
WPI-CS-TR-04-16 April 2004

Adaptive QoS-Driven Scheduling Framework for a Continuous Query
System

by

Timothy M. Sutherland
Bradford Pielech and Elke A. Rundensteiner

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Adaptive QoS-Driven Scheduling Framework for a Continuous Query System

Timothy M. Sutherland, Bradford Pielech and Elke A. Rundensteiner
Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA 01609
Tel.: (508) 831–5857, Fax: (508) 831–5776
{tims, winners, rundenst}@cs.wpi.edu

Abstract

In a continuous query environment, different applications may have distinct Quality of Service (QoS) require-
ments. Given the unpredictability of streaming data, utilizing a single scheduling algorithm, as done by current
state-of-the-art stream query engines, is no longer sufficient. Current scheduling algorithms used in these systems
are typically one-dimensional, limiting the ability to perform well under changing system conditions.

We propose a novel algorithm selection framework used in our CAPE system. This framework leverages the
strengths of current scheduling algorithms to meet sets of QoS requirements. In CAPE, each algorithm can be
compared in terms of its past ability to improve the QoS, knowing nothing about the characteristics of the al-
gorithm. This knowledge can be used to determine the algorithm that probabilistically has the best chance of
improving the QoS. Our framework has the flexibility to add new algorithms, query plans and data sets during
runtime, with no need to fine-tune the algorithm to the system. Using standard data sets and query plans from
existing literature on scheduling, our experiments show in fact that, this new framework combines the relative
strengths of these algorithms while adhering to given QoS requirements.

Keywords: Operator Scheduling, Scoring Function, Adaptive Algorithm Selection, CAPE.

1

1 Introduction

Many modern applications process queries over unbounded streams of data. These applications include moni-
toring remote sensors [11], online transaction processing [18], and intrusion detection in networks [17]. An effort
is being undertaken by the database community to derive a new class of query systems, called Continuous Query
Systems. These systems execute queries on data that is continuously arriving, possibly time-varying and high
volume, and returns the result of the query to the user in a streaming real-time fashion.

Unlike a traditional database system, where all data is first stored in persistent storage before being queried,
continuous query systems must process the data as it flows by. In a traditional DBMS data access is under strict
control, however streaming data comes from sources around the world at varying arrival times. Furthermore, the
streams can be extremely bursty with high volumes of data arriving all at once or conversely with no data arriving
for quite some time. Also, a continuous query is typically registered with the system, and then is continually
processed against the streaming data.

1.1 Motivation

Applications may have different Quality of Service (QoS) requirements because of physical limitations such
as network speed or limitations on memory and processing resources. For example, a security system typically
registers queries that will recognize intrusion, with high priority to report results in real time. Network traffic
monitors may want to sort and group potentially large sets of data before the results are given to the user, but are
particularly concerned with keeping memory utilization to a minimum. These varying QoS requirements play a
significant role in determining how a query will be processed.

Multiple Dimensions of Variability. In addition to QoS requirements, Continuous Query Systems have many
uncontrollable constantly changing external factors to tend with during execution. First, the number of queries
may change as queries are registered or removed from the system at any time [4]. Also a query may be optimized
during execution, causing a change in the query plan [21]. The stream characteristics may also change significantly
in terms of arrival rates and also value distributions. As a consequence, at times a join operator may have a very
high selectivity, when other times the data entering the join operator may not join at all with data from the second
stream. In order for a Continuous Query system to perform well in environments with such diverse and time-
varying characteristics, these uncontrollable factors must be addressed.

1.2 Adapting to Changing Characteristics

Current continuous query systems typically have some measure of adaptability built-in to cope with such unex-
pected external changes. Aurora [5] allows an administrator to input QoS specifications and the system monitors
execution performance based on these QoS metrics. If the QoS drops below an acceptable level, the system will
shed load until the performance increases. This may not be acceptable for many applications, especially when
quality of the data contents are critical. Consider a government application that scours internet data to try to un-
cover terrorist activity. If one piece of information is missing it could lead to making an incorrect decision, or
worse yet no decision at all.

Another method to cope with these external factors is to use a scheduling algorithm to decide the order in
which query operators process data is typically used. Rather than randomly selecting operators to process data,
a scheduling algorithm systematically selects operators that can improve performance in an area execution, such
as increasing output rate or reducing memory costs. Scheduling algorithms offer Continuous Query Systems
fine-grained control over the operators during execution. Current systems either employ traditional scheduling
algorithms borrowed from the realm of operating systems [20][8], such as Round-Robin and FIFO or use cus-
tomized algorithms designed specifically for continuous query systems. These new algorithms include Chain [2],
introduced by the STREAM system, and Aurora’s Train [6] scheduling.

2

Chain works well at minimizing memory, but this comes at the expense of decreased throughput and possible
operator starvation. Train scheduling is excellent at batching tuples together to be processed in sequence to lower
fixed operator costs. However, if query operators do not have a large batch of tuples waiting to be processed, but
rather small queues spread throughout the query plan, Train scheduling is not as effective as other algorithms.
Other types of algorithms such as Round Robin do not consider the cost of executing an operator and thus may
under-utilize inexpensive operators.

We experimentally compared these existing algorithms under a variety of stream workloads in a real Con-
tinuous Query System. Our experiments revealed that although these algorithms are good at improving system
performance, each typically optimizes for only one parameter in the system, such as reducing memory (Chain)
or increasing the query plan output rate (FIFO). Thus, even though there are many scheduling algorithms that
work well for a particular query environment, there is no one algorithm that a system can utilize to satisfy all such
requirements, especially given the wide variability that a continuous query system encounters.

Our experimental study has confirmed that it is very difficult to design a “one size fits all” scheduling algorithm
due to the fact that future arrival rate of incoming streams may be unknown, along with the data contained within
the stream. Also, other factors such as changing QoS requirements and the addition or optimization of query plans
add yet another level of variability into the Continuous Query System.

1.3 Our Approach

Thus, we propose anadaptive scheduling framework that has the ability to select a single algorithm from a
pool of algorithms available to the system. By providing several algorithms that optimize different QoS require-
ments, we aim to heuristically pick an algorithm that has a high probability of performing well during a particular
point of query execution, and still adhere to strict (and possibly changing) QoS requirements in the system.

1.4 Contributions

This paper contributes to Continuous Query Systems, particularly query processing, in the following ways:

• Experimentally studied the performance of a wide variety of state-of-the-art scheduling algorithms in our
CAPE processing engine to determine the advantages and disadvantages of algorithms under varying QoS
requirements, data stream arrival rates, and query plans. The experiments confirm that each algorithm has
unique properties that make it more ideal in some circumstances and less ideal in others.

• Designed an adaptive framework that has the ability to learn the behavior of the continuous query system
without significant processing overhead, knowledge of the scheduling algorithm, query plan or data
set. This knowledge is then used to guide the selection of algorithms that probabilistically have the best
chance to fulfill a given set of QoS requirements.

