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Abstract

Internet applications have varied Quality of Service
(QoS) Requirements. Traditional applications such
as FTP and email are throughput sensitive since
their quality is primarily affected by the through-
put they receive. There are delay sensitive appli-
cations such as streaming audio/video and IP tele-
phony, whose quality is more affected by the delay.
The current Internet however does not provide QoS
support to the applications and treats the pack-
ets from all applications as primarily throughput
sensitive. Delay sensitive applications can however
sacrifice throughput for delay to obtain better qual-
ity. We present a Traffic Sensitive QoS controller
(TSQ) which can be used in conjunction with many
existing Active Queue Management (AQM) tech-
niques at the router. The applications inform the
TSQ enabled router about their delay sensitivity
by embedding a delay hint in the packet header.
The delay hint is a measure of an application’s
delay sensitivity. The TS(Q router on receiving
packets provides a lower queuing delay to packets
from delay sensitive applications based on the de-
lay hint. It also increases the drop probability of
such applications thus decreasing their throughput
and preventing any unfair advantage over through-
put sensitive applications. We have also presented
the quality metrics of some typical Internet appli-
cations in terms of delay and throughput. The ap-
plications are free to choose their delay hints based
on the quality they receive. We evaluated TSQ in
conjunction with the Pl-controller AQM over the
Network Simulator (NS-2). We have presented our
results showing the improvement in QoS of appli-
cations due to the presence of TSQ.

1 Introduction

The Internet today carries traffic for applications
with a wide range of delay and loss requirements.
Traditional applications such as FTP and E-mail
are primarily concerned with throughput, while
Web traffic is moderately sensitive to delay as
well as throughput. Emerging applications such
as IP telephony, video conferencing and networked
games have different requirements in terms of
throughput and delay than these traditional ap-
plications. In particular interactive multimedia
applications, unlike traditional applications, have
more stringent delay constraints than loss con-
straints. Moreover, with the use of repair tech-
niques [BFPT99, PHHY8, LCO0] packet losses can
be partially or fully concealed, enabling multime-
dia applications to operate over a wide range of
losses, and leaving end-to-end delays as the major
impediment to acceptable quality.

Unfortunately, the current Internet does not sup-
port per application QoS. Instead all applications
are treated primarily as throughput sensitive and
no attempt is made to provide a lower delay to ap-
plications that desire it. Every packet arriving at
a router is enqueued at the tail, thus providing the
same average delay to all applications. When there
is persistent congestion, the router queue builds up
and eventually packets have to be dropped. A large
queue build-up causes high queuing delays for all
applications, regardless of their delay sensitivity.

However, if the router is capable of providing
QoS support, then it could treat packets from
delay-sensitive applications differently than those
from throughput-sensitive applications. Since the
delay-sensitive applications are loss-tolerant, the



router can try to provide them with a lower delay
and approximately decrease the throughput pro-
vided to them. The loss of throughput may not
decrease the overall quality of the delay-sensitive
applications very significantly, but the reduction in
delay can cause a significant improvement in qual-
ity. The throughput gained can be allocated to
the throughput-sensitive applications, thus provid-
ing them with higher quality.

ABE [HKBTO1] provides a queue management
mechanism for low delay traffic. ABE allows
delay-sensitive applications to sacrifice through-
put for lower delays. ABE, however, rigidly
classifies all applications as either delay-sensitive
or throughput-sensitive.
not able to choose relative degrees of sensitivity
to throughput and delay. Approaches such as
CBT [PJS99] and [NT02] provide class-based ap-
proach and with bitrate guarantees for different
classes. However, these fixed and pre-determined
classes are not sufficient to represent the varying
QoS requirements of applications within one par-
ticular class. Similarly, DCBT with ChIPS [CCO00],
which extends CBT by providing dynamic thresh-
olds and lower jitter for multimedia traffic, still lim-
its all multimedia traffic to the same QoS.

Thus applications are

DiffServ approaches, such as Assured Forward-
ing (AF) [HBWW99] and Expedited Forward
(EF) [JNP99], try to give differentiated service to
traffic aggregates. However the DiffServ architec-
tures are very complicated and require the pres-
ence of traffic monitors, markers, classifiers, traf-
fic shapers and droppers to enable the components
to work together. IntServ [SBC94] provides the
best possible per flow QoS guarantees. However,
it requires complex signaling and reservations via
RSVP by all routers along a connection on a per-
flow basis, making scalability difficult for global de-
ployment.

