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February 19, 2004Abstra
tA graph G on n verti
es is 
alled a Dira
 graph if it has minimum degreeat least n=2. The distan
e distG(u; v) is de�ned as the number of edges in ashortest subpath of G joining u and v. In this paper we show that in a Dira
graph G, for every small enough subset A of the verti
es, we 
an distributethe verti
es of A along a Hamiltonian 
y
le C of G in su
h a way that all buttwo pairs of subsequent verti
es of A have pres
ribed distan
es (apart from adi�eren
e of at most 1) along C. More pre
isely we show the following. Thereare "; n0 > 0 su
h that if G is a Dira
 graph on n � n0 verti
es, d is anarbitrary integer with 3 � d � "n=2 and A is an arbitrary subset of the verti
esof G with 2 � jAj = k � "n=d, then for every sequen
e di of integers with3 � di � d; 1 � i � k � 1, there is a Hamiltonian 
y
le C of G and an orderingof the verti
es of A, a1; a2; : : : ; ak, su
h that the verti
es of A are visited in thisorder on C and we havejdistC(ai; ai+1)� dij � 1; for all but one 1 � i � k � 1:
1



1 Introdu
tion1.1 Notation and de�nitionsFor basi
 graph 
on
epts see the monograph of Bollob�as [2℄.+ will sometimes be used for disjoint union of sets. V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A;B;E) denotes a bipartite graph G = (V;E),where V = A+B, and E � A�B. For a graph G and a subset U of its verti
es, GjUis the restri
tion to U of G. N(v) is the set of neighbours of v 2 V . Hen
e the size ofN(v) is jN(v)j = deg(v) = degG(v), the degree of v. Æ(G) stands for the minimum,and �(G) for the maximum degree in G. �(G) is the size of a maximum mat
hing inG. The distan
e distG(u; v) is de�ned as the number of edges in a shortest subpathof G joining u and v. For A � V (G) we write N(A) = \v2AN(v), the set of 
ommonneighbours. N(x; y; z; :::) is shorthand for N(fx; y; z; :::g). For a vertex v 2 V andset U � V � fvg, we write deg(v; U) for the number of edges from v to U . WhenA;B are disjoint subsets of V (G), we denote by e(A;B) the number of edges of Gwith one endpoint in A and the other in B. For non-empty A and B,d(A;B) = e(A;B)jAjjBjis the density of the graph between A and B. In parti
ular, we write d(A) =d(A;A) = 2jE(GjA)j=jAj2.De�nition 1. The bipartite graph G = (A;B;E) is "-regular ifX � A; Y � B; jXj > "jAj; jY j > "jBj imply jd(X; Y )� d(A;B)j < ";otherwise it is "-irregular.We will often say simply that \the pair (A;B) is "-regular" with the graph G impli
it.We will also need a stronger version.De�nition 2. (A;B) is ("; Æ) super-regular if it is "-regular anddeg(a) > ÆjBj 8a 2 A; deg(b) > ÆjAj 8b 2 B:1.2 Distributing verti
es along a Hamiltonian 
y
le in Dira
graphsLet G be a graph on n � 3 verti
es. A Hamiltonian 
y
le (path) of G is a 
y
le(path) 
ontaining every vertex of G. A Hamiltonian graph is a graph 
ontaining2



a Hamiltonian 
y
le. A Hamiltonian-
onne
ted graph is a graph in whi
h everypair of verti
es 
an be 
onne
ted with a Hamiltonian path. A 
lassi
al result ofDira
 [3℄ asserts that if Æ(G) � n=2, then G is Hamiltonian. This result of Dira
 hasgenerated an in
redible amount of resear
h, it has been generalized and strengthenedin numerous ways (see the ex
ellent survey of Gould [4℄).In a re
ent, interesting strengthening of Dira
's Theorem, Kaneko and Yoshimoto[5℄ showed that in a Dira