• Built CAPE, a Continually Adaptive Processing Engine for streaming data from the ground up, embedding
all of these existing scheduling algorithms as well as and our proposed framework.

• Performed an experimental study that supports our claim that we can in fact leverage the strengths of several
existing scheduling algorithms to improve the overall performance of a continuous query system given a set
of QoS requirements.

1.5 Outline

The remainder of this paper is structured as follows. Section 2 illustrates using an intuitive example that dif-
ferent scheduling algorithms have particular strengths and weaknesses. Section 3 describes design choices for our
CAPE system augmented by our proposed adaptive framework. Section 4 experimentally compares the scheduling

3

D
at

a
S

tr
ea

m σ = 0.9
t = 1.0

σ = 0.1
t = .25

σ = 1.0
t = .75

Op 1 Op 2 Op 3

Figure 1. Selectivity σ and Average Tuples Processing Time t for the example query plan.

algorithms used in our work to find the pros and cons of each such algorithm. Section 5 describes key aspects
of our adaptive technique, including quality of service requirements, algorithm scoring functions, and algorithm
selection heuristics. Section 6 presents an experimental study. Section 7 reviews the related research. Conclusions
and future work are discussed in Section 8.

2 Motivating Example

We will illustrate in the example below and then confirm via experimental studies using the system described
in Section 3, that scheduling algorithms typically favor a single QoS requirement.

Let us now consider the query plan in Figure 1. The plan contains three filter operatorsOp1 throughOp3. We
will assume that the input stream will place 1 tuple in the input buffer ofOp1 every time unit, starting at timeto.
When we refer to a tuple, we are really referring to a group of tuples that are organized in some logical batch, such
as a disk page or a memory block. For simplicity let us assume that switching between operators takes zero time.
When told to run, an operator will consume one tuple from its input queue if available, process the data for a fixed
amount of time,t, and then output a percentage of the tuples corresponding to its selectivity,σ. For instance, if
an operator consumes 0.5 tuples from its input queue and outputs 0.45 tuples, itsσ is 0.9. Figure 1 showsσ andt
values for the operators in our example plan.

Now consider two different scheduling algorithms. Algorithm 1 is a FIFO scheduler that will take tuples from
the input queue ofOp1 and process them until completion, before processing the next tuples fromOp1’s input
queue. Algorithm 2 is called Most Tuple In Queue (MTIQ) that runs the operator with the most tuples in its input
queue. The difference in scheduling policies becomes apparent when looking at resource allocation, output rate,
operator utilization, and freshness of results, as illustrated below.

Table 2 summarizes the number of tuples in all queues and the throughput (number of tuplesOp3 outputs) for
each algorithm as execution progresses. The execution would happen as follows: First 1 tuple is removed from
the input queue ofOp1 and after processing for 1 time unit, 0.9 tuples are outputted (0.9= 1 xσ(Op1)). Then 0.9
tuples are processed byOp2 and 0.09 are outputted (0.09 = 0.9 xσ(Op2)). Finally, 0.09 are consumed byOp3

and 0.09 are outputted to the end user becauseσ(Op3) = 1.
While FIFO is propagating tuples through the query plan, more tuples enter the input queue ofOp1. Thus the

queue sizes grow. Since it takes 2 time units (1 + 0.25 + 0.75) to operate on a tuple, it would mean that in the time
that it takes to process 1 tuple to completion, 2 more tuples would have entered the system. As we can see, FIFO
is exceptional at guaranteeing throughput. However it comes at the expense of increased memory consumption.

MTIQ behaves the same as FIFO duringt0, but differs starting witht1. At t1, there is 1 tuple queued forOp1

and 0.9 tuples queued forOp2. MTIQ chooses to runOp1 again. Att2, there is 1 tuple queued forOp1 and 1.8
tuples queued forOp2 (0.9 + 0.9). MTIQ then runsOp2. Op2 finishes at timet2.25 (because it started att2 and
processed for 0.25 time units) and now the queue sizes are 1, 0.8, 0.1 forOp1, Op2, Op3 respectively. MTIQ
runsOp1 again. Att3, there is one new tuple forOp1 and still 0.8 and 0.1 tuples atOp2 andOp3. The process
continues until timet14, whenOp3 finally has the largest input queue, and is subsequently processed.

This example shows that each algorithm performs differently for different QoS requirements. The MTIQ algo-
rithm keeps its queue sizes smaller than those of FIFO, but it does not output any results for a (relatively) long

4

Table 1. Total Queue Sizes and Throughput for Example Query Plan from Fig. 1.
Time FIFO

Queue
Size

MTIQ
Queue
Size

FIFO
Through-
put

MTIQ
Through-
put

0 1.0 1.0 0.0 0
1 1.9 1.9 0.0 0
2 2.0 2.8 0.09 0
3 2.9 1.9 0.09 0
4 3.0 1.9 0.18 0
5 3.9 1.9 0.18 0

time. MTIQ’s throughput is much more bursty than FIFO’s. MTIQ will take approximately 14 time units to output
its first tuple. The next output will come slightly more quickly, but the output pattern will not be as consistent as
FIFO that outputs every 2 time units.

3 CAPE Overview

In this section, we will first present CAPE, ourContinually AdaptiveProcessingEngine. CAPE is similar in
system architecture to other systems such as STREAM, Aurora and NiagaraCQ. The main difference is the way
that our system uses an adaptive scheduler for determining execution, while other current systems employ a single
scheduling algorithm for the duration of execution.

3.1 Architecture

CAPE is composed of five primary components as depicted in Figure 2. TheStream Receiver is responsible
for receiving the streaming data fromStream Sources across the Internet and submitting the data to theStorage
Manager. The Storage Manager manages the tuple data, deciding if tuples should be stored in memory or persistent
storage. It attempts to keep as many tuples in main memory as possible to improve the performance of query plan
execution.

TheStatistics Gatherer stores, calculates, and sorts statistics about any part of a query plan, in particular oper-
ators and queues. We use these statistics for many types of calculations, such as deciding how well a particular
query plan is running given a cost model, or even simply how many tuples are in main memory at a given time.

TheExecution Engine is responsible for overseeing the execution of the query plan. The Execution Engine tells
the Statistics Gatherer to obtain the latest statistics, asks theOperator Scheduler which operator should process
data next, and then runs the operator in the order decided by the Operator Scheduler.

3.2 Adaptive Framework Extension

We take a closer look at the architecture of the Operator Scheduler in Figure 3. In most typical continuous
query systems [4][7][5], the operator scheduler employs one static scheduling algorithm such as Round Robin or
Chain. This scheduler’s task is to report to the Execution Engine the operator that will process data next based on
that algorithm. Instead, our scheduling component is extended into an adaptive framework. It is equipped with a
library of several possible scheduling algorithms and will periodically select one scheduling algorithm from that
library that has statistically performed best given the set of QoS requirements.