We present a new QoS controller called the Traf-
fic Sensitive QoS Controller (TSQ), that provides
a congested Internet router with per packet QoS
support based on an application’s delay sensitiv-
ity. Unlike approaches that provide fixed classes
of service, each application sending traffic into the
TSQ router chooses a customized delay-throughput
trade-off based on its own requirements. The ser-
vice is still best-effort in that it requires no addi-

tional policing mechanisms, charging mechanisms
or usage control. With TSQ, applications mark
each packet with a delay hint indicating the relative
importance of delay versus throughput. The TSQ
router will, on receipt of each packet, examine its
delay hint and calculate an appropriate queue po-
sition where the packet is to be inserted. A packet
from an application which has a low value of de-
lay hint will be allowed to “cut-in-line” towards the
front of the queue, while a packet from an applica-
tion with a high value of delay hint will be inserted
towards the end of the queue. To prevent delay-
sensitive applications from gaining an unfair ad-
vantage over the throughput-sensitive applications,
TSQ proportionately increases the drop probabil-
ity of the packets inserted into the queue. The
more a packet attempts to cut-in-line, the more
the packet’s drop probability is increased. Thus,
throughput-sensitive applications mark their pack-
ets with high values of delay hints, and hence they
are not cut-in-line and do they have their drop
probability increased, thus providing them with
good quality. TSQ requires no per-flow state infor-
mation, no traffic monitoring, and no edge policing
or marking.

TSQ can be used in conjunction with most
AQMs that provide an aggregate drop proba-
bility, for example RED [FJ93], Blue [FKSSO01],
PI [HMTGO1], and SFC [GH03]. We have eval-
uated the performance of TSQ when used in con-
junction with the PI-controller (Proportional In-
tegral controller) AQM [HMTGO1] with varying
mixes of delay-sensitive and throughput-sensitive
flows. In order to quantify an application’s QoS,
we propose a QoS metric based on the minimum
of an application’s delay quality and throughput
quality. Based on recommended application per-
formance requirements, we provide quality metrics
for Internet applications that cover a range of QoS
and throughput sensitivities: interactive audio, in-
teractive video and file transfer. Using TSQ, appli-
cations can use the knowledge of their QoS require-
ments to dynamically choose their delay hints so as
to maximize their Quality of Service. Evaluation
results suggest that TSQ with PI provides better
quality for all applications than does PI by itself.

The remainder of the paper is organized as fol-
lows: Section 2 presents quality metrics we have



devised for fundamental Internet applications; Sec-
tion 3 discusses the TSQ mechanism; Section 4 de-
scribes experiments and analysis of TSQ; and Sec-
tions 5 and 6 summarizes our work and discuss the
possible future work.

2 Application Quality Metrics

In this section chapter we develop quality metrics
for three network applications: interactive audio
(Section 2.1), such as used in IP telephony, interac-
tive video (Section 2.2), such as used in a video con-
ference and file transfer applications (Section 2.3)
such as used in peer-to-peer file systems or FTP.
The quality metrics can be used to quantify ap-
plication performance, allowing us to evaluate the
impact of TSQ on QoS. In addition, the quality
metrics could be used by end-host applications to
adjust the delay hint it provides to a TSQ enabled
network in order to improve overall performance.

Based on information from previous work
[Gan02, TKK93, DCJ93, Zeb93], we have de-
vised quality functions for these three applica-
tions in terms of their network delay and the net-
work throughput called the delay quality (Qg) and
throughput quality (Q;), respectively. We define the
overall quality of the application as the minimum
of the two quality metrics:

Q(d, T) = min(Qa(d), Q:(T)) (1)

The value of Q(d, T) lies between 0 and 1, where
a quality of 1 represents the maximum quality that
the application can receive, and a quality of 0 rep-
resents performance that is of no use to the appli-
cation at all.

2.1 Audio Conference Quality

In this section we discuss the quality functions that
we have derived for audio conference applications.
The quality functions are of two types, the delay
quality function and the throughput quality func-
tion. We have graphed the quality functions for
the application versus one-way delay and through-
put respectively.

2.1.1 Effect of Delay on Audio Conference

Quality

Audio conference applications are relatively sensi-
tive to increased delays but less sensitive to reduced
throughput. [Gan02] suggests that audio confer-
ence quality in terms of delay is essentially divided
into 3 parts. A one-way delay of 150 ms or less
means excellent quality, a one-way delay of 150-
400 ms means good quality, and a one-way delay
in excess of 400 ms is poor quality. Also, [IKK93]
has observed the variation of audio quality with de-
lay in terms of Mean Opinion Scores (MOS scores).
Figure 1 from [IKK93] shows the variation of MOS
scores for free conversation with round-trip delay.
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Figure 1: Mean Opinion Scores versus Round-Trip
Delay

Based on this previous work, we have produced
the graph in Figure 2 depicting the delay quality of
an audio conference application. The best quality
possible is 1 (equivalent to a MOS of 5) when there
is a zero delay. The audio application has an excel-
lent quality if the one way delay is within 150 ms.
As delay increases, the initial decrease in quality
is not significant, and a delay of 150 ms provides
the application with a quality of 0.98. However,
as the delay increases above 150 ms, the drop in
quality becomes significant, with a delay of 300 ms
reducing quality to 0.7 (equivalent to a MOS score
of 3.5) and to 0.5 (equivalent to a MOS score of
3) when delay is 400 ms. As the delay increases
higher than 400 ms, we propose that the degrada-
tion is about twice the degradation in quality from



150 to 400 ms delay. Thus, from the graph we can
see the three broad sections of quality described
in [Gan02] and also get quantitative values of the
quality for intermediate one-way delays. The set of
equations governing the delay quality of an audio
conference application are as follows:

