition 3, there is no source in (R1 − Se1
, ..., Rn − Sen

) of v ∈ V − V 0, which contradicts the
hypothesis that Se is a clean extended source in D of V 0. 2

Proof of Lemma 2.
Let R′

x = UR(Rx) be one of the updated relation Rx ∈ rel(DEFV). Let T = D − UR(D).

UR deletes an extended source of v ∈ V
⇐⇒ T is an extended source in D of v
⇐⇒ DEFV (R1 − T1, ..., Rn − Tn) ⊆ V − v (lemma 1)
⇐⇒ v /∈ DEFV (R1 − T1, ..., Rn − Tn)
⇐⇒ v /∈ DEFV (R1 ∩ R′

1, ..., Rn ∩ R′
n) since Rx − Tx = Rx ∩ R′

x
(1)
⇐⇒ There is no extended generator of v in (R1 ∩ R′

1, ..., Rn ∩ R′
n).

UR does not insert an extended source-tuple of v ∈ V
(2)
⇐⇒ ∀Rx ∈ rel(DEFV) ∀ti ∈ R′

x − Rx, there is no tj ∈ R′
y − Ry where Ry ∈ rel(DEFV), x 6= y, such that

(t1, ..., tp) is an extended generator of v.

(1) and (2) hold iff there is no extended-generator in UR(D) of v. The proposition then follows. 2

Proof of Lemma 3.
UR inserts source-tuples of v

⇐⇒ (∃Rx ∈ rel(DEFV), ∃t ∈ R′
x − Rx)(t is a source tuple in UR(D) of v)

(1)
⇐⇒ (∃g = (t1, ..., tp) ∈

∏
Rx∈rel(DEF V) R′

x)(g is a generator of v).

⇐⇒ v ∈ DEFV (R′
1, ..., R

′
n) = DEFV (UR(D)).

(1) is proven as below:
If. Follow directly from Definition 3.
Only If. Assume that g = (t1, ..., tp) is a generator of v, but ∀Rx ∈ rel(DEFV), ti ∈ Rx. Then g ∈

∏
Ri∈rel(DEF V) Ri

and so v ∈ DEFV (R1, ..., Rn) = DEFV (D), a contradiction. 2

Proof of Theorem 1.
By lemma 1(b), UR deletes a clean source of V d

⇐⇒ DEFV (R1 − T1, ..., Rn − Tn) = V − V d = uV (V)
⇐⇒ DEFV (UR(D)) = uV (V)
⇐⇒ DEFV (UR(D)) = uV (V), since Ri − Ti = R′

i

⇐⇒ τ correctly translates uV to UR. 2

Proof of Theorem 2.

37

By Lemma 3, condition (i) iff V u ⊆ DEFV (UR(D)).
Also, since type(uV) = insert and type(UR) = type(uV), DEFV (UR(D)) ⊇ V ⊇ V −.
Hence, V u ∪ V − ⊆ DEFV (UR(D)).

By Lemma 3, condition (ii) iff (dom(V) − (V u ∪ V −)) ∩(DEFV (UR(D))) = ∅.
Hence, DEFV (UR(D)) ⊆ V u ∪ V −.

Thus, condition (i) and condition (ii) iff DEFV (UR(D)) = V − ∪ V u = uV (V), that is τ correctly translates uV

to UR. 2

Proof of Lemma 4.
UContextn = safe

=⇒ (∃R ∈ CR)(∀n′ ∈ GV , extend(R) ∩ UCBinding(n′) = ∅) by Rule 5
(1)
=⇒ (∃Se) such that (∀v ∈ I(n′), g be a generator of v) (Se ∩ g = ∅)
(1) is proven as below:
Let SE be the set of extended sources of V 0. According to the definition of extend(R) in Section 5, we have
∃Se ∈ SE such that rel(Se) = extend(R), where rel(Se) is the set of relations that tuples in Se belong to. Sim-
ilarly, let rel(g) be the set of relations that tuples in g belong to. We also have rel(g) = UCBinding(n′) by the
definition of generator in Section 5. Then (1) holds trivially. 2

Proof of Lemma 5.
The proof is based on the induction on the depth of a node n in GV , denoted by d.
Let p be the parent node of n. Without loss of generality, we assume that |CR(n)| ≤ 1. That is there is at most

one more relation referred for defining n than p. We denote this relation as R. Let a be the eldest ancestor of p
such that UCBinding(a) = UCBinding(p). Let CR(a) = R′.

Base Step. For d = 1, 2, the proposition is true.
Induction Hypothesis. Assume the proposition is true for all d < k.
Induction Step. We shall demonstrate the proposition is true for d = k.
UContextn = safe =⇒ e = (p, n) is a ∗ edge with a proper Join condition as stated by Rule 4. Otherwise n

would be marked as unsafe for the following reasons: (i) if e is a ? edge, n would be marked as unsafe by Rule 5;
(ii) if e is a ∗ edge without a Join condition or even an “improper” Join condition, n would be marked as unsafe
by Rule 4.

According to the induction hypothesis, the proposition holds for node a. ∀v′1, v
′
2 ∈ I(a), consider t′1, t

′
2 ∈ R′

from their respective generators, we have t′1 6= t′2. According to Rule 4, the proper Join condition e will guarantee
that ∀v1, v2 ∈ I(n), let t1, t2 ∈ R be from their respective generators, then we also have t1 6= t2.

Consider the source S of V 0 ⊆ I(n) such that ∀ti ∈ S, ti ∈ R. The extended source Se corresponding to S
satisfy the proposition. 2

Proof of Theorem 3.
∃Se be a clean extended source of V 0

⇐⇒ (∀v ∈ V − V 0, g be a generator of v)(Se ∩ g = ∅) by Definition 4
⇐⇒ (i) (∀v ∈ I(n), g be a generator of v)(Se ∩ g = ∅)
and (ii) (∀n′ ∈ GV , n′ 6= n)(∀v ∈ I(n′), g be the generator of v) (Se ∩ g = ∅). (1)

(1) holds if UContextn = safe by lemma 4 and 5. 2

38