In order to be able to schedule each operator in a specific order, it is essential that all of the query operators in
the system are in the same thread. This will guarantee that the system has fine-grained control over the scheduling

5

Stream
Generator

Stream Source

Operator
Scheduler

Continuous Query Engine

Query

Control Flow

Data Flow

Legend:

Query

End User
End User

End User

Storage
Manager

Stream
Receiver

Statistics
Gatherer

Execution
Engine

Internet

Figure 2. Architecture of Continuous Query System.

Strategy
Selector

Operator Scheduler

Performance
Monitor

Scheduling
Strategy Library

Adaptive
Heuristic

Statistics

Operator
Decision

Decision
Request

Figure 3. Architecture of Operator Scheduler.

of the operator, rather than the underlying operating system. Research has also shown that as query plans grow
larger, current operating systems cannot handle the large number of threads that would need to be scheduled [6].

We keep alibrary of scheduling algorithms available for use to the system at any time. As new scheduling
algorithms are developed, they can easily be plugged into the library to be used by the adaptive framework. Our
performance monitor keeps a score of how well each scheduling algorithm has done thus far during execution.
This monitor utilizes statistics already collected in the system for other purposes, thus keeping overhead for the
framework to a minimum. Section 5.2 discusses how the algorithms are scored. TheStrategy Selector then selects
which scheduling algorithm to use based on some selection protocol. In CAPE, we use a very lightweightAdaptive
Heuristic called the Roulette-wheel heuristic [12]. This heuristic takes the calculated scores for each algorithm
into account to select the next best candidate. The operator scheduler then simply asks the active scheduling
algorithm to pick the next operator to process data, and this decision is then reported to the Execution Engine.

Since statistics are stored about the query plans and operators on a consistent basis for query optimization
purposes, we find virtually zero overhead in computing scores for the scheduling algorithms. This is confirmed
in our experimental study described in Section 6. By using this architecture, we always select the scheduling
algorithm that has statistically performed the best. If the performance degrades, we simply pick another algorithm
to aim to boost performance.

6

4 Operator Scheduling

In order to develop a framework that could leverage the strengths of scheduling algorithms, current algorithms
had to be studied. It is important to understand in what query environments a particular scheduling algorithm
excels. In this section we will describe the set of most common scheduling algorithms used in Continuous Query
Systems and then discuss an experimental study on these scheduling algorithms in an actual continuous query
system to confirm that there is indeed no ”one size fits all” algorithm.

4.1 Scheduling Algorithms

Most scheduling algorithms seem to be one-dimensional in terms of meeting some QoS metric. The adaptive
technique proposed in this paper focuses on selecting a particular scheduling algorithm when its advantages can
be exploited to improve the QoS.

Now we describe several scheduling algorithms employed by our adaptive scheduling framework, and explain
their advantages and disadvantages.

Round Robin (RR) is perhaps the most basic scheduling algorithm, and is used as the default scheduler by
many Continuous Query systems such as [4]. It works by placing all runnable operators in a circular queue and
allocating a fixed time slice to each. Round Robin’s most desirable quality is the avoidance of starvation. An
operator is guaranteed to be scheduled within a fixed period of time. However, Round Robin does not adapt to
changing stream conditions.

FIFO operates on the oldest tuples first to push them through the query plan. FIFO generates a high throughput,
because the oldest tuples are given a higher priority over newer ones. But it has the same drawbacks as Round
Robin - no adaptability and no consideration of operator properties.

Most Tuples in Queue (MTIQ) scheduler is a greedy algorithm that assigns a priority to each operator equiv-
alent to the number of the tuples in its input queues. MTIQ is a simplified batch scheduler, similar to Train [7].
Batch schedulers work under the assumption that the average tuple processing cost can be reduced if an operator
can work on more tuples at a time. Operators typically have a start-up cost associated with their execution and the
batch scheduler can amortize this cost over a larger group of tuples.

The most obvious advantage is that MTIQ works well at minimizing memory consumption. By running the
operator with the most tuples enqueued, the algorithm will guarantee that no queue will grow unbounded, a claim
that cannot be made by any of the previous algorithms.

Chain [2] is a recently proposed variation of Greedy Scheduling. Conceptually, each operator is assigned a
priority that is based on selectivity, tuple processing cost, and the priorities of neighboring operators. By analyzing
the priorities of neighboring operators, “Chains” of operators can be scheduled to run together. This method will
remove the largest number of tuples from the system in the shortest amount of time.

Chain was shown, using experimental studies, to be an ideal algorithm for keeping queue sizes to a minimum.
It may however suffer from starvation and poor response time during times of burst [2].

4.2 Evaluation of Scheduling

Figure 4 shows the performance of several algorithms including Round Robin, Most Tuples In Queue, Chain
and First In First Out in our CAPE system. Here we monitor two different quality of service requirements, the
number of tuples in memory, and the average tuple delay. For this study, we used a two-stream query plan, depicted
in Figure 5. Further details about the experimental testbed are found in Section 6.

As anticipated, Chain and MTIQ performed best when it comes to minimizing memory use. As discussed in
Section 4.1, Chain processes operators that remove the largest number of tuples the most quickly. MTIQ processes

7

0

10000

20000

30000

40000

50000

10
30

50
70

90
110

130
150

170
190

210
230

250
270

290

Tim
e (s)

Tuples in Memory

FIFO
MTIQ
RRChain

0

10000

20000

30000

40000

50000

60000

70000

10
30

50
70

90
110

130
150

170
190

210
230

250
270

290

T
im

e
 (s)

Average Tuple Delay in
query plan (ms)

FIFO
M

TIQ
R

R
C

hain

F
ig

u
re

4.P
erfo

rm
an

ce
o

f
sch

ed
u

lin
g

alg
o

rith
m

s
w

ith
a

tw
o

-stream
q

u
ery

p
lan

.

operators
thathave

the
largestqueue

in
the

query
plan.

T
hus

itis
no

surprise
thatthese

tw
o

algorithm
s

are
excellent

atreducing
m

em
ory

usage.
H

ow
ever

w
e

see
very

different
results

w
hen

observing
how

w
ellthe

algorithm
s

perform
w

hen
it

com
es

to
the

average
tuple

delay.
M

T
IQ

and
C

hain
end

up
being

the
tw

o
w

orstperform
ers

by
the

end
ofexecution.

F
IF

O
,w

hich
w

as
only

m
ediocre

w
hen

considering
the

m
em

ory
requirem

ent,actually
does

quite
w

ellkeeping
the

average
tuple

delay
to

a
m

inim
um

.
O

verall
w

e
observe

from
F

igure
4

that
no

one
algorithm

has
a

clear
advantage.

