WPI-CS-TR-04-13 May 2004

Exploiting Flow Relationships to Improve Performance
Networked Applications

by

Hao Shang
Craig E. Wills

) of

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Abstract

The use of networked applications on the Internet is inangasoth in the number of ap-
plications and the amount of network flow traffic they germrathese applications include
the Web, streaming media, games, peer-to-peer and griduorgpvhere each application
generates its own network flow dynamics between nodes imtieeniet. A single application
often causes other network flows, such as DNS and autheoticatpart from those that it
generates directly. With the ever-increasing number aridtyaof network applications avail-
able, an interesting, but unexplored direction for rede@gaunderstanding the relationships
among network flows between hosts and sites on the Interdeh@m these relationships can
be exploited for improved application performance.

In this work, we present results on the degree to which wmratips between network
flows exist between host and site pairs. We go on to studyioekitips for flows of specific
network applications. We use these relationships as a tmgigpose a new approach for
packet transmission using an “active network layer” whexekpet transmissions from respec-
tive transport layer protocols are passed down to this ectetwork layer with a deadline
for transmission. The inclusion of a deadline allows thevoek layer to perform real-time
scheduling from a pool of packets and to encapsulate melllgds-than-full packets into the
same transmitted frame thus exploiting concurrent flowtiaahips while not introducing
additional frames that need to be routed. The availabilftyhts network layer also allows
the possibility of speculative packet transmission whesséhpackets can be combined with
other network traffic for improved reliability of applicatis without introduction of additional
transmitted frames.

1 Introduction

With an increasing number and variety of networked appbeaton the Internet there is oppor-
tunity to examine the relationships between the networkdlofvthese applications to improve
network and application performance. In this work we stuay telationships among network
flows between hosts and between clusters of hosts.

We define dlow as the collection of all packets over a period of time usirggghme transport
protocol (e.g. TCP, UDP) between source and destinatiots lndsere all packets share the same
source and destination port. For a TCP flow, it is normallyrizted by SYN and FIN/RST packets.
For flows of other types including UDP, the end of a flow is dedidvhen a period of idle time (we
use five minutes in our experiment) is observed. To faoditatr study, we define a flow to include
traffic in both directions.

We define arelationshipto exist between two flows if the flows exhibit temporal pro#ym
within the same scope. The scope may either be between tw®drdsetween two clusters of hosts
where aclusteris the set of hosts at a site sharing the same end router. Wesdefelationship
to beconcurrentif the beginning of a flow coincides with an active flow in thereascope. We
define a relationship to beequentialf the beginning of a flow follows a recently concluded flow
in the same scope.

Relationships occur between the flows of networked apptioatfor a number of reasons:

1. Application behavior. One example of a host-to-host corent relationship is when a
streaming application creates separate network conmsctoy control and data flow. An-
other example of a cluster-to-cluster sequential relatigmis when the application network
flow is preceded by a DNS (Domain Name System) lookup causimegvaork flow between
a local DNS server and a remote authoritative DNS server.

2. Contentrelationships. An example is when multiple sera¢a Web site serve content for a
page leading to concurrent cluster-to-cluster networkdlasien a Web browser downloads
the page content.

3. User behavior. Cluster-to-cluster relationships oeduen multiple users at a site are inter-
acting with the same remote server such as playing a netwamlegising the same game
server.

With these definitions of relationships and enumeratedscasgeere they exist, we study the
extent that flow relationships are observed in current nstiraffic and measure the flow rela-
tionships of specific networked applications. In light oésle relationships and the fact that 70-
90% [25, 8] packets are smaller in size than the MTU (maximmamgmission unit) of the network,
we propose a novel approach to change how network trangmisscurrently done. We explore
the introduction of an “active network layer” where packansmissions from respective transport
layer protocols are passed down to this active network leytéra deadline for transmission. The
inclusion of a deadline allows the network layer to perfoeal#time scheduling from a pool of
packets and to encapsulate multiple less-than-full packet the same transmitted frame thus
exploiting concurrent flow relationships and reducing tbeber of frames to be routed.