 graph small subsets of verti
es 
an be somewhat uniformlydistributed along a Hamiltonian 
y
le.Theorem 1. Let G be a graph of order n with Æ(G) � n=2 and let d be a positiveinteger with d � n=4. Then for any vertex set A with at most n=2d verti
es, thereexists a Hamiltonian 
y
le C with distC(u; v) � d for every u and v in A.Note that this result is sharp; the bound on the 
ardinality of A 
annot be in-
reased.In [4℄ Gould 
alled for further studies on density 
onditions that allow the dis-tribution of \small" subsets of verti
es along a Hamiltonian 
y
le. In this paper weshow that with similar 
onditions we 
an not only a
hieve that the distan
e betweentwo subsequent verti
es of A along C is at least d, but a
tually we 
an pres
ribe theexa
t distan
es (apart from a di�eren
e of at most 1) between all but two pairs ofsubsequent verti
es of A along C. More pre
isely we show the following.Theorem 2. There are �; n0 > 0 su
h that if G is a graph on n � n0 verti
es withÆ(G) � n=2, d is an arbitrary integer with 3 � d � �n=2 and A is an arbitrary subsetof the verti
es of G with 2 � jAj = k � �n=d, then for every sequen
e di of integerswith 3 � di � d; 1 � i � k � 1, there is a Hamiltonian 
y
le C of G and an orderingof the verti
es of A, a1; a2; : : : ; ak, su
h that the verti
es of A are visited in this orderon C and we havejdistC(ai; ai+1)� dij � 1; for all but one 1 � i � k � 1:We need the dis
repan
ies by 1 between distC(ai; ai+1) and di be
ause of parityreasons. Indeed, 
onsider the 
omplete bipartite graph between U and V , wherejU j = jV j = n=2. Take A � U , then the distan
e between subsequent verti
es ofA along a Hamiltonian 
y
le is even, and if we have an odd di we 
annot obtain adistan
e with that di.To see that we might need an ex
eptional i for whi
h jdistC(ai; ai+1) � dij > 1,
onsider the following 
onstru
tion. Take two 
omplete graphs on U and V withjU j = jV j = n=2. Let A = A0 [ A00 with A0 � U , A00 � V and jA0j = jA00j = jAj=2,and add the 
omplete bipartite graphs between A0 and V , and between A00 and U .Clearly on any Hamiltonian 
y
le we will have two distan
es mu
h greater than d.We believe that our theorem remains true for greater jAj's as well, but we wereunable to prove a stronger statement. 3



2 The main toolsIn the proof the following lemma of Szemer�edi plays a 
entral role.Lemma 1 (Regularity Lemma [15℄). For every positive " and positive integer mthere are positive integers M and n1 with the following property: for every graph Gwith n � n1 verti
es there is a partition of the vertex set into l + 1 
lasses (
lusters)V = V0 + V1 + V2 + ::: + Vlsu
h that� m � l �M� jV1j = jV2j = ::: = jVlj� jV0j < "n� at most "l2 of the pairs fVi; Vjg are "-irregular.We will use the following simple 
onsequen
e of Lemma 1.Lemma 2 (Degree form). For every " > 0 there is an M = M(") su
h that ifG = (V;E) is any graph and Æ 2 [0; 1℄ is any real number, then there is a partition ofthe vertex-set V into l + 1 
lusters V0; V1; :::; Vl, and there is a subgraph G0 = (V;E 0)with the following properties:� l �M ,� jV0j � "jV j,� all 
lusters Vi; i � 1; are of the same size L � d"jV je.� degG0(v) > degG(v)� (Æ + ")jV j for all v 2 V ,� G0jVi = ; (Vi are independent in G0),� all pairs G0jVi�Vj ; 1 � i < j � l, are "-regular, ea
h with a density either 0 orex