M
T

IQ
and

C
hain

com
pete

for
the

best
results

in
m

em
ory

consum
ption,

w
hile

R
R

,C
hain

and
F

IF
O

com
pete

for
the

best
results

for
average

tuple
delay.

T
he

key
idea

that
can

be
deduced

from
this

is
that

w
e

should
be

using
the

best
algorithm

available
ata

given
tim

e
to

aim
to

optim
ize

the
Q

oS
requirem

ents.
T

his
is

a
key

principle
exploited

by
our

solution
outlined

below
.

5
A

daptive
Scheduling

F
ram

ew
ork

D
etails

T
he

adaptive
scheduler

selector
w

ill
periodically

evaluate
the

current
scheduler’s

perform
ance

for
the

speci-
fied

Q
oS

requirem
ents

and
com

pare
this

w
ith

the
other

schedulers’
perform

ance.
T

his
qualitative

com
parison

is
based

upon
assigning

a
fitness

score
[12

]to
each

scheduler
thatcaptures

how
w

ellitperform
ed

in
severalm

etrics
including

throughput,
m

em
ory

size,outputrate,etal.
relative

to
the

other
algorithm

s.
W

e
assum

e
thatw

e
have

no
a

prioriknow
ledge

aboutthe
relative

strengths
and

w
eaknesses

ofthe
setofschedul-

ing
algorithm

s
m

ade
available

to
us.

Instead,
our

system
aim

s
to

em
pirically

learn
the

behavior
ofthe

algorithm
s

over
tim

e.
W

e
note

that
each

scheduling
algorithm

’s
perform

ance
can

fluctuate
w

ildly
as

the
data

arrival
characteristics

change
as

seen
in

F
igure

4.
F

or
exam

ple,one
algorithm

m
ay

perform
very

w
ellin

a
stable

system
,butbreak

dow
n

precipitously
during

periods
ofbursty

arrival.
T

here
w

ere
severalchallenges

associated
w

ith
creating

an
adaptive

scheduling
fram

ew
ork

thatsolves
the

afore-
m

entioned
problem

s.
F

irst,
a

function
needs

to
be

developed
such

that
it

can
quantify

how
w

ell
a

algorithm
is

perform
ing

for
a

particular
Q

oS
m

etric.
T

he
scoring

function
needs

to
allow

the
individual

Q
oS

m
etrics

to
be

w
eighed

for
relative

im
portance

and
norm

alize
the

collected
statistics

for
those

m
etrics

such
that

one
algorithm

8

can be ranked against another.
Second, the adaptive scheduling framework needs to be able to intelligently choose the next scheduling algo-

rithm. It must be able to weigh the benefits of choosing an alternate algorithm vs. staying with the current one.
Because of this the Adaptive Heuristic needs to be carefully chosen such that it favors the well-performing (relative
to QoS requirements) algorithms, but still allows the other algorithms to be periodically explored.

5.1 Quality of Service Requirements

Our system allows for the system administrator to specify the desired execution behavior as a composition of
several possible goals. A QoS requirement consists of three components: the statistic, quantifier, and weight.
The statistic corresponds to the requirement that is to be controlled. The quantifier, either maximize or minimize,
specifies what the administrator wants to do with this preference. The weight is the relative importance of each
requirement, with the sum of all weights equal to 1. We combine all of the QoS requirements into a single set
called a QoS specification. This specification is made so we can generalize how we want the system to perform
overall. Table 2 shows an example QoS specification. Here, the administrator has specified that the system should
give highest priority to minimizing the queue size and next highest to maximizing the throughput.

Table 2. An example QoS specification
Statistic Quantifier Weight
Input Queue Size minimize 0.75
Output Rate maximize 0.25

QoS requirements are a key concept in our system. They guide the adaptive execution by encoding a goal that
the system should pursue. Without these preferences, the system will not have any benchmark to determine how
well or poorly a scheduler is performing. It is important to note that the requirements specify the desired behavior
in relative terms. That is, the QoS is not specified for an absolute performance goal (i.e., achieve an output rate
of X tuples per sec or have no more than Y tuples in the query plan at once), but rather specifies that the system
should aim to maximize the output rate or minimize queue size. Absolute requirements are too dependent on data
arrival patterns and thus may not be achievable.

5.2 Scoring the Statistics

During execution, the Execution Controller will update the statistics that are related to the QoS requirements.
Once these statistics have been updated, the system needs to decide how well the previous scheduler,Sold, has
performed, and compare this performance to the other scheduling algorithms. Thereafter a decision is made to
determine how to continue execution. To accomplish this, the system calculates the mean (µH) and the spread of
the values (maxH −minH) of each of the statistics specified in the service preferences for the historical category,
H. Next, using the statistics fromSold the meanµS of each of the statistics is calculated. Finally, eachµS is
normalized according to the formula in Equation 1. This normalizes each value in the [−0.5, 0.5] range.

zi =
(µS − µH)

maxH − minH
decaytime + 0.5 (1)

A decay parameter is used to exponentially decay old and out-of-date data to give a higher priority to those
algorithms which were run most recently. This data is the most relevant to the current state of the system. The
decay is calculated by raising thedecay parameter(0 <decay< 1) to a time relative to the start of the query
execution.

9

5.3 Scoring Scheduling Algorithms

Next we compute a scheduler’s overall score,scheduler score, by combining the relative performance for all
of the QoS metrics in the QoS specification.

In Equation 2, each of the normalized values computed by Equation 1 is multiplied by its corresponding weight
wi. The quantifier from the requirement is used to determine if we wish to maximize or minimize the QoS metric.
If the quantifier is to maximize, we will usezi. If the quantifier is to minimize, we use−zi.

scheduler score =
I∑

i=0

(zi)(wi) (2)

Finally by comparingSold’s scheduler score with the scores for all of the other algorithms (that have run so
far), the adapter is in a position to select the next scheduling candidate. Notice that this calculation is very cheap.
We are able to use a simple Radix sort to rate each algorithm in linear time. Section 5.5 describes the heuristic in
which an algorithm is selected.

Analysis. Equation 2 gives a better score to QoS requirements with a high weight and a highz value from
Equation 1. It maps each scheduler’s score for each statistic to a value between 0 and 1 to allow for a fair
comparison among different statistics. The weighed sum will also yield a value between 0 and 1 for each scheduler.
In our case, we want a complete set of statistic values for one scheduler to map a complete set of statistics for a
scheduler into a single value that could be compared against another set.

The score assigned to an algorithm is not based solely on the previous time that it was used, but rather it is an
aggregate over time. While the performance of an algorithm is largely coupled to the characteristics of the data,
over time the score of the algorithm should reflect its true potential. Therefore, the system is capable of handling
reasonable fluctuations in the characteristics of the arriving data.