Qa(d) =  —0.00133 xd+1 d < 150
Qa(d) = —0.00192 x d +1.268 150 < d < 400
Qald) =  —0.004xd+21 400 <d < 525
Qald) = 0 525 < d

0.8

0.7

0.6

0.5

Delay Quality

0.4

0.3

Q(d) = -0.00133d + 1 d <150
0.2 | Q(d) =-0.00192d + 1.268 150 < d < 400 4

Q(d) = -0.004d + 2.1 400 <d <525
01 Qd)=0 525 <d E

0

0 50 100 150 200 250 300 350 400 450 500 525
One Way Delay (ms)

Figure 2: Delay Quality for Audio Conference ver-

sus One-Way Delay

2.1.2 Effect of Throughput on Audio Con-
ference Quality

Figure 3 depicts the quality for an audio conference
application versus the throughput that the appli-
cation receives (the throughput quality). The ap-
plication has a throughput quality of 1 when the
throughput is 128 Kbps, since at this bit-rate the
quality of audio is of CD quality, which we assign
as the best possible. The throughput quality de-
creases linearly as the throughput is halved since
every time one fewer bit is used to encode the au-
dio, the throughput of the audio codec is reduced
by half. We assume that the quality of the audio
application reduces linearly with the reduction in
the number of encoding bits. Hence the variation
of audio quality with throughput is a logarithmic
curve, where a reduction in throughput above 64
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Figure 3: Throughput Quality for Audio Confer-

ence versus Throughput

Kbps does not greatly reduce the quality of the
application, while a reduction in throughput below
64 Kbps does. The throughput quality is 1 for 128
Kbps throughput, decreases to 0.83 for 64 Kbps
and falls further to 0, when the throughput is 2
Kbps, appropriate since 4 Kbps is the lowest codec
rate available for audio application [Cor98]. The
set of equations for the throughput quality are as
follows:

Q.(T) = 1 128 < T
Q.(T) = 0.24045 x log(T) — 0.17 4<T < 128
Qu(T) = 0 <4

2.2 Video Conference Quality

As another representative delay sensitive applica-
tion but with alternate throughput sensitivities, we
derived quality metrics for an interactive video ap-
plication, specifically a typical H.323 video confer-
ence.

2.2.1 Effect of Delay on Videoconference

Quality

Since the nature of the interactivity of a video con-
ference is the same as that in an audio conference,
the delay requirements of a video conference are
similar to those of an audio conference application
described in Section 2.1.1. Hence the plot in Fig-
ure 2 and the formulas for audio conference delay



quality suggested in Section 2.1.1 also apply to de-
lay quality of a video conference.

2.2.2 Effect of Throughput on Video Con-
ference Quality
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Figure 4: Delay Quality for Video Conference ver-

sus Throughput

Typically, an H.323 video conference requires a
bitrate of 384 Kbps for good quality [Cor00]. If the
application receives this throughput we assign it a
quality of 0.8 (derived from the MOS scale, where
a score of 4 on a scale of 1-5 is considered good).
As the throughput provided to the application in-
creases, the quality of the application increases, but
in a smaller proportion. Thus, the quality increases
to 0.85 when throughput is 512 Kbps, and to 0.9
when the throughput is 768 Kbps. A videoconfer-
ence gets its best quality of 1 when the throughput
is 1.5 Mbps based on the specification that a H.323
video conference operating at 1.5 Mbps is of ex-
cellent quality [Cor00]. Any subsequent increase
in the throughput does not improve the quality.
An H.323 video conference has average quality if
it has a throughput of 160 Kbps. Thus, we assign
this throughput a quality value of 0.6 correspond-
ing to a MOS score of 3 which is considered as
“fair” quality. Any further reduction in throughput
will cause the quality to fall off sharply. We thus
come up with the following set of equations which
determine the throughput quality for the video ap-
plication (and depicted in Figure 4):

Qu(T) = 1 1500 < T

Qi(T) = 0.0001367 x T +0.795 768 < T < 1500
Qi(T) = 0.0001953 x T +0.75 512 < T < 768
Qi(T) = 0.0003906 x T +0.65 384 < T < 512
Qi(T) = 0.0008928 x T +0.46 160 < T < 384
Q(T) = 0.00375 x T T < 160

2.3 File Transfer Quality

In this section we discuss the quality metrics we
used to measure the quality of file transfer applica-
tions. File transfer applications, unlike the audio
conference and video conference applications, are
not delay sensitive (relative to router queuing de-
lays). Instead, the quality of these applications is
almost entirely dependent on their throughput.