Such an active network layer could be used for transmis$iehseen two hosts or could be
used to pool all packets for transmission from one clusteartother. The availability of this

network layer also allows the the possibility of speculapacket transmission when these packets
can be combined with other network traffic to the same destim&ost or cluster. The possibility
of piggybacking additional packets on existing traffic aff®applications the capability of sending
duplicate copies of important packets for better reliayili

As part of presenting this approach, we describe specifimples of how this approach can
reduce the number of round trips between sender and recesneove packet exchanges from the
critical path of application response, and improve thalelity of network applications. We go on
to describe the current status of this work. We conclude @idliscussion of related work that has
used techniques to exploit flow relationships and finish awitummary of our work to date.

2 Existence of Flow Relationships

Our initial work examined the extent to which relationshigsst among network flows between
the same hosts and the same clusters. For this work we usedttbéhosts on the WPI campus
as a cluster and obtained logs of network flow data to and fle\WPI campus network for a
full day on July 7, November 30 and December 17, 2003. Theampls [1] was used to trace IP
packets and combine these packets into flows based on conmwsgmpbrt and transport protocol.
For the analysis we focused on TCP and UDP flows with roughfp &® these flows for TCP
traffic. The July log was collected during summer vacatiod eontained only 3.9 million flows
while the November and December logs have 12.3m and 15.5ms,fleapectively.

We examined the percentage of flows for each of the three aawhich a flow follows a
previous flow between the same host pairs using differerd thmesholds. The results are shown
in Table 1. The threshold of zero seconds in the table ineiscattoncurrent flow where an existing
flow between the same hosts exists when a new flow begins. Tder areshold values include
flows that begin within the given time interval after a prexsdlow between the same hosts. We
see a significant relationship between flows even with tlolelshas small as 10 seconds.

Table 1: Percentage of Host-to-Host Network Flows withinpa&fied Time Threshold of a Pre-
vious Flow

Time Threshold

Period | 0 Sec | 10 Sec| 30 Sec| 180 Sec
Jul’'03 | 28.2%| 47.2% | 51.2% | 61.0%
Nov '03 | 38.5%| 53.7% | 58.6% | 68.3%
Dec’03 | 27.4%| 41.6% | 46.4% | 56.9%

We also studied the same data by grouping the set of non-W&$ mto clusters (all WPI
hosts form a single cluster). Ideally, we would have usedisteting tool based on BGP routing
information as done in [14], but such a tool is not availahléhie public domain. Consequently we
used an approximate classification defined by traditiona$£B and Class C addresses. While we
know such an approach is not accurate in all cases, we bdiesvgood enough when examining
traffic with a common end-cluster (WPI) over narrow windowdime. We used this approach
to gain an understanding on the number of potential relakigns that exist on a cluster-to-cluster
basis. These results are shown in Table 2.

Table 2: Percentage of Cluster-to-Cluster Network Flowthiwia Specified Time Threshold of a
Previous Flow

Time Threshold

Period | 0 Sec | 10 Sec| 30 Sec| 180 Sec
Jul’'03 | 47.5%| 68.4% | 73.1% | 82.5%
Nov '03 | 60.9%| 76.3% | 80.4% | 87.1%
Dec'03 | 52.8%| 78.2% | 82.0% | 89.1%

These results show that more than half of flows exist in palradith other flows from the same
cluster and three-fourths of flows exist within 10 seconds pffevious flow from the same cluster.
Since the last two logs are collected when school was in@essid include more network flows,
they show more relationships than those in the first log ircthster-to-cluster scope.

3 Relationships for Specific Applications

The results in Tables 1 and 2 show the existence of a signifraamber of relationships among
network flows between hosts and clusters. We further brokandbe network flows according to
their related applications and studied the relationshigveen each type of flows. We found the
relationships between different types of flows to be re@yistable and to exhibit a similar pattern
for all three logs. Table 3 shows the results for a small saraphpplications from the December
2003 log.

The first column in Table 3 is the application type based amspart protocol (“t” for TCP and
“u” for UDP) and port number. Columns 2 and 3 show related fltved exist between two hosts
for thresholds of 0 seconds (concurrent flows) and 30 sed@nplievious flow existed within the
last 30 seconds). Similarly, columns 4 and 5 show relatedsflinat exist between hosts in two
clusters. We again show results for a threshold of 0 and 3@hsisc

The results shown in each cell of the table are the percestagows for the flow type in the
first column that are related to other types of flows (inclgdis own type). To conserve space we
only list specific flow types when the relationship occursrfare than 10% of flows. In addition,
we show cumulative percentages for all TCP and UDP flows.