5.4 Scheduling Observations

Several observations must be considered when using the scores to determine the next scheduling algorithm:

1. Initially, all scheduling algorithms should be given a chance to “prove” themselves, otherwise the decision
would be biased against the algorithms that did not yet run. Therefore, at the beginning of execution, we
want to allow some degree of exploration on the part of the adapter. However, if the query is relatively short
running, allowing too much exploration will prevent the adapter from doing its job.

2. Not switching algorithms periodically during execution (i.e., greedily choosing the next algorithm to run)
could result in a poor performing algorithm being run more often than a potentially better performing one.
Hence, we have to periodically explore alternate algorithms.

3. Switching algorithms too frequently could cause one algorithm to impact the next and skew the latter’s
results. For example, using Chain as described in Section 4.1 could cause a glut of tuples in the input queues
of the lower priority operators. If MTIQ (Section 4.1) were to be run, its throughput would initially be
artificially inflated because of the way Chain operated on the tuples. If we switched to another algorithm
soon after, the z-score from Equation 1 for the throughput would be skewed. More generally, when a
new algorithm is chosen, it should be used for enough time such that its behavior is not significantly over-
shadowed by the previous algorithm.

10

σ = 0.97
t = 1.6

σ = 0.9
t = 4

σ = 1.0
t = 1.8

Op 1Op 2Op 3Op 4

σ = 0.11
t = 0.2D

at
a

S
tr

ea
m

(a) Query Plan 1

σ = 0.5
t = 0.5

σ = 0.9
t = 4

σ = 1.0
t = 3.0

Op 1Op 2Op 3

Op 4

σ = 0.2
t = 0.25D

at
a

S
tr

ea
m

 1

σ = 0.2
t = 0.25D

at
a

S
tr

ea
m

 2

Op 5

(b) Query Plan 2

Figure 5. Query Plans used in Experimentation.

5.5 Adapting Scheduling Selection

After each algorithm has been given a score based on its performance, the system needs to decide if the cur-
rent scheduling algorithm performed well enough that it should be used again or if better performance could be
achieved by changing algorithms. Considering Observation 1 above, initially running each algorithm in a round
robin fashion is the fairest way to start the adaptive scheduling.

Once each algorithm has had a chance to run, there are various heuristics that could be applied here to determine
if it would be beneficial to change the scheduling algorithm. The heuristics are divided into two groups. The first
group will simply choose the best suited algorithm using the equations described above, while the second group
will eliminate poor performing algorithms. The idea behind eliminating poor performing algorithms is that if an
algorithm has performed worse than all other algorithms for quite some time, there is no need to consider it any
longer as its chance to be scheduled in the near future is low. This heuristic cannot be too hasty in removing any
algorithm from consideration because stream characteristics could be the cause of poor performance for any one
algorithm.

In an effort to consider all scheduling algorithms while still probabilistically choosing the best fit we adopted
the Roulette Wheel strategy [12]. This strategy assigns each algorithm a slice of a circular “roulette wheel”
with the size of the slice being proportional to the individual’s score. This strategy is also referred to as “fitness
proportion selection”[12]. Then the wheel will be spun once and the algorithm under the wheel’s marker is
selected to run next. This strategy was chosen for this framework because it is very lightweight, and does not
cause significant overhead. In spite of its simplicity, this strategy is sufficient to significantly outperform single
scheduling strategies, as we will see in Section 6.

This strategy may initially choose poor scheduling algorithms, but over time should fairly choose a more fit
algorithm. The strategy also allows for a fair amount of exploration and thus it prevents one algorithm from
dominating.

6 Experimental Evaluation

6.1 Experimental Setup

In this section we briefly discuss our experimental test bed and the results of our adaptive framework. Our
goal was to compare our adaptive framework against other scheduling algorithms, including Round Robin, Chain,
FIFO, and MTIQ.

We used data from the Internet Traffic Archive [10] as our data set. This data was used to represent the contents
of real streaming data. The arrival rates of the streams were set to have a random pattern using poisson distri-
bution. The streams were steady at times, and rather bursty at other times. These streams are sent across a 10

11

5 10 15 20 25 30

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
Tim

e (s)

Tuples in memory

A
daptive

FIFO
M

TIQ
RRChain

0

100

200

300

400

500

600

700

800

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29

Tim
e (s)

Average Tuple delay in query
plan (ms)

A
daptive

FIFO
M

TIQ
R

R
C

hain

F
ig

u
re

6.O
p

tim
izin

g
q

u
ery

execu
tio

n
w

ith
o

n
e

Q
o

S
req

u
irem

en
t.

B
aseT

LA
N

to
show

how
C

A
P

E
w

illrespond
to

receiving
data

from
a

rem
ote

source
rather

than
locally

generated
data.

T
he

stream
rates

w
ere

adjusted
using

custom
built

S
tream

S
ources

that
w

ould
generate

data
w

ith
different

poisson
m

eans
every

5
seconds.

T
his

w
as

done
to

show
thatunder

both
steady

and
bursty

conditions,
the

adaptive
fram

ew
ork

could
respond

w
ith

good
experim

entalresults.
Tw

o
query

plans
w

ere
used

in
the

experim
ental

results
in

this
paper.

T
hese

plans
w

ere
selected

as
a

basis
to

com
pare

published
algorithm

s
such

as
C

hain[2
].

T
he

query
plans

are
m

ade
up

of
“m

ega-operators”
w

hich
run

for
longer

periods
oftim

e
than

a
typicalquery

operator,
but

allow
us

to
m

ore
closely

observe
how

the
scheduling

algorithm
s

process
data.

T
he

firstquery
plan

is
a

sim
ple

query
plan

w
ith

four
m

ega-operators.
T

he
second

query
plan

utilizes
a

w
indow

join
operator

[9
]

w
ith

a
w

indow
of

200m
s.

T
hat

is,
any

tuples
that

are
received

w
ithin

200m
s

ofeach
other

are
evaluated

in
the

join
predicate

ofthe
operator.

T
he

query
plans

are
show

n
in

F
igure

5
w

ith
selectivity

denoted
by(σ)

and
average

tuple
processing

tim
e

by
(t).

O
ur

system
aim

ed
to

optim
ize

up
to

three
Q

oS
requirem

ents:
average

outputrate,average
tuple

delay,and
aver-

age
m

em
ory

size
(S

ection
5.1).

T
hese

requirem
ents

w
ere

selected
for

experim
entation

because
each

requirem
ent

is
vastly

differentand
no

one
scheduling

algorithm
can

optim
ize

for
such

different
requirem

ents.

6.2
D

irect
C

om
petition

w
ith

P
ublished

Scheduling
A

lgorithm
s

T
he

firstexperim
entused

a
Q

oS
specification

w
ith

only
one

requirem
ent.