eeding Æ.The other main tool asserts that if (A;B) is a super-regular pair with jAj = jBj andx 2 A; y 2 B, then there is a Hamiltonian path starting with x and ending with y.This is a very spe
ial 
ase of the Blow-up Lemma ([8℄, [9℄). More pre
isely.4



Lemma 3. For every Æ > 0 there are "0; n2 > 0 su
h that if " � "0 and n � n2,G = (A;B) is an ("; Æ) super-regular pair with jAj = jBj = n and x 2 A, y 2 B, thenthere is a Hamiltonian path in G starting with x and ending with y.We will also use two simple P�osa-type lemmas on Hamiltonian-
onne
tedness.The se
ond one is the bipartite version of the �rst one.Lemma 4 (see [1℄). Let G be a graph on n � 3 verti
es with degrees d1 � d2 �: : : � dn su
h that for every 2 � k � n2 we have dk�1 > k. Then G is Hamiltonian-
onne
ted.Lemma 5 (see [1℄). Let G = (A;B) be a bipartite graph with jAj = jBj = n � 2with degrees d1 � d2 � : : : � dn from A and with degrees d01 � d02 � : : : � d0n from B.Suppose that for every 2 � j � n+12 we have dj�1 > j and that for every 2 � k � n+12we have d0k�1 > k. Then G is Hamiltonian-
onne
ted.Finally we will use the following simple fa
t.Lemma 6 (Erd}os, P�osa, see [2℄). Let G be a graph on n verti
es. Then�(G) � minfÆ(G); n� 12 g:In 
ase we have a good upper bound on the maximum degree of G, we 
anstrengthen this lemma in the following way.Lemma 7. In a graph G of order n�(G) � Æ(G) n2(Æ(G) + �(G)) � Æ(G) n4�(G) :In fa
t, let us take a maximal mat
hing M with m edges. Then for the numberof edges E between M and V (G) nM we get Æ(G)(n � 2m) � E � 2m�(G), whi
hproves the lemma.3 Outline of the proofIn this paper we use the Regularity Lemma-Blow-up Lemma method again (see [6℄-[12℄, [14℄). The method is usually applied to �nd 
ertain spanning subgraphs indense graphs. Typi
al examples are spanning trees (Bollob�as-
onje
ture, see [6℄),Hamiltonian 
y
les or powers of Hamiltonian 
y
les (P�osa-Seymour 
onje
ture, see[10, 11℄) or H-fa
tors for a �xed graph H (Alon-Yuster 
onje
ture, see [12℄).5



Let us 
onsider a graph G of order n withÆ(G) � n2 : (1)We will assume throughout the paper that n is suÆ
iently large. We will use thefollowing main parameters 0 < �� "� Æ � �� 1; (2)where a � b means that a is suÆ
iently small 
ompared to b. For simpli
ity we donot 
ompute the a
tual dependen
ies, although it 
ould be done.Let d be an arbitrary integer with 4 � d � �n=2 and let A be an arbitrary subsetof the verti
es of G with 2 � jAj = k � �n=d; (3)Consider an arbitrary sequen
e d = fdij3 � di � d; 1 � i � k � 1g. A 
y
le C in G(or a path P ) is 
alled an (A; d)-
y
le (or an (A; d)-path) if there is an ordering ofthe verti
es of A, a1; a2; : : : ; ak, su
h that the verti
es of A are visited in this orderon C (on P ) and we havejdistC(ai; ai+1)� dij � 1; 1 � i � k � 1:We must show that there is a Hamiltonian 
y
le that is almost an (A; d)-
y
le, namelywe 
an have jdistC(ai; ai+1)� dij > 1for only one 1 � i � k � 1.First in the next se
tion, in the non-extremal part of the proof, we show thisassuming that the following extremal 
ondition does not hold for our graph G. Weshow later in Se
tion 5 that Theorem 2 is true in the extremal 
ase as well.Extremal Condition (EC): There exist (not ne
essarily disjoint) A;B � V (G)su
h that� jAj = jBj = bn2 
, and� d(A;B) < �.In the non-extremal 
ase we apply Lemma 2 for G, with " and Æ as in (2). Weget a partition of V (G0) = [0�i�lVi. We de�ne the following redu