The results in Table 3 show a number of relationships. A FTilé (fFansfer Protocol) or SSH
(Secure SHell) flow follows a previous flow of the same typehowt 15% of cases within the
same host pairs. The percentages become much larger withstope of the same cluster pairs,
where a FTP flow starts within 30 seconds of another FTP flowyer 90% of cases. Other types
of flows like security key exchange (using UDP port 500), Wesir{g port 80 and 443), are also
often observed before a FTP or SSH flow within the same clysties.

The authentication protocol using TCP port 113 is used 8609%he time with the SMTP
protocol (t25). The DNS protocol (u53) precedes all appilices when we consider cluster-to-
cluster sequential relationships. HTTP flows (t80) are ut&¥% of the time concurrent with a
previous HTTP flow between the same hosts and over 60% ofrtteedbncurrent with hosts in the
same cluster. The last column shows that over 90% of HTTP femesar within 30 seconds of a
previous HTTP flow between hosts in the same cluster.

4

Table 3: Relationship between Selected Flow Types

AppPort h2h:0s h2h:30s c2c:0s c2c¢:30s
t21 tcp:3.3% t21:13.8% t21:63.1% t113:26.8%
(ftp) udp:0.0% tcp:14.5% tcp:64.7% t21:93.7%
udp:0.0% udp:14.3% tcp:95.0%
u500:11.2%
udp:25.5%
t22 tcp:9.1% t22:15.9% t22:24.7% t110:18.1%
(ssh) udp:0.1% tcp:17.0% tcp:44.0% t22:33.5%
udp:0.1% u500:12.5% t443:14.6%
udp:18.5% t80:12.1%
tcp:57.5%
u500:15.1%
udp:23.6%
t25 tcp:5.2% t25:18.0% t25:11.7% t25:30.0%
(smtp) udp:0.0% tcp:18.1% tcp:15.4% tcp:34.9%
udp:0.0% udp:9.4% u53:15.8%
udp:16.9%
t80 t80:43.0% t80:58.6% t80:61.1% t80:91.9%
(http) tcp:43.1% tcp:58.7% tcp:62.2% tcp:92.4%
udp:0.1% udp:0.1% u53:10.0% u53:14.1%
udp:11.4% udp:15.7%
t113 t25:86.9% t25:86.9% t25:87.7% t113:11.2%
(auth) tcp:98.4% tcp:98.5% tcp:99.2% t25:87.8%
udp:0.0% udp:0.0% udp:5.3% tcp:99.7%
u53:13.7%
udp:15.5%
t554 t554:10.5% t554:53.1% t554:47.3% t554:72.6%
(rtsp) tcp:13.8% tcp:55.7% t80:16.8% t80:23.0%
udp:4.5% u6970- tcp:63.7% tcp:82.2%
7170:10.4% u6970- u53:16.4%
udp:11.8% 7170:38.8% u6970-
udp:49.5% 7170:42.6%
udp:60.8%
t7070 t554:40.0% t554:76.0% t554:40.0% t554:76.0%
(real-stream) t7070:36.0% t7070:72.0% t7070:36.0% t7070:74.0%
t80:68.0% t80:82.0% t80:86.0% t80:92.0%
t8080:56.0% t8080:76.0% t8080:56.0% t8080:76.0%
tcp:84.0% tcp:86.0% tcp:92.0% tcp:92.0%
udp:0.0% udp:0.0% udp:2.0% u53:10.0%
udp:10.0%
u6970-7170 t554:53.9% t554:54.0% t554:54.0% t554:54.1%
(real-stream) tcp:54.5% tcp:54.6% tcp:54.7% tcp:54.9%
udp:6.7% u6970- u6970- u6970-
7170:32.4% 7170:42.6% 7170:69.6%
udp:34.2% udp:45.2% udp:74.5%
u27015-27017 tcp:0.0% tcp:0.0% tcp:1.5% tcp:2.2%
(halflife) udp:2.8% udp:5.1% u27015- u27015-
27017:11.0% 27017:30.9%
udp:12.3% udp:32.2%
u41170 tcp:0.0% tcp:0.0% tcp:5.1% tcp:7.3%
(blubster) udp:1.2% u41170:13.0% udp:2.6% u41170:15.5%
udp:13.0% udp:16.8%

Real stream application normally uses multiple flows. Thetr@d flow using RTSP protocol
(t554) is frequently seen in parallel with the data flows gsither TCP (t7070) or UDP (u6970-
7170). We also observe the TCP-based Real player streaneiqgeintly occurs in temporal prox-
imity to HTTP.