T
his

w
as

done
to

dem
onstrate

thatthe
adaptive

fram
ew

ork
can

pick
an

optim
alscheduling

algorithm
even

for
only

one
requirem

ent.
F

igure
6(a)

show
s

that
the

adaptive
fram

ew
ork

does
exceptionally

w
ellat

selecting
algorithm

s
to

keep
tuples

in
m

em
ory

dow
n.

In
fact,atm

any
tim

es
the

fram
ew

ork
outperform

s
every

single
scheduling

algorithm
in

term
s

ofm
em

ory.
In

F
igure

6(b)
w

e
can

see
that

the
adaptive

fram
ew

ork
outperform

s
all

individual
scheduling

algorithm
s.

It
can

outperform
the

other
algorithm

s
by

leveraging
their

relative
strengths.

Itw
as

observed
thatM

T
IQ

can
exploit

queue
buildups

caused
by

F
IF

O
.

A
s

F
IF

O
begins

execution,
a

buildup
of

tuples
is

created
at

the
leaf

operator.
S

ince
there

is
a

buildup
in

tuples
at

the
leaf

operator
M

T
IQ

is
selected

(at
tim

e
t=

7)
and

progresses
the

tuples
through

the
query

plan.
F

IF
O

is
then

selected
again

(attim
e

t=
21)

as
older

tuples
w

ere
stillin

the
query

plan
that

12

100

200

300

400

500

600

700

800

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
Tim

e (s)

Average Tuple delay in
query plan (ms)

A
daptive

FIFO
M

TIQ
RRChain

0.075

0.125

0.175

0.225

0.275

0.325

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29

Tim
e (s)

Average Tuple Output
Rate (Tuples/ms)

A
daptive

FIFO
M

TIQ
RRChain

F
ig

u
re

7.
O

p
tim

izin
g

q
u

ery
execu

tio
n

w
ith

tw
o

Q
o

S
req

u
irem

en
ts.

70%
fo

cu
s

o
n

m
in

im
izin

g
tu

p
le

d
elay,an

d
30%

fo
cu

s
o

n
m

axim
izin

g
o

u
tp

u
trate

(Q
u

ery
P

lan
1)

needed
to

be
processed.

6.3
R

eaction
to

C
hanging

Q
oS

Specifications

F
or

our
second

set
of

experim
ents,

w
e

show
how

the
adaptive

fram
ew

ork
reacts

to
a

Q
oS

specification
w

ith
tw

o
requirem

ents.
W

e
have

tw
o

goals
in

this
set

of
experim

ents.
F

irst
w

e
w

ould
like

to
show

that
if

w
e

change
the

im
portance

ofa
Q

oS
requirem

ent,
the

fram
ew

ork
w

illacknow
ledge

this
and

adaptaccordingly.
S

econdly
itis

im
portantthatthe

fram
ew

ork
perform

s
w

ellin
both

Q
oS

requirem
ents.

In
F

igure
7

w
e

depict
the

results
for

an
experim

ent
for

w
hich

w
e

place
70%

im
portance

on
tuple

delay
and

a
30%

im
portance

on
outputrate.

H
ere

w
e

observe
thatthe

adaptive
fram

ew
ork

outperform
s

single
algorithm

s
w

ith
respectto

average
tuple

delay,and
perform

s
aboutaverage

w
ith

respectto
the

average
outputrate.

F
igure

8
show

s
our

perform
ance

w
hen

w
e

adjust
the

percentage
of

the
w

eights
to

70%
focus

on
m

axim
izing

outputrate,and
30%

focus
on

m
inim

izing
tuple

delay.
W

e
observe

thatw
ith

the
change

in
service

requirem
ent,the

adaptive
fram

ew
ork

stilldoes
exceptionally

w
ellat

m
inim

izing
tuple

delay,
and

im
proves

significantly
at

raising
the

average
tuple

output
rate.

T
his

show
s

that
the

adaptive
fram

ew
ork

can
adapt

accordingly
to

varying
Q

oS
requirem

ents,
and

also
provide

significantim
provem

ents
ofsingle

scheduling
algorithm

s.
W

e
w

illnow
consider

the
case

of
having

tw
o

equally
im

portant
Q

oS
requirem

ents.
F

igure
9

show
s

the
perfor-

m
ance

of
the

adaptive
fram

ew
ork

w
ith

an
equalfocus

on
average

output
rate

and
average

tuple
delay.

W
e

m
ake

tw
o

observations
from

these
charts.

F
irst,

clearly
there

is
no

single
optim

alscheduling
algorithm

,
as

each
algo-

rithm
exhibits

varying
perform

ance
throughout

execution.
S

econd,
our

adaptive
fram

ew
ork

is
able

to
outperform

allsingle
scheduling

algorithm
s

for
the

duration
ofexecution,on

average.

13

100

200

300

400

500

600

700

800

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29

Tim
e (s)

Average Tuple delay in
query plan (ms)

A
daptive

FIFO
M

TIQ
R

R
C

hain

0.075

0.125

0.175

0.225

0.275

0.325

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29

Tim
e (s)

Average Tuple Output Rate
(Tuples/ms)

A
daptive

FIFO
M

TIQ
R

R
C

hain

F
ig

u
re

8.
O

p
tim

izin
g

q
u

ery
execu

tio
n

w
ith

tw
o

Q
o

S
req

u
irem

en
ts.

30%
fo

cu
s

o
n

m
in

im
izin

g
tu

p
le

d
elay,an

d
70%

fo
cu

s
o

n
m

axim
izin

g
o

u
tp

u
trate

(Q
u

ery
P

lan
1)

6.4
A

daptive
F

ram
ew

ork
w

ith
M

ulti-F
aceted

Q
oS

Specifications

In
our

final
set

of
experim

ents
w

e
com

pared
the

perform
ance

of
the

adaptive
fram

ew
ork

against
the

single
scheduling

algorithm
s

w
ith

a
Q

oS
specification

ofthree
requirem

ents.
In

this
exam

ple
each

requirem
ent

(average
tuple

delay,average
outputrate,and

average
tuples

in
m

em
ory)

w
as

each
given

equalw
eight.

In
F

igure
10

w
e

can
see

thatthe
adaptive

fram
ew

ork
again

perform
s

w
ellunder

allthree
Q

oS
requirem

ents.
T

he
biggestim

provem
ents

are
average

tuple
delay

and
the

num
ber

oftuples
in

m
em

ory,w
here

the
adaptive

fram
ew

ork
significantly

im
proves

upon
practically

allsingle
scheduling

algorithm
s.

6.5
E

xperim
entalR

ecap

In
the

above
section

w
e

have
presented

how
the

adaptive
fram

ew
ork

boosts
overallperform

ance
ofquery

plan
execution

in
the

continuous
query

system
.

In
m

ost
cases,

the
adaptive

fram
ew

ork
perform

s
exceptionally

better
than

any
single

algorithm
alone.

In
allother

cases,
the

adaptive
fram

ew
ork

perform
s

at
least

above
average

w
ith

respect
to

the
single

algorithm
s.