ed graph Gr:The verti
es of Gr are the 
lusters Vi; 1 � i � l; and we have an edge between two
lusters if they form an "-regular pair in G0 with density ex
eeding Æ. Sin
e in G0,Æ(G0) > (12 � (Æ + "))n, an easy 
al
ulation shows that in Gr we haveÆ(Gr) � �12 � 3Æ� l: (4)6



Indeed, be
ause the neighbors of u 2 Vi in G0 
an only be in V0 and in the 
lusterswhi
h are neighbors of Vi in Gr, then for a Vi; 1 � i � l we have:�12 � (Æ + ")�nL � Xu2Vi degG0(u) � "nL+ degGr(Vi)L2:From this we get inequality (4):degGr(Vi) � �12 � Æ � 2"� nL � �12 � 3Æ� l:Applying Lemma 6 we 
an �nd a mat
hing M in Gr of size at least �12 � 3Æ� l.Put jM j = m. Let us put the verti
es of the 
lusters not 
overed by M into theex
eptional set V0. For simpli
ity V0 still denotes the resulting set. ThenjV0j � 6ÆlL+ "n � 7Æn: (5)Denote the i-th pair in M by (V i1 ; V i2 ) for 1 � i � m.The rest of the non-extremal 
ase is organized as follows. In Se
tion 4.1 �rst we�nd an (A; d)-path P . Then in Se
tion 4.2 we �nd short 
onne
ting paths Pi betweenthe 
onse
utive edges in the mat
hing M (for i = m the next edge is i = 1). The �rst
onne
ting path P1 between (V 11 ; V 12 ) and (V 21 ; V 22 ) will also 
ontain P , the othershave length exa
tly 3. In Se
tion 4.3 we will take 
are of the ex
eptional verti
esand make some adjustments by extending some of the 
onne
ting paths so that thedistribution of the remaining verti
es inside ea
h edge in M is perfe
t, i.e. thereare the same number of verti
es left in both 
lusters of the edge. Finally applyingLemma 3 we 
lose the Hamiltonian 
y
le in ea
h edge and thus giving a Hamiltonian(A; d)-
y
le.4 The non-extremal 
aseThroughout this se
tion we assume that the extremal 
ase EC does not hold.4.1 Finding an (A; d)-pathWe are going to use the following fa
t several times.Fa
t 1. If x; y 2 V (G) then there are at least Æn internally disjoint paths of length 3
onne
ting x and y. 7



Indeed, if we 
hoose A � NG(x) with jAj = bn2 
 and B � NG(y) with jBj = bn2 
, thenthe fa
t that EC does not hold implies d(A;B) � � and Fa
t 1 follows.We 
onstru
t an (A; d)-path P = Q1[ : : :[Qk in the following way. Let a1; : : : ; akbe the verti
es of A in an arbitrary order (so note that here a
tually we 
an pres
ribethe order of the verti
es of A as well). First we 
onstru
t a path Q1 of length d1
onne
ting a1 and a2. For this purpose �rst we 
onstru
t greedily a path Q01 startingfrom a1 that has length d1 � 3 ((1) makes this possible). Denote the other endpointof Q01 by a01. Applying Fa
t 1, we 
onne
t a01 and a2 by a path Q001 of length 3 that isinternally disjoint from Q01. Then Q1 = Q01 [Q001 is a path 
onne
ting a1 and a2 withlength d1.We iterate this pro
edure. For the 
onstru
tion of Q2, �rst we greedily 
onstru
ta path Q02 starting from a2 that is internally disjoint from Q1 and has length d2 � 3.Denote the other endpoint of Q02 by a02. Applying Fa
t 1, we 
onne
t a02 and a3 by apath Q002 of length 3 that is internally disjoint from Q1 [ Q02. Then Q2 = Q02 [ Q002 isa path 
onne
ting a2 and a3 with length d2.By iterating this pro
edure we get an (A; d)-path P . (1), (2), (3) and Fa
t 1 implythat we never get stu
k sin
ejV (P )j = k�1Xi=1 di � (k � 1)d � �n� Æn:Observe that here in the non-extremal 
ase there is no dis
repan