“halflife”, a popular on-line game, is used often concurgat sequentially by different hosts,
but within the same cluster. Network flows generated by a-fiepeer file sharing application
“blubster” have a certain amount of sequential relatiopsho its own type.

4 Application Traffic Behavior

The application-specific results again show that significalationships do exist between network
flows, although the results do not reflect the specific tratiitgen of packets within a flow, which is
not available in the log. Knowledge of specific traffic belwavs important as we look at exploiting
the relationships between network flows. We studied thegtaakd flow behavior for a number of
sample applications such as ssh, the Internet ExplorerdaowRealAudio, RealVideo, Windows
Media Player, QuickTime, network games, instant messagitelectronic mail applications.
From the results of this study we make a number of obsenatibout the behavior of applications:

e Asingle application often causes multiple flows to be créé&de¢he same host or hosts within
the same cluster.

e Interactive applications such as ssh, games and instastagieg generally use small pack-
ets. Applications using TCP use small packets in setting apnaection and sending ac-
knowledgments.

e Many applications that use TCP have the PUSH flag set if thkgbdmas a less-than-full-
MTU, even if the packet may not need to be sent immediatelywéadacontrol by Nagle’s
algorithm, which attempts to aggregate small amounts of @&R [16]. The setting of the
PUSH flag causes the data to be immediately sent.

e The packet size for streaming applications depends on tbederg, but most packets we
observed are not full. When TCP is used for streaming, thees@iways uses the PUSH
flag.

While these observations are not novel, each of these id@ar fas we examine exploiting the

relationships between flows. In the following we describajgproach that takes these observations
into account.

5 Proposed Approach

The observation that many transmitted packets are lessuligprevious studies have found 70-
90% of packets are less than 1500 bytes [25, 8]) and becaasmh of routing packets on the
Internet is dominated by the number of packets and not the sie are motivated to explore an
approach that makes use of this unused capacity in packetféra As technology improves and
network MTUs grow larger this wasted capacity will becomaenmronounced.

6

The approach of aggregating packets for delivery is an alsvilirection to explore, particularly
given the significant number of related flows. The naturahpto do such aggregation is at the
network layer—whether on a single host or at an end routeafduster of hosts. However, an
inhibiting problem with current transmission design istthpplications and the transport layer
have no means of specifying deadline constraints on whenrdast be sent. UDP data is always
sent immediately while by default TCP transmitted data leected and sent when a full packet is
available or delayed until all transmitted data has been édCk-or a TCP application to avoid this
delay, it must use the PUSH flag to send the data immediataighmas observed is often used by
applications. Without a means for specifying appropri&adiine constraints there is no “pool” of
packets that can be potentially aggregated for delivery.

As an alternate approach to the traditional transmissiochar@sm, we propose a new ap-
proach as shown in Figure 1 where in addition to the packet, dhe transport layer passes a
deadline to specify the latest that the network layer camstrat a packet. The network layer then
becomes an active entity that schedules packet transmisas®ed on deadlines.

[Transport Laye} [Transport Layer |
send(pkt) send(pkt,deadline)

@ | Active Network Layer]

Traditional Network Layer Active Network Layer

Figure 1: Addition of a Deadline Requirement When Sendingekbt

The deadline value can be set by either the application asp@t protocols depending on
their particular needs. For example, an application suckshsmay set an immediate deadline,
but because its packets are small there is much potentigidgybacking additional packets in
the transmitted frame. TCP SYN packets also would have aredirate deadline for delivery, but
are small. A real-time stream application may be willing atetate a fixed lag in the delivery
of its packets to allow possible aggregation with otherfizcgpossibly its own). A file transfer
application may set all its packets with a much larger deadhdicating the traffic is not urgent.

The active network layer maintains a pool of packets and ldesg] using real-time schedul-
ing to transmit the packets. In the case of less-than-fudkets, the network layer can potentially
aggregate other waiting packets. Delivery of such aggeebadckets could be done through encap-
sulation of multiple IP packets into a single IP packet asirsently done for tunnelling [18]. This
approach also preserves upper-level data boundaries asadd by Clark and Tennenhouse [4].