2.3.1 Effect of Delay on File Transfer Qual-
ity

A file transfer application’s quality will degrade
only if the delay increases on the order of tens of
seconds, which is well beyond the scope of router
queuing delays. Since, in our experiments, the de-
lay is generally on order of few 100 ms, we ignore
the effect of delay on FTP quality beyond 1000 ms.
The delay quality of a file transfer application is as
follows:

Qa(d)= 1 d< 1000

2.3.2 Effect of Throughput on File Transfer
Quality

The quality of a file transfer application depends
almost entirely on the throughput that it can get
from the network. In our quality metrics, the qual-
ity requirements of a file transfer is dependent upon
the size of the file that it is transferring. A small
file will require a lower throughput to attain good
quality as compared to a very large file. We pro-
pose that a file transfer application has maximum
quality if it can finish transferring a file in 1 second.
Thus for 10 Mb file, a quality of 1 is attained from a
throughput of 10 Mbps. If the throughput obtained
is greater, the quality does not improve, while a
decrease in quality is directly proportional to a de-
crease in throughput. Similarly for a smaller file of
10 Kb, the required throughput for best quality is
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Figure 5: Throughput Quality of File Transfer Ap-
plication versus Throughput

only 10 Kbps. We derive the following equation for
throughput quality of file transfer applications:

Qt(Ta S) = T/S

where S is the size of the file. Figure 5 depicts qual-
ity graphs for file transfer applications with various

file sizes.
3 Traffic Sensitive QoS Con-
troller

The Traffic Sensitive QoS controller (TSQ) pro-
vides Quality of Service when used in conjunc-
tion with most existing Active Queue Management
(AQM) mechanisms. TSQ accommodates delay
sensitive applications, such as interactive multime-
dia, by providing a low queuing delay, while at the
same time not penalizing the throughput of the tra-
ditional applications, such as file transfers. TSQ
achieves this per-application QoS by providing a
trade-off between queuing delays and drop proba-
bilities. The applications inform TSQ about their
delay sensitivity by providing a delay hint. A TSQ-
enabled router provides flows with a low delay hint
with a lower delay by using a “cut-in-line” mech-
anism. In order to avoid penalizing throughput-
sensitive applications, T'SQ adjusts the drop prob-
ability of a delay-sensitive packets based on the re-
duction in delay it provides to the packet.

In Section 3.1, we described how applications
notify the TSQ router about their delay sensitiv-
ity by using a delay hint. In Section 3.2, we de-
scribe the “cut-in-line” mechanism which is used
to provide delay sensitive applications with lower
queuing delays. Section 3.3 discusses the adjust-
ment in drop probability that is made for the delay-
sensitive flows so that they do not get unfair advan-
tage over throughput-sensitive flows. Section 3.4
concludes with a diagram and algorithm detailing

TSQ.

3.1 Delay Hints

Applications wanting to use the benefits of TSQ
need to provide the router with a measure of their
sensitivity to delay. This is done by providing a de-
lay hint (d) in the header of each IP packet, where a
low delay hint means that the application requires
a low network delay for good quality and a high de-
lay hint means that the application is throughput-
sensitive and does not require a low delay for good
quality. Applications such as interactive multime-
dia and network games will typically provide low
delay hints. On the other hand, applications such
as file transfer will typically provide the highest
delay hints.

Based on the discussion in [SZ99] there are 4
to 17 bits available in the IP header that can be
used to carry hint information. In our current im-
plementation of TSQ, the range of delay hints is
from 1 to 16 requiring 4 bits in the packet header.
Thus, an application which chooses the minimum
delay hint of 1 will be extremely delay-sensitive, in
contrast to an application which can tolerate some
delay and hence will have the maximum delay hint
of 16. If the number of bits used for the delay hints
is increased, the applications will have more levels
of delay-sensitivity to choose from, hence more ac-
curately representing their QoS requirements, but
at the cost of increased overhead in each packet
header. Similarly if the number of bits used to rep-
resent delay hints is reduced, the applications will
have a smaller range of delay-sensitivity to choose
from, but less overhead per packet. The optimal
number of bits for delay hints is left as future work.



3.2 Cut-in-Line

Typically routers use a FIFO queue to hold pack-
ets. Since all packets are enqueued at the end of
the queue, all packets and therefore all applications
receive the same queuing delay. The queuing de-
lay obtained by each packet depends upon the cur-
rent queue length (¢) and the outgoing link capac-
ity. TSQ provides delay-sensitive packets with a
lower queuing delay by “cutting” packets in line
according to their delay hints. A packet from a de-
lay sensitive application with a low delay hint will
generally be queued towards the front of the queue
leading to a lower queuing delay for that packet.
A packet from a throughput-sensitive application
having a high delay hint will generally be enqueued
towards the end of the queue. However queue in-
sertion based solely on delay-hints may cause star-
vation of packets with high delay hints. For ex-
ample, a packet with a high delay-hint at the end
of the queue can be starved in the face of a large
number of low delay-hint packets cutting in line at
(or above) the link capacity in front of this packet.
To avoid this, we introduce an aging mechanism to
prevent starvation.

Th TSQ cut-in-line mechanism is implemented
by using a weighted insertion into the queue. At
the arrival time (¢,) of a packet, we calculate the
queuing delay that the packet would experience if
it was inserted at the end of the queue; we call
this queuing delay the drain time (t4) of the queue.
TSQ calculates the packet weight (w) according to
its delay hint and time of arrival at the queue.