y betweendist(ai; ai+1) and di for all 1 � i � k � 1, and furthermore we 
an spe
ify the orderof the verti
es of A as well.4.2 Conne
ting pathsFor the �rst 
onne
ting path P1 between (V 11 ; V 12 ) and (V 21 ; V 22 ), �rst we 
onne
t atypi
al vertex u of V 12 (more pre
isely a vertex u with deg(u; V 11 ) � (Æ� ")jV 11 j, mostverti
es in V 12 satisfy this) and a1 with a path of length 3, and then we 
onne
t akand a typi
al vertex w of V 21 (so deg(w; V 22 ) � (Æ � ")jV 22 j) with a path of length3. To 
onstru
t the se
ond 
onne
ting path P2 between (V 21 ; V 22 ) and (V 31 ; V 32 ) wejust 
onne
t a typi
al vertex of V 22 and a typi
al vertex V 31 with a path of length 3.Continuing in this fashion, �nally we 
onne
t a typi
al vertex of V m2 with a typi
alvertex of V 11 with a path of length 3. Thus P1 has length at most �n + 6, all otherPi-s have length 3.We remove the verti
es on these 
onne
ting paths from the 
lusters, but for sim-pli
ity we keep the notation for the resulting 
lusters. These 
onne
ting paths willbe parts of the �nal Hamiltonian 
y
le. If the number of remaining verti
es (in the
lusters and in V0) is odd, then we take another typi
al vertex w of V 21 and we extend8



P1 by a path of length 3 that ends with w. So we may always assume that the numberof remaining verti
es is even.4.3 Adjustments and the handling of the ex
eptional verti
esWe already have an ex
eptional set V0 of verti
es in G. We add some more verti
esto V0 to a
hieve super-regularity. From V i1 (and similarly from V i2 ) we remove allverti
es u for whi
h deg(u; V i2 ) < (Æ � ")jV i2 j. "-regularity guarantees that at most"jV i1 j � "L su
h verti
es exist in ea
h 
luster V i1 .Thus using (5), we still havejV0j � 7Æn+ 2"n � 9Æn:Sin
e we are looking for a Hamiltonian 
y
le, we have to in
lude the verti
es of V0 onthe Hamiltonian 
y
le as well. We are going to extend some of the 
onne
ting pathsPi, so now they are going to 
ontain the verti
es of V0. Let us 
onsider the �rst vertex(in an arbitrary ordering of the verti
es in V0) w in V0. We �nd a pair (V i1 ; V i2 ) su
hthat either deg(w; V i1 ) � ÆjV i1 j; (6)or deg(w; V i2 ) � ÆjV i2 j: (7)We assign w to the pair (V i1 ; V i2 ). We extend Pi�1 (for i = 1, Pm) in (V i1 ; V i2 ) by apath of length 3 in 
ase (6) holds, and by a path of length 4 in 
ase (7) holds, sothat now the path ends with w. To �nish the pro
edure for w, in 
ase (6) holds weadd one more vertex w0 to Pi�1 after w su
h that (w;w0) 2 E(G) and w0 is a typi
alvertex of V i1 , so deg(w0; V i2 ) � (Æ� ")jV i2 j. In 
ase (7) holds we add two more verti
esw0; w00 to Pi�1 after w su
h that (w;w0); (w0; w00) 2 E(G), w0 is a typi
al vertex of V i2and w00 is a typi
al vertex of V i1 .After handling w, we repeat the same pro
edure for the other verti
es in V0.However, we have to pay attention to several te
hni
al details. First, of 
ourse inrepeating this pro
edure we always 
onsider the remaining free verti
es in ea
h 
luster;the verti
es on the 
onne
ting paths are always removed. Se
ond, we make sure thatwe never assign too many verti
es of V0 to one pair (V i1 ; V i2 ). It is not hard to see(using (1) and Æ � 1) that we 
an guarantee that we always assign at most pÆjV i1 jverti
es of V0 to a pair (V i1 ; V i2 ). Finally, sin
e we are removing verti