T
he

fram
ew

ork
also

adapts
w

ell
to

changing
service

requirem
ents.

W
hen

the
focus

shifts
to

a
particular

requirem
ent

the
fram

ew
ork

is
able

to
adjust

to
this

and
act

accordingly.
O

verall
the

adaptive
fram

ew
ork

greatly
im

proves
both

the
perform

ance
and

flexibility
ofthe

continuous
query

system
.

7
R

elated
W

ork

T
here

is
a

recent
surge

of
ongoing

research
in

the
field

of
executing

queries
over

stream
ing

data.
[3][16

][14
]

provide
a

com
prehensive

overview
of

the
challenges

of
executing

queries
in

a
stream

environm
ent.

M
ost

closely
related

to
ours

is
thatofS

T
R

E
A

M
[3]and

A
urora

[7].
T

he
S

T
R

E
A

M
[3]

project’s
goalis

to
“m

anage
resources

carefully,
and

to
perform

approxim
ation

in
the

face
of

resource
lim

itations
in

a
flexible,

usable,
and

principled
m

anner.”
S

T
R

E
A

M
focuses

on
efficiently

allocating

14

0.07

0.09

0.11

0.13

0.15

0.17

10
30

50
70

90
110

130
150

170
190

210
230

250
270

290

Tim
e (s)

Output Rate (Tuples/ms)

A
daptive

FIFO
M

TIQ
RRChain

0

10000

20000

30000

40000

50000

60000

70000

10
30

50
70

90
110

130
150

170
190

210
230

250
270

290

Tim
e (s)

Average Tuple Delay in
query plan(ms)

A
daptive

FIFO
M

TIQ
R

R
C

hain

F
ig

u
re

9.
O

p
tim

izin
g

q
u

ery
execu

tio
n

w
ith

tw
o

Q
o

S
req

u
irem

en
ts.

50%
fo

cu
s

o
n

m
in

im
izin

g
tu

p
le

d
elay,an

d
50%

fo
cu

s
o

n
m

axim
izin

g
o

u
tp

u
trate

(Q
u

ery
P

lan
2)

m
em

ory
to

queues,
synopses,

and
operators

by
m

aking
use

ofstream
constraints

and
the

C
hain

[2
]scheduling

al-
gorithm

.
S

T
R

E
A

M
also

provides
techniques

to
bestapproxim

ate
the

query
resultusing

various
static

and
dynam

ic
techniques

such
as

reducing
w

indow
sizes.

S
T

R
E

A
M

differs
from

our
w

ork
in

the
follow

ing
w

ays.
F

irst,
S

T
R

E
A

M
only

supports
one

scheduling
al-

gorithm
,

nam
ely

C
hain.

T
he

C
hain

scheduler
does

not
consider

Q
oS

specifications
such

as
m

axim
izing

tuple
throughput

or
m

inim
izing

overall
response

tim
e.

W
hile

C
hain

is
an

ideal
strategy

for
m

inim
izing

interm
ediate

queue
sizes,

it
is

not
as

effective
in

other
Q

oS
requirem

ents.
In

our
w

ork,
if

a
scheduling

algorithm
starves

or
is

ill-perform
ing,

w
e

are
able

to
choose

an
alternative

algorithm
that

w
illbe

able
to

m
ore

closely
m

eet
the

desired
Q

oS
specification.

C
hain

is
an

idealalgorithm
for

our
fram

ew
ork

because
w

e
can

exploitits
advantages

w
henever

the
Q

oS
requirem

ents
allow

us
to

do
so.

A
urora

[7]
aim

s
to

reduce
tuple

execution
costs

w
hile

m
axim

izing
overall

Q
oS

goals.
T

hey
accom

plish
this

by
first

having
queues

collect
as

m
any

tuples
as

possible
w

ithout
processing

and
then

the
operator

processes
all

tuples
atonce

generating
a

train
ofdata.

T
he

benefitis
thattuples

passed
to

subsequentoperators
do

nothave
to

go
to

disk.
A

urora
allow

s
the

adm
inistrator

to
input

a
graph

to
define

an
acceptable

Q
oS

.A
urora

takes
into

account
several

different
Q

oS
m

etrics
such

as
response

tim
es,

tuple
drops,

and
im

portance
of

values.
It

also
allow

s
for

arbitrary
com

positions
to

be
created,sim

ilar
to

our
Q

oS
specifications.

T
his

differs
from

our
w

ork
in

that
A

urora
m

akes
use

of
one

dynam
ic

scheduling
algorithm

as
opposed

to
using

different
algorithm

s
to

try
to

im
prove

system
perform

ance.
W

hile
A

urora
also

focuses
on

m
aintaining

adm
inistrator-specified

Q
oS

requirem
ents,

the
key

difference
is

the
w

ay
that

Q
oS

is
inputted

into
the

system
.

A
urora

requires
a

convex
graph

to
allow

the
adm

inistrator
to

specify
the

specify
the

“quality”
given

an
absolute

perform
ance

m
etric,

such
as

tuple
delay,

or
tuple

values.
T

his
has

proven
to

be
very

effective,
since

A
urora

uses
tuple

shedding
w

hen
the

perform
ance

degrades
significantly.

In
C

A
P

E
w

e
specify

a
Q

oS
set

as
a

linear
function

of
each

Q
oS

and
its

relative
w

eight
in

the
system

.
R

ather
than

trying
to

obtain
an

absolute
perform

ance,
w

e
aim

to
perform

as
w

ellas
w

e
can

given
the

current
system

state.
T

his
is

also
easier

for
the

adm
inistrator

creating
the

Q
oS

set
because

they
do

not
need

to
know

absolute
values

to
create

graphs.
T

hey
can

input
w

hat
requirem

ents

15

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

10
30

50
70

90
110

130
150

170
190

210
230

250
270

290

Tim
e (s)

Output Rate (Tuples/ms)

A
daptive

FIFO
M

TIQ
R

R
C

hain

0

10000

20000

30000

40000

50000

60000

70000

10
30

50
70

90
110

130
150

170
190

210
230

250
270

290

T
im

e
 (s)

Average Tuple Delay in
query plan (ms)

A
daptive

FIFO
M

TIQ
R

R
C

hain

0

10000

20000

30000

40000

50000

10
30

50
70

90
110

130
150

170
190

210
230

250
270

290

Tim
e (s)

Tuples in Memory

Adaptive
FIFO
MTIQ
RRChain

F
ig

u
re

10.O
p

tim
izin

g
q

u
ery

execu
tio

n
w

ith
th

ree
eq

u
alQ

o
S

req
u

irem
en

ts
(Q

u
ery

P
lan

2)

they
w

antto
perform

w
ell,relative

to
other

requirem
ents

in
the

system
.