_dXtd
w = on

where n is the number of bits used to represent the
delay hint (4 in our current implementation). The
packets in the queue are inserted in order sorted
by their weights, with the lower weight packets
inserted towards the front of the queue and the
higher weight packets inserted towards the end of
the queue. The new position of the packet in the
queue is referred to as ¢’. Thus, a high delay-hint
will cause a packet to have a higher weight and
hence a higher value of ¢', while a delay hint of
1 will cause a packet to have a ¢ = ¢q. Newly
arriving packets will have their weights slightly in-
creased due to the effect of the time of arrival on

+ to (2)

their weight, thus preventing starvation of older
packets.

This cut-in-line requires a weighted insertion
that can be implemented using a probabilistic data
structure such as skip lists [Pug90], giving complex-
ity O(log(q)), where ¢ is the number of packets in
the queue.

3.3 Drop Probability

During congestion, many AQM techniques produce
a drop probability (p)) which is applied to packets
arriving at the router. All arriving packets are sub-
ject to the same drop probability, with packets that
are randomly dropped not being inserted in the
queue. However, in the case of the TSQ, a uniform
drop probability for all packets will potentially re-
sult in a higher throughput for the delay-sensitive
applications, since TSQ is providing a lower de-
lay to its packets. Hence, TSQ increases the drop
probability for packets with delay hints lower than
the maximum (2", or 16 in our implementation).
The increase in drop probability is related to the
reduction in queuing delay that the packet would
otherwise experience if it were inserted in the queue
in the position calculated by the cut-in-line mecha-
nism. Thus, for a packet from a throughput sensi-
tive application which would otherwise be inserted
at the end of the queue, the drop probability from
the AQM technique is not increased, hence the ap-
plication benefits from any throughput advantage
provided by the underlying AQM.

To determine the appropriate drop probability
of packets that have cut-in-line, TSQ starts with
the steady state throughput 7' of a TCP flow
in which throughput is inversely proportional to
the queuing delay and the square root of the loss
rate [PFTK98]:

K
T = (3)
TX\/]_)

where r is the round-trip time, p is the loss rate and
K is a constant for all flows based on the network
conditions. The round trip delay r is the sum of
the queuing delay and the round-trip propagation
delay. Since some packets can have a decreased
queuing delay by cutting in line, we compensate
by increasing the drop probability for those pack-
ets. Let the new queuing delay after TSQ be ¢,




the new drop probability be p’, and the round-trip
propagation delay be [. The throughput obtained
by the flow will now be T":

= (@)

(+a)x V'
We want to prevent the new throughput 7" from
being greater than the throughput obtained with-
out TSQ, (T" < T). Hence, we calculate the new

drop probability p' as:

’ (Z+Q)2><p
SN i “

The value of p’ depends on the new queue po-
sition value ¢’ and the queue position ¢ if TSQ
were not present (in other words, the instanta-
neous queue length when the packet arrived). p’
also depends on the one way propagation delay [
of the network. Since it is difficult for the router
to determine the one way propagation delay of ev-
ery flow, we keep the value of | as a constant, but
is typically between 40-100 ms for many Internet
links [CPS02]. Setting ! to lower values in this
range will result in a more aggressive increase in
drop probability, while setting [ to higher values in
this range will result in less aggressive increase in
drop probability. For our experiments, we fixed the
one way propagation delay constant for the router
at 40 ms.!

3.4 Summary

Figure 6 summarizes the TSQ algorithm.

4 Experiments

This chapter describes experiments to evaluate
the Traffic Sensitive Quality of Service Mechanism
(TSQ) over an existing Active Queue Management
(AQM) technique, the PI-controller [HMTGO1].
The Pl-controller attempts to provide a steady
queuing delay by keeping the queue size stable
around a target queue length, adjusting the drop
probability in response to the rate of incoming

'Note that this value is fixed for the TSQ router for all
experiments although the experiments will be simulated on
networks with different propagation delays.

/* constants:

C - capacity of the link

[ - network latency

n - number of bits used for delay hints
/

/* variables:

q - current length of queue

q’ - position to inserted packet
w - packet weight

d - delay hint

tq - drain time

t, - packet arrival time

p - AQM drop probability

p’ - drop probability after TSQ

/

on receiving packet pkt:

// Calculate its drain time

tq = q/C

/] Calculate packet weight
w = (d x tq)/2" + t,

/] Determine new position of packet in the
queue
q’ = weightedInsert(w,pkt)

/] Calculate new drop probability
y (H'Q)2><p
p - (l+q/)2

/] Generate random number between 0 and 1
r = uniform|0,1]

if (r < p’) then
drop(pkt)

else
insertPacket(q’, pkt)

Figure 6: TSQ Algorithm

packets. Like many AQMs, PI provides an explicit
drop probability required for TSQ.