es from a pair(V i1 ; V i2 ), we might violate the super-regularity. Note that we never violate the "-regularity. Therefore, we do the following. After handling (say) bÆ2n
 verti
es fromV0, we update V0 as follows. In a pair (V i1 ; V i2 ) we remove all verti
es u from V i1 (andsimilarly from V i2 ) for whi
h deg(u; V i2 ) < (Æ � ")jV i2 j (again, we 
onsider only the9



remaining verti
es). Again, we added at most 2"n verti
es to V0. In V0 we handlethese verti
es �rst and then we move on to the other verti
es in V0.After we are done with all the verti
es in V0, we might have a small dis
repan
y(� 2pÆjV i1 j) among the remaining verti
es in V i1 and in V i2 in a pair. Therefore, wehave to make some adjustments. Let us take a pair (V i1 ; V i2 ) with a dis
repan
y � 2(if one su
h pair exists), say jV i1 j � jV i2 j+ 2 (only remaining verti
es are 
onsidered).Using the fa
t that EC does not hold we �nd an alternating path (with respe
t toM) in Gr of length 6 starting with V i1 and ending with V i2 . Let us denote this pathby V i1 ; V i12 ; V i11 ; V i21 ; V i22 ; V i1 ; V i2(the 
onstru
tion is similar if the 
lusters in (V i11 ; V i12 ) or in (V i21 ; V i22 ) are visited indi�erent order). We remove a typi
al vertex from V i1 and we add it to V i11 , then weremove a typi
al vertex from V i11 and we add it to V i22 , �nally we remove a typi
alvertex from V i22 and we add it to V i2 . When we add a new vertex to a pair (V j1 ; V j2 ),we extend the 
onne
ting path Pj�1 by a path of length 4 in the pair so that it nowin
ludes the new vertex.Now we are one step 
loser to the perfe
t distribution, and by iterating this pro-
edure we 
an assure that the dis
repan
y in every pair is � 1. We 
onsider onlythose pairs for whi
h the dis
repan
y is exa
tly 1, so in parti
ular the number ofremaining verti
es in one su
h a pair is odd. From the 
onstru
tion it follows that wehave an even number of su
h pairs. We pair up these pairs arbitrarily. If (V i1 ; V i2 ) and(V j1 ; V j2 ) is one su
h pair with jV i1 j = jV i2 j+1 and jV j1 j = jV j2 j+1 (otherwise similar),then similar to the 
onstru
tion above, we �nd an alternating path in Gr of length6 between V i1 and V j2 , and we move a typi
al vertex of V i1 through the intermediate
lusters to V j2 .Thus we may assume that the distribution is perfe
t, in every pair (V i1 ; V i2 ) wehave the same number of verti
es left. In this 
ase Lemma 3 
loses the Hamiltonian
y
le in every pair.5 The extremal 
aseFirst we assume that we have the following spe
ial 
ase.Case 1: There is a partition V (G) = A1 [A2 with jA1j = bn2 
 and d(A1) < �1=3.Note that in this 
ase from (1) we also have d(A1; A2) > 1� �1=3. Thus, roughlyspeaking in this 
ase we have very few edges in GjA1, and we have an almost 
ompletebipartite graph between A1 and A2.A vertex v 2 Ai; i 2 f1; 2g, is 
alled ex
eptional if it is not 
onne
ted to most of10



the verti
es in the other set, more pre
isely if we havedeg(v; Ai0) � �1� �1=6� jAi0 j; fi; i0g = f1; 2g:Note that (1) implies that if v 2 Ai is ex
eptional, thendeg(v; Ai) � �1=6jAij:But then sin
e d(A1; A2) > 1� �1=3, we get that the number of ex
eptional verti
esin Ai is at most � 16 jAij. We remove the ex
eptional verti
es from ea
h set and addthem to A2 if they have more neighbors in A1, and add them to A1 if they havemore neighbors in A2. We still denote the resulting sets by A1 and A2. Assume thatjA1j � jA2j, so jA2j � jA1j = r, where 0 � r � 2�1=6jA2j. In GjA1�A2 apart from atmost 2�1=6jA2j ex