The availability of such an approach affords a number of ojymities:

1. Acknowledgment mechanisms are an obvious use of thissapbr When a packet arrives
an acknowledgment can be immediately sent with a deadlinegmonding to a desired
ACK time-out. Such a time-out mechanism is built-in to thePT@otocol, but this approach
would handle acknowledgments in a general way and take tatyaof other traffic.

2. The introduction of deadline-based transmission gipptieations more precise control over
when data is sent. Under current protocols data can onlyriieraenediately or with TCP it
is buffered without control by the application on exactlyamht is sent.

7

3. Use of the approach below the transport layer allows iaddent, but related flows to be
aggregated. Data from scenarios such as playing of an atrdens with one protocol con-
current with delivery of Web objects can be potentially aggted.

4. The approach allows interactive and non-interactivificréo naturally aggregated where
packets for interactive traffic are often small, but have edrate deadlines while packets
for non-interactive traffic are often larger, but have reldtransmission deadlines.

6 Extension of the Approach

While potential aggregation of packet traffic is an attratieature of this approach, it can be
extended to allow additional features for upper layers. We propose to include a “hard/soft”
flag argument to theend()function in Figure 1 indicating whether the transmissionstmccur
or should occur if possible. A “hard” value indicates a nortn@nsmission with the given dead-
line. However a “soft” value indicates the packet will onlg bent if it can be piggybacked. The
introduction of a “soft send” allows for improving performee and reliability of applications and
transport protocols without introducing additional tramssions.

One scenario of using a soft send is to protect critical pachg sending them in duplicate.
For example, the loss of TCP SYN packet can have a more negatpact than the loss of a
regular packet in the middle of the connection. In order tprione reliability, one approach is
to soft send a duplicate SYN packet after the original SYNkpacs sent. Another example of
improving application reliability is for a streaming apgtion to soft send duplicate copies of
important packets of data. Duplicate DNS requests couldfiesent with a shorter timeout than
normal where the DNS application can retract the soft seadeatponse for the original request is
received.

The use of a soft send can also be combined with predictioneXample, a Web browser may
predict the need of an additional TCP connection and usedfiesesnd feature to set it up. The
active network layer needs to notify the upper layer if a gackquested for a soft send is actually
sent.

7 Current Status

Overall, we are currently working to better understand #lationships between network flows
and how they can be exploited for improved performance. kample, we need to expand the
range of log data we analyze and need to investigate thetefteost-to-cluster and cluster-to-host
relationships.

Specifically, we are looking to better define the approachhadaive network layer and eval-
uate its impact on both a host-to-host and cluster-to-etusasis. There are outstanding issues
of how this active network layer interacts with transpoyteacontrol, specifically how it handles
or does not handle congestion control. As discussed in tkieseetion, many mechanisms have
been proposed to schedule packet transmission for congesintrol, but have not investigated
the opportunities of combining traffic to common hosts ostdus of hosts. Our active network
layer could also be used to schedule transmissions of daker @nparticular rate control, but it
may then need to notify the transport layer if a requestedldeacannot be met.

8

Other issues include adjusting the MTU of packets receivenh fthe transport layer so that
space is available to aggregate these large packets with gatkets. On the other hand, the
transport layer should not need to deliver packets smdibar the MTU if there is no concurrent
traffic.

8 Related Work

Previous work has examined techniques for exploiting i@iahips at a number of layers in the
protocol hierarchy. In the following we look at three broadegories of how the techniques have
been used at different layers, the types of relationshigg éxploit, and how they compare with

our approach.

8.1 Shared or Centralized State Information

Much previous work has looked at shared or centralized,gtatearily for purposes of congestion
control. Applications, such as Web browsers, create malptwork flows to the same host for
parallel retrieval of objects. Work on Ensemble-TCP [6] ahdred TCP control blocks [26] are
ways for these multiple TCP connections to share networdkimétion and better inform the TCP
congestion control mechanism avoiding slow-start. Thigragch to congestion control is been
implemented as part of the Linux kernel [20]. This techniggigood for concurrent TCP flows
and is also useful for sequential flows if the shared inforomats retained. This approach is
limited to traffic of one (the most prevalent) transport pamtl and does not reduce the number of
transmitted packets.