We conducted a variety of experiments to test
the effect of TSQ on the quality of audio confer-
ence, interactive video and file transfer flows, com-
paring performance with PI and TSQ to perfor-



mance with only PI. We also measured the varia-
tion in queuing delay and throughput for the au-
dio and video flows to illustrate the basic effects
of TSQ. Finally, we ran experiments to measure
the effect of unresponsive flows when using TSQ
in order to verify that non-responsive flows do not
benefit from TSQ.
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Figure 7: Network Topology

All implementation and experiments were done
in the Network Simulator (NS-2).2 Figure 7 shows
the generic network topology for all the exper-
iments in the simulation. There are N sources
S1..SN and N destinations D1..DN. These N flows
are connected to a single common link giving rise to
a bottleneck at router R1. Each of the connections
between the sources and the bottleneck node have a
link capacity of 50 Mbps and propagation delay of
50 ms. Similar connections exist between the egress
router (R2) and the destinations. The bottleneck
link capacity is B Mbps. The one way propaga-
tion delay of the network is D ms. This bottleneck
router runs PI [HMTGO1] plus our implementation
of the TSQ algorithm in Figure 6. PI is config-
ured with the values recommended in [HMTGO1]:
a = 0.00001822, 8 = 0.00001816, w = 170, q.; =
200 packets and @y,q; = 800 packets. The average
packet size is 1000 bytes.

4.2 Audio Quality Evaluation

In this experiment we evaluate the performance of
a single interactive audio flow sharing the network
with other TCP based bulk file transfer flows.

2http://www.isi.edu/nsnam/ns/

4.2.1 Setup

The network topology is as described in Section 4.1
with the bottleneck link capacity B=15 Mbps and
the one-way propagation delay D=>50 ms providing
one-way propagation delays between each of the
sources and their respective destinations at 150 ms.
The number of flows N=100, with 99 TCP based
FTP bulk transfer flows that are not delay sensitive
and so provide the maximum delay hint of 16, and 1
audio conference flow simulated as a TCP-friendly
source sending data at a rate of 128 Kbps. We
run the experiment for 100 seconds of simulation
time, whereupon we e change the delay hint of the
audio flow for the next run in order to evaluate the
performance of the audio flow over a range of delay
hints.

4.2.2 Analysis

We analyze the effect of different delay hints on the
queuing delay and throughput of the audio flow.
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Figure 8: CDF of Queuing Delay for Audio Con-
ference Flow with Delay Hints of 1, 6 and 16.

Figure 8 depicts a CDF of the queuing delay ex-
perienced by the audio flow for 3 different delay
hints. The CDF is plotted for a delay hint 1, which
gives the minimum delay, a delay hint 6, which
gave the audio flow its optimal quality, and a de-
lay hint 16, which gives the maximum delay. The
median queuing delay is lower for the lower delay
hints, and the CDF curves for hints 1 and 6 are
steeper than for hint 16, which implies that there
is less variation in the per-packet queuing delay



with lower hints. Hence, for delay sensitive ap-
plications an AQM with TSQ can provide a lower
average queuing delay with less variation than can
an AQM alone.
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Figure 9: CDF of Throughput for Audio Confer-
ence Flow with Delay Hints of 1, 6 and 16.

Figure 9 shows a CDF plot for the throughput
obtained by the audio flow for the delay hints of
1, 6 and 16. The throughput is calculated ev-
ery round-trip time (300 ms in these experiments).
The throughput distributions of the file transfer
flows are similar to the distributions obtained with
delay hints of 16. If TSQ were not used, then the
throughput distribution would be similar to that
of a flow with delay hint 16. As is evident from
the figure, the median throughput decreases as the
delay hint decreases.
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Figure 10: Throughput and Delay Quality for Au-
dio Conference Flow versus Delay Hint

Using the quality model described in Section 2
and the throughput and total delay (queuing delay
plus propagation delay), we compute the quality
of the audio flow for different delay hints. Fig-
ure 10 shows the variation of the delay quality and
throughput quality of the audio flow with different
delay hints. The delay quality of the audio applica-
tion improves with a decrease in delay hint, while
its throughput quality decreases. In other words,
as the application indicates its preference for lower
delay, it is “cutting” in line more, hence getting
a lower average queuing delay which improves its
delay quality. However, correspondingly the audio
flow gets dropped with a higher probability, hence
achieving a lower throughput and causing a drop
in the throughput quality. The overall quality of
an application is the minimum of the delay quality
and the throughput quality. Thus the application
gets its best overall quality at a delay hint of 6.
When TSQ is not used, the delay obtained by all
applications is similar to that obtained by an ap-
plication with delay hint 16.

4.3 Video Quality Evaluation

The experiments conducted in the previous section
indicate TSQ can be used to improve the quality
of applications that are primarily delay sensitive.
We next present experiments evaluating TSQ for
interactive video applications that are sensitive to
both delay and throughput.

4.3.1 Setup

The network topology is as described in Section 4.1
with the bottleneck link capacity B=4 Mbps and
the one-way propagation delay D=50 ms provid-
ing one-way propagation delays between each of
the sources and their respective destinations at 150
ms. The number of flows N=20, of which 19 are
bulk file transfers and 1 is a TCP-friendly CBR
source sending data at a rate of 500 Kbps, typical
of a H.323 video-conference [Cor00]. We run each
experiment for 100 seconds, and then change the
delay hint for the video flow for the next run.
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4.3.2 Analysis