eptional verti
es all the degrees are at least (1 � 3�1=6)jA2j, andthe degrees of the ex
eptional verti
es are at least jA2j=3.Our goal is to a
hieve r = 0. If there is a vertex x 2 A2 for whi
hdeg(x;A2) � �1=7jA2j; (8)then we remove x from A2 and add it to A1. We iterate this pro
edure until eitherthere are no more verti
es in A2 satisfying (8) or jA1j = jA2j. Assume that we havethe �rst 
ase. Sin
e we have �(GjA2) < �1=7jA2j, (1) and Lemma 7 imply that GjA2has an r-mat
hing M denoted by fu1; v1g; : : : ; fur; vrg. Furthermore, for every edgein M we 
an guarantee that at least one of the endpoints (say ui) is not in A. Thismat
hing M will be used to balan
e the dis
repan
y between jA1j and jA2j.Note that in GjA1�A2 the degrees of the ex
eptional verti
es are still mu
h morethan the number of these ex
eptional verti
es. These degree 
onditions and (2) implythe following fa
t (similar to Fa
t 1).Fa
t 2. If x; y 2 A1 then in GjAi�A2 there are at least Æn internally disjoint pathsof length 4 
onne
ting x and y. If x; y 2 A2 then in GjAi�A2 there are at least Æninternally disjoint paths of length 2 
onne
ting x and y. If x 2 Ai, y 2 Ai0 then inGjAi�A2 there are at least Æn internally disjoint paths of length 3 
onne
ting x and y.Let A be an arbitrary subset of the verti
es of G satisfying (3). In this 
ase we
onstru
t the desired Hamiltonian 
y
le in the following way. First by using Fa
t 2and a similar pro
edure as in Se
tion 4.1 we �nd in GjA1�A2 an (A; d)-pathP = P (a1; ak) = Q1 [ : : : [Qk
onne
ting the verti
es a1 and ak. The only di�eren
e from Se
tion 4.1 is that herebe
ause of parity reasons we might have distC(ai; ai+1) = di + 1. Indeed, �rst we11




onstru
t a path Q1 of length d1 or d1 + 1 
onne
ting a1 and a2. If a1 is 
overed byan edge of M , say a1 = vi, then we start Q1 with the edge fvi; uig (note that ui 62 A).If d1 = 3, then to get Q1 we 
onne
t ui and a2 in GjA1�A2 by a path of length 2 in
ase a2 2 A2, and by a path of length 3 in 
ase a2 2 A1. If d1 > 3, then we greedily
onstru
t a path Q01 that has length d1�3, starts with the edge fvi; uig and 
ontinuesin GjA1�A2. Denote the other endpoint of Q01 by a01. Applying Fa
t 2, we 
onne
t a01and a2 by a path Q001 of length 3 in 
ase they are in di�erent sets, and by a path oflength 4 in 
ase they are in the same set. Then Q1 = Q01 [ Q001 is a path 
onne
tinga1 and a2 with length d1 or d1 + 1.We iterate this pro
edure; we 
onstru
t Q2; : : : ; Qk similarly and thus we getP = Q1 [ : : : [Qk. Say the remaining edges of M whi
h are not traversed by P arefui1; vi1g; : : : ; fuir0 ; vir0g for 0 � r0 � r:Then we 
onne
t the endpoint ak of P and ui1 by a path Q1 of length 2 or 3,
onne
t vi1 and ui2 by a path Q2 of length 2, et
. Finally 
onne
t vir0�1 and uir0 by apath Qr0 of length 2. Consider the following path.P 0 = (P;Q1; fui1; vi1g; Q2; fui2; vi2g; : : : ; Qr0; fuir0 ; vir0g):In 
ase a1 2 A2, add one more vertex from A1 to the end of the path. Remove P 0from GjA1�A2 apart from the endverti
es a1 and vir0 . From (2), (3) and the degree
onditions we get that the resulting graph satis�es the 
onditions of Lemma 5 andthus it is Hamiltonian-
onne
ted. This 
loses the desired Hamiltonian 
y
le. For thispurpose we 