Another approach to sharing is centralized scheduling effland packets. Work on the Con-
gestion Manager (CM) [2] and the Internet Traffic ManageM)T15, 5, 11] are examples of this
approach where a manager schedules the transmission adtpdaking into account congestion
and QoS concerns. Several other studies discussed abougsimdormation among a cluster of
hosts. In Ott and Mayer-Patel's coordination mechanisnj, ffhey used an aggregate point (AP)
on each cluster and inserted a coordination protocol (GRY laetween the IP and Transport lay-
ers. An AP calculates network conditions based on all flovssipg through it and conveys the
information to end hosts by CP. Pradhan et al. proposed anefjgted TCP (ATCP) architecture
[19], in which one TCP connection is segmented into two ante by a local ATCP router on the
sender’s side. As a transparent TCP connection proxy, tli&PADuter controls transmission rate
on both sides based on information got from all connectiansgythrough it. In [21], Savage et
al. introduced an overlay network called “Detour” and eactianin “Detour” can aggregate traffic
from its local hosts over tunnels (TCP connections).

8.2 Aggregation and Multiplexing

Another class of work has looked at aggregating traffic altbedransport layer. An approach to
aggregate traffic at the application layer is to multipletadgtreams on top of a TCP connection.
HTTP/1.1 [7] is an object-wise multiplexing scheme, whides a persistent TCP connection to
fetch multiple objects. Another approach to this same @olk to bundle multiple objects in one
response [27]. Gilbert and Brodersen used layer-wise aredwsige multiplexing schemes between

a proxy server and a client [10]. SCP [23] and SMUX [9] are twoegral-purpose session control
protocols that multiplex data from applications on one TGRnection.

The Stream Control Transmission Protocol (SCTP) [24] halsifstneams support, which per-
mits bundling of more than one user message into a single S&tRet, although SCTP can
introduce a small delay as it tries to bundle. Users may tisaibndling (like the PUSH flag is
used in TCP) in order to avoid any delay. The use of bundlirgyslar to the approach we pro-
pose, but the protocol does not allow the application to satltines thus forcing applications with
time dependencies to disable the mechanism.

8.3 Prediction

A third approach to using relationships between flows anégtads to perform work in anticipa-
tion of future work. At the transport layer, T/TCP [3] is on®posal to combine the TCP SYN and
initial payload packet of a TCP connection setup therefomeding a round-trip between sender
and receiver. T/TCP was proposed for transactions, bugstiyronly FreeBSD has implemented
it and its usage is still under experimental stage. Linuxsdogt have plans for the implementa-
tion due to T/TCP’s potential security problems [12]. Innbsrof number of transmitted frames,
it is possible to emulate the transmission of multiple teanti®ns by using the soft send feature to
piggyback the creation of future TCP connections on cumetd transmissions.

Prediction is more commonly done at the application layeisthamurthy et al. proposed a
DNS-enabled Web approach that uses DNS messages to pigggyedc content in anticipation
of future use [13]. In previous work, we have examined redlgi@NS requests by piggybacking
predicted future DNS responses [22].

9 Summary

The results of this work show a significant number of relaldps exist among the network flows
between pairs of hosts and host clusters. 40-50% of netwanksfbetween two hosts occurred
within 10 seconds of a previous network flow between the samséshwhile over 75% of flows
exhibited this same relationship between two clusters.

Based on these relationships and on the fact that many [gadéktered on the Internet are not
full, we propose the idea of an active network layer that dakes the delivery of packets according
to deadlines set by the application and transport layertevalgigregating less-than-full packets as
allowed by the MTU of the physical network. The availabildf/this network layer also allows
the possibility of piggybacking duplicates of importantkets on an as-available basis in order to
improve the reliability of applications. We are currentlprking to more completely define and
evaluate this approach on a host-to-host and clustemtear basis.

10

References

[1] Argus - IP network auditing facility.
http://ww. gosi ent. com ar gus.

[2] H. Balakrishnan, H. S. Rahul, and S. Seshan. An Integr@engestion Management Archi-
tecture for Internet Hosts. IRroceedings of the ACM SIGCOMM 1999 Confererpages
175-187. ACM, September 1999.

[3] R. Braden. T/TCP — TCP Extensions for Transactions Hanat Specification, July 1994.
RFC 1644.

[4] D.D. Clark and D.L. Tennenhouse. Architectural Considiens for a New Generation of
Protocols.ACM Computer Communication Revie2d(4):200-208, September 1990.