Figure 11 shows the CDF of the queuing delay for
the video flow for delay hints of 1, 6 and 16. As
seen in Section 4.2.2 for the audio conference, the
median queuing delay for the video conference is
lower for the lower delay hints. Also, the CDF
curves for delay hints of 1 and 6 are much steeper
than for delay hints of 16, which implies low vari-
ance in the queuing delay. Thus, similar to for the
audio conference, TSQ can provide a lower queu-
ing delay with less variation to video conference
applications.
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Figure 12: CDF of Throughput of Video Confer-
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Figure 12 shows the CDF of the throughput ob-
tained by the video conference flows for the same 3
delay hints. The throughputs are calculated over 1
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round-trip time(300 ms in our experiments). The
three CDF curves are more nearly the same for the
video conference as compared to the CDF curves
for the audio conference (Figure 12), indicating
that the decrease in throughput is not significant
when the delay hint is reduced.
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Figure 13: Throughput and Delay Quality for

Video Conference Flow versus Delay Hint

The graph in Figure 13 shows how the quality of
the video flow is affected by different delay hints.
For lower delay hints, the average queuing delay
and hence the average delay for the video flow de-
creases, resulting in a significant gain in delay qual-
ity, while the drop in throughput quality is less sig-
nificant. The overall quality of the video conference
for different delay hints is the minimum of the two
curves, and is maximize when the delay hint is 6.

4.4 Mixed Traffic Evaluation

The experiments conducted so far had one single
delay sensitive flow (an audio conference in the first
set of experiments and a video conference in the
second set of experiments). We now evaluate the
performance of TSQ when there is a varying mix
of delay sensitive and throughput sensitive flows.

4.5 Setup

The experimental setup for this experiment is sim-
ilar to the first set of experiments (B=15, D=50,
N=100). Within the 100 flows, we changed the rel-
ative number of delay sensitive (audio) flows with
respect to the number of throughput sensitive (file



transfer) flows. The traffic mixes we ran include: 1
audio flow, 99 file transfer flows; 25 audio, 75 file
transfer; 50 audio, 50 file transfer; and 75 audio, 25
file transfer.®> The audio flows were a TCP-friendly
CBR sources sending data at a rate of 128 Kbps
and using a delay hint of 6 (the optimum delay
hint from Section 4.2), while the file transfer flows
used the maximum delay hint of 16.

4.6 Analysis
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Figure 14: Normalized Quality of Audio Flows and
File Transfer Flows for Varying Traffic Mixes

We calculated the average quality obtained by
the file transfer flows and the audio flows for the
various traffic configurations. This quality was
then normalized against the quality that the ap-
plication obtained when TSQ was not enabled (the
bottleneck router only ran PI). In other words, the
normalized quality of an application when TSQ is
switched off is 1. If an application receives bet-
ter QoS when TSQ is enabled, then its normalized
quality is greater than 1. Conversely, if the qual-
ity of the application is worse when TSQ is not
enabled, then normalized quality is less than 1.

Figure 14 shows that as the percentage of audio
flows in the network increases, the average gain in
quality of the audio application decreases. This
is because as the number of delay sensitive flows
increases in the network, the delay sensitive flows

®The extreme case of 99 audio flows and 1 file trans-
fer flow was not evaluated, as this configuration did not
cause sufficient congestion for any queuing delay build-up
and hence was not useful for comparative evaluation.
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will cut in line less than they would when there are
more throughput sensitive flows, reducing the qual-
ity gains. However, notice at all times the normal-
ized quality is greater than 1, hence, the quality of
service obtained using TSQ is always higher than
that obtained without TSQ even with increasing
numbers of audio flows.

For the file transfer flows, the normalized qual-
ity increases initially with an increase in number
of flows. However, as the number of audio flows
increases beyond 25 percent, the normalized file
transfer quality starts decreasing. Again, for all
traffic mixes, the normalized file transfer quality
is greater or equal to 1. Thus, TSQ provides bet-
ter or equal quality for both audio conference and
file transfer applications than does the underlying
AQM (PI in our experiments) without TSQ.

4.7 Unresponsive Flows

In the previous experiments we have made all inter-
active audio and video flows TCP friendly, while in
practice there may be interactive audio and video
flows that are unresponsive to network congestion.
In this section we evaluate the behavior of unre-
sponsive flows when TSQ is used. During conges-
tion, an unresponsive application will not reduce
its data rate in response to packet loss. Hence, we
investigate whether unresponsive UDP flows can
gain an unfair advantage by taking advantage of
TSQ. In the first set of experiments, we introduced
a single unresponsive UDP flow in a network with
only file transfer TCP flows. We observed the ef-
fect of the UDP flow on the average throughput of
the TCP flows. We repeat the experiment with dif-
ferent values for the delay hints for the UDP flow.

In the second set of UDP experiments we evalu-
ate the effect on quality of UDP and TCP applica-
tions with varying mixes of UDP and TCP flows.
The quality of these applications were normalized
against the quality achieved under similar network
conditions if T'SQ was not used.