ould also use Lemma 3, the remaining bipartite graph is super-regularwith the appropriate 
hoi
e of parameters, but here the mu
h simpler Lemma 5 alsosuÆ
es. Note also that here we have no ex
eptional i, so we havejdistC(ai; ai+1)� dij � 1 for all 1 � i � k � 1:Case 2: Assume next that we have a partition V (G) = A1 [ A2 with jA1j = bn2 
and d(A1; A2) < �1=3. Thus roughly speaking, GjA1 and GjA2 are almost 
ompleteand the bipartite graph between A1 and A2 is sparse.Again we de�ne ex
eptional verti
es v 2 Ai; i 2 f1; 2g, asdeg(v; Ai0) � �1=6jAi0 j; fi; i0g = f1; 2g:Note that again the number of ex
eptional verti
es in Ai is at most �1=6jAij. Weremove the ex
eptional verti
es from ea
h set and add them to the set where they havemore neighbors. We still denote the sets by A1 and A2. Thus in GjAi; i 2 f1; 2g, apartfrom at most 2�1=6jAij ex
eptional verti
es all the degrees are at least (1�2�1=6)jAij,and the degrees of the ex
eptional verti
es are at least jAij=3. These degree 
onditionsand (2) imply the following fa
t (similar to Fa
ts 1 and 2).12



Fa
t 3. If x; y 2 Ai then in GjAi there are at least Æn internally disjoint paths of length3 
onne
ting x and y. Furthermore, if at least one of the verti
es x and y is non-ex
eptional then there are at least Æn internally disjoint paths of length 2 
onne
tingx and y.Assume that jA1j � jA2j. Let A be an arbitrary subset of the verti
es of Gsatisfying (3). PutA0 = A \ A1; A00 = A \ A2; k0 = jA0j; k00 = jA00j;d0 = fdi j 1 � i � k0 � 1g and d00 = fdi j k0 + 1 � i � k � 1g:We show that we 
an �nd two vertex disjoint edges (
alled bridges) fu1; v1g,fu2; v2g in GjA1�A2 su
h that for both of these bridges at least one of the endpoints(say ui) is non-ex
eptional and it is not in A. This is trivial if jA1j < jA2j, sin
e thenfor every u 2 A1 we have deg(u;A2) � 2. Thus we may assume that jA1j = jA2j.But then for every u 2 A1 we have deg(u;A2) � 1 and for every v 2 A2 we havedeg(v; A1) � 1, and thus again we 
an pi
k the two bridges.We distinguish two sub
ases.Sub
ase 2.1: u1 and u2 are in di�erent sets, say u1 2 A1 n A0 and u2 2 A2 n A00.Here we 
onstru
t the desired Hamiltonian 
y
le in the following way. First by usingFa
t 3 and a similar pro
edure as in Se
tion 4.1 we �nd in GjA1 an (A0; d0)-pathP 0 = P 0(a1; v2) with endpoints a1 2 A and v2 (if v2 2 A0 then this is just the lastvertex v2 = ak0 from A on the path, otherwise we 
onne
t the last vertex ak0 and v2by a path of length 3). Similarly we �nd in GjA2 an (A00; d00)-path P 00 = P 00(ak0+1; v1)with endpoints ak0+1 2 A and v1. Then in GjA1 we remove the path P 0 apart fromthe endvertex a1. From (2), (3) and the degree 
onditions we get that the resultinggraph satis�es the 
onditions of Lemma 4 and thus it is Hamiltonian-
onne
ted.Take a Hamiltonian path P1 = P1(u1; a1) with endpoints u1 and a1. Similarly in GjA2we remove the path P 00 apart from the endvertex ak0+1 and we �nd a Hamiltonianpath P2 = P2(u2; ak0+1) with endpoints u2 and ak0+1. Then in this 
ase the desiredHamiltonian 
y
le C is the following.C = (P 0; fv2; u2g; P2; P 00; fv1; u1g; P1):Note that here a
tually in C we havedistC(ai; ai+1) = di for all 1 � i � k0 � 1 and k0 + 1 � i � k � 1:However, distC(ak0; ak0+1) 
ould be very di�erent from dk0.Sub
ase 2.2: u1 and u2 are in the same set (say A1). Here we do the following.We may assume that v1; v2 2 A00, sin