Telegraph
[15

][11
]

is
another

adaptive
query

system
that

m
akes

use
of

E
ddies

[1]
to

adapt
execution

for
each

tuple.
E

ddies
uses

a
lottery-type

scheduler
to

route
tuples

to
an

operator
that

w
ill

need
to

eventually
process

the
tuple.

T
he

goalis
to

prevent
tuples

from
w

aiting
in

input
queues

for
a

slow
operator

to
be

ready
to

process
them

.
[15

]
extended

the
previous

E
ddies

w
ork

by
providing

support
for

queries
over

stream
ing

data.
T

his
level

of
adaption

is
m

uch
finer

com
pared

to
w

hat
is

used
in

our
w

ork.
O

ur
w

ork
instead

is
m

ore
com

parable
w

ith
the

”traditional”
notion

of
a

query
plan

(and
thus

m
aintains

interm
ediate

data
in

queues)
as

adapted
by

all
stream

system
s

besides
Telegraph,

including
S

T
R

E
A

M
,A

urora
and

N
iagaraC

Q
.

E
ddies

does
not

allow
for

Q
oS

m
etrics

to
be

specified,rather
itfollow

s
its

hard
coded

optim
ization

goal.
N

iagara
[13

]is
a

continuous
query

system
thatuses

X
M

L
as

data
form

at.
N

iagara
focuses

on
efficiently

sharing
processing

betw
een

large
am

ounts
ofcontinuous

queries.
N

o
w

ork
on

scheduling
has

been
reported

to
date.

R
ate-based

stream
scheduling

in
[19

]
deals

w
ith

ordering
the

execution
of

input
stream

s
so

that
the

stream
w

ith
the

highest
output

rate
w

ill
have

a
higher

priority,
and

thus
w

ill
be

executed
m

ore
often.

T
he

goal
is

to
produce

tuples
as

quickly
as

possible
(m

axim
ize

throughput).
T

hey
consider

cases
w

here
the

tuples
have

equal
and

nonequalim
portance.

8
C

onclusion

In
this

paper,
w

e
proposed

a
novel

scheduling-strategy
selection

fram
ew

ork
that

leverages
the

strengths
of

individualscheduling
strategies

to
m

eetthe
arbitrary

com
positions

ofQ
oS

requirem
ents.

O
ur

fram
ew

ork
uses

the
recent

perform
ance

of
each

algorithm
in

determ
ining

how
to

best
adapt

given
the

system
’s

current
state.

U
sing

a
lottery

based
heuristic,an

algorithm
is

selected
based

on
its

likeliness
to

succeed
based

this
recorded

perform
ance.

W
e

have
found

thatnotonly
w

as
ouradaptive

fram
ew

ork
able

to
significantly

im
prove

perform
ance

fora
com

bi-
nation

ofQ
oS

requirem
ents,butitw

as
also

able
to

reactto
requirem

ents
as

they
changed

overtim
e.

T
he

fram
ew

ork
w

as
also

able
to

succeed
w

here
existing

scheduling
algorithm

s
w

ould
failbecause

oftheir
one-dim

ensionalnature.
A

s
a

result,
our

technique
w

as
able

to
aid

severalhighly
tuned

algorithm
s,

such
as

C
hain

[2],
in

areas
w

here
the

algorithm
w

ould
norm

ally
notproduce

satisfactory
results.

In
addition,

our
extension

is
generaland

com
plim

entary
to

typicalsystem
s

such
as

A
urora

or
S

T
R

E
A

M
.T

his

16

framework could easily be plugged into these existing systems. Thus the benefit of these ideas could be far
reaching for Continuous Query Systems.

As ongoing work, we will study further ways to make the framework more flexible. We are currently working
on creating a distributed continuous query engine that will be able to handle even larger volumes of data and query
plans. Finally, another area of future work will be to study how a QoS specification can be defined for individual
queries or sub-queries to improve performance at a more fine-grained level.

References

[1] R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing. InACM SIGMOD, pages
261–272. ACM Press, 2000.

[2] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain: operator scheduling for memory minimization in
data stream systems. InACM SIGMOD, pages 253–264. ACM Press, 2003.

[3] Brian Babcock, Shivnath Babu, Mayur Datar, et al. Models and issues in data stream systems. InACM
SIGMOD-SIGACT-SIGART, pages 1–16. ACM Press, 2002.

[4] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system for internet
databases. InACM SIGMOD, pages 379–390, May 2000.

[5] D. Abbadi, D. Carney, U. Cetintemel, et al. Aurora: A new model and architecture for data stream manage-
ment.VLDB Journal, pages 120–139, 2003.

[6] D. Carney and U. Cetintemel and A. Rasin et al. Operator scheduling in a data stream manager. InVLDB,
pages 838–849, 2003.

[7] D. Carney, U. Cetintemel, M. Cherniack, et al. Monitoring streams: A new class of data management
applications. InVLDB, pages 215–226, 2002.

[8] A. Dan and D. Towsley. An approximate analysis of the lru and fifo buffer replacement schemes. InACM
SIGMETRICS, pages 143–152. ACM Press, 1990.

[9] L. Golab and M. T. Ozsu. Processing sliding window multi-joins in continuous queries over data streams. In
VLDB, pages 500–511, September 2003.

[10] Internet Traffic Archive. http://www.acm.org/sigcomm/ITA/, 2003.

[11] S. Madden and M. J. Franklin. Fjording the stream: An architecture for queries over streaming sensor data.
In ICDE, pages 555–566, 2002.

[12] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1999.

[13] J. F. Naughton, D. J. DeWitt, D. Maier, et al. The niagara internet query system.IEEE Data Engineering
Bulletin, 24(2):27–33, 2001.

[14] R. Motwani and J. Widom and A. Arasu, et al. Query processing, resource management, and approximation
in a data stream management system. InCIDR, pages 245–256, 2003.

[15] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, et al. Continuously adaptive continuous queries over
streams. InACM SIGMOD, pages 49–60, New York, NY 10036, USA, 2002. ACM Press.

[16] R. Stephens. A survey of stream processing.Acta Informatica, 34(7):491–541, 1997.

17

[17] M. Sullivan and A. Heybey. Tribeca: A system for managing large databases of network traffic. InUSENIX,
pages 13–24, Berkeley, USA, June 15–19 1998. USENIX Association.

[18] P. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation semantics in continuous data streams.
IEEE TKDE, 15(3):555–568, 2003.

[19] T. Urhan and M. J. Franklin. Dynamic pipeline scheduling for improving interactive query performance. In
VLDB, pages 501–510, Los Altos, CA 94022, USA, 2001.

[20] J. Zahorjan and C. McCann. Processor scheduling in shared memory multiprocessors. InACM SIGMETRICS,
pages 214–225. ACM Press, 1990.

[21] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman. Dynamic plan migration for continuous queries over data
streams. InACM SIGMOD, June 2004, to appear.

18