4.7.1 Set 1

In this set of experiments, the network topology
is similar to those in previous experiments (B=15,
D=50, N=100), with 99 bulk file transfers using
TCP, and 1 audio flow over UDP. The audio flow



is unresponsive CBR sending data at a rate of 600
Kbps, which is more than the flow’s fair share of
bandwidth of 150 Kbps. The file transfer use the
maximum delay hint of 16 while the unresponsive
UDP flow uses a different delay hint in each 100
second run.
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Figure 15: Normalized File Transfer Quality ver-

sus Delay Hint in the Presence of a High-Bitrate,

Unresponsive Flow

We measured the average throughput for the 99
file transfer flows in each run. Figure 15 shows the
average file transfer throughput when running with
UDP flows with different delay hints. The through-
put is normalized against the average file transfer
throughput when the same experiment is run on
PI without TSQ enabled. As we can see from the
graph, the average file transfer throughput remains
almost constant in each of the runs, with the file
transfer throughput being a little higher when the
UDP flow tries to “cheat” by using a lower delay
hint. This makes AQM routers that use TSQ no
more vulnerable to unresponsive flows than if they
did not use TSQ.

4.7.2 Set 2

In this set of experiments, the network topology
is similar to those in previous experiments (B=15,
D=50, N=100), where the 100 flows are a mix of
unresponsive audio flows running over UDP and
file transfers running over TCP. The audio flows
send at an unyielding rate of 128 Kbps and use a
delay hint of 6, while the TCP flows are elastic and
use a delay hint of 16. We vary the mix of UDP
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flows from 1 to 75 (1, 25, 50 and 75).
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Figure 16: Normalized Quality versus Traffic Mix

with Unresponsive Audio Conference Flows

Figure 16 plots the average audio and file trans-
fer quality normalized against the average quality
obtained without TSQ. As the number of UDP au-
dio flows in the network increases, the normalized
quality decreases for both the UDP and file transfer
applications. However, at all times the normalized
quality is above 1 for both the UDP audio and
TCP file transfers. Hence, there is an improve-
ment in the average quality of both the UDP audio
and TCP file transfer applications due to the TSQ
for a varying mixes of flows, suggesting TSQ will
not more negatively impact network performance
in the presence of unresponsive flows.

5 Conclusions

The current Internet supports applications with
primary Quality of Service (QoS) requirements of
delay and throughput. Unfortunately, the current
Internet however does not differentiate between ap-
plication QoS requirements and instead provides
uniform service to all applications. We assert that
the Internet can instead provide QoS mechanisms
while remaining best effort, raising the overall QoS
for most applications, while preserving the robust-
ness and scalability of the network, all without re-
quiring complicated policing, pricing or per-flow
accounting mechanisms.

In this paper, we have presented a Traffic Sensi-
tive QoS controller (TSQ). TSQ is sensitive to the



varying QoS requirements of diverse Internet traf-
fic, and thus provides different delay and through-
put treatments to packets from different types of
applications. TSQ can be used in conjunction with
many current AQM techniques allowing the full
performance benefits to quality that the underly-
ing AQM has to offer. Applications inform TSQ
about their delay sensitivity by embedding within
each packet a delay hint, an indicator of an appli-
cation’s delay sensitivity. Based on the delay hint
of each packet, T'SQ makes a decision as to where
the packet must be inserted in the queue (thus
potentially decreasing its queuing delay) and how
much the drop probability of the packet must be
increased (thus potentially decreasing its through-
put). This mechanism helps delay-sensitive appli-
cations attain better QoS, while at the same time
avoids hurting, and sometimes helps, the QoS of
throughput sensitive applications.

In order to quantify an application’s QoS, we
propose a QoS metric based on the minimum of an
application’s delay quality and throughput qual-
ity. Based on earlier work in perceived quality, we
have contributed quality metrics for some typical
Internet applications: interactive audio, interactive
video and file transfer. Quality function such as
these, along with a TSQ-enabled Internet, can dy-
namically choose their delay hints so as to maxi-
mize their Quality of Service.

Our evaluation of TSQ with varying traffic mixes
shows TSQ can increase the average quality of all
applications (8% to 18% for delay sensitive appli-
cations and up to 4% for throughput sensitive ap-
plications) over the quality obtained by using the
AQM without TSQ, all while not allow unrespon-
sive traffic to gain further advantage over respon-
sive traffic than does the underlying AQM.

6 Future Work

Our current implementation of TSQ uses 4 bits in
the IP header to embed the delay hint, allowing
applications to choose from 16 levels of delay sen-
sitivity. A larger range of delay hints will be avail-
able if more bits are used to embed the delay hint,
but at the cost of more bits of overhead. Hence,
further research is required to determine the ap-
propriate number of bits needed to support a range
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of delay sensitivities without inducing unnecessary
overhead.

Another area of potential future research is in
developing quality metrics. We have devised qual-
ity metrics representative of three applications (in-
teractive audio, interactive video and file transfer),
however, other applications may have different QoS
requirements. In addition, there may be other ways
to quantify QoS, such as taking the average (or the
sum) of the throughput and delay qualities, sug-
gesting further investigation into the quality met-
rics and requirements of other applications on the
Internet is appropriate.

Another possible extension would be to build
applications that can take advantage of TSQ by
dynamically changing their delay hints. These
applications could then evaluate the quality that
they obtained by using their current delay hint
and adapt their delay hint if they are not satisfied
with the QoS received. How rapidly an application
would adapt to changing network QoS would need
to be explored.
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