[5] Gali Diamant, Leonid Veytser, Ibrahim Matta, Azer Bestss, Mina Guirguis, Liang Guo,
Yuting Zhang, and Sean Chen. itmBench: Generalized APIrtarhet Traffic Managers.
Technical Report BU-CS-2003-032, CS Department, Bostamdusity, Boston, MA 02215,
December 2003.

[6] L. Eggert, J. Heidemann, and J. Touch. Effects of Enserli@P. ACM Computer Commu-
nication Review30(1):15-29, January 2000.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinté. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol — HTTP/1.1, June 1999. RFC 2616

[8] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. MoR. Rockell, T. Seely, and
C. Diot. Packet-level traffic measurements from the Spihbackbone.lEEE Network
2003.

[9] Jim Gettys and H. F. Nielsen. SMUX Protocol Specificatidnly 1998. Work In Progress
(W3C Working Draft WD-mux-19980710).

[10] J. Gilbert and R. Brodersen. Globally Progressiveratgve Web Delivery. IrProceedings
of the IEEE Infocom 1999 ConferendBEE, March 1999.

[11] Liang Guo and Ibrahim Matta. Differentiated Control\@eb Traffic: A Numerical Analy-
sis. InProceedings of SPIE ITCOM’2002: Scalability and Traffic @ohin IP Networks
Boston, MA, August 2002.

[12] Charles M. Hannum. Security Problems Associated WITICP, September 1996.
http://tcp-inpl.grc.nasa.gov/tcp-inpl/list/archive/1292. htm .

[13] Balachander Krishnamurthy, Richard Liston, and Meh&abinovich. DEW: DNS-
enhanced web for faster content delivery.Piroceedings of the Twelfth International World
Wide Web ConferencBudapest, Hungary, May 2003.

[14] Balachander Krishnamurthy and Jia Wang. On networkrawelustering of web clients. In
Proceedings of the ACM SIGCOMM 00 Conferen8eockholm, Sweden, August 2000.

11

[15] Ibrahim Matta and Azer Bestavros. QoS Controllers far Internet. InProceedings of the
NSF Workshop on Information Technolo@airo, Egypt, March 2000.

[16] J. Nagle. Congestion Control in IP/TCP internetwotdenuary 1984. RFC 896.

[17] D. Ott and K. Mayer-Patel. Transport-level Protocolo@tination in Cluster-to-Cluster Ap-
plications. InProceedings of 2002 USENIX Annual Technical Conferepages 147-159,
June 2002.

[18] C. Perkins. IP Encapsulation within IP, October 1996TF RFC 2003.

[19] P. Pradhan, T. Chiueh, and A. Neogi. Aggregate TCP cstiyecontrol using multiple net-
work probing. InProceedings of the 20th International Conference on Dstied Computing
Systems (ICDCS20Q®)pril 2000.

[20] Pasi Sarolahti and Alexey Kuznetsov. Congestion Gontr Linux TCP. InProceedings
of 2002 USENIX Annual Technical Conference, Freenix Trpakges 49-62, Monterey, CA,
June 2002.

[21] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. CaltlwA. Collins, E. Hoffman,
J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan. Detour.ofimfed internet routing and
transport.IEEE Micro, 19(1):50-59, January 1999.

[22] Hao Shang and Craig E. Wills. Using Related Domain Naraésiprove DNS Performance.
Technical Report WPI-CS-TR-03-35, Worcester Polytechmstitute, December 2003.

[23] S. Spero. Session Control Protocol, Version 1.1.
http://ww. w3. or g/ Prot ocol s/ HTTP- NG htt p- ng-scp. htm .

[24] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. SchwaraaT. Taylor, I. Rytina, K. Kalla,
L. Zhang, and V. Paxson. Stream Control Transmission Pogt@xtober 2000. IETF RFC
2960.

[25] K. Thompson, G. J. Miller, and R. Wilder. Wide-Area Imet Traffic Patterns and Charac-
teristics.IEEE Network 11:10-23, November 1997.

[26] J. Touch. TCP Control Block Interdependence, April Z9RFC 2140.

[27] Craig E. Wills, Gregory Trott, and Mikhail Mikhailov. &ing bundles for web content deliv-
ery. Computer Networks12(6):797-817, August 2003.

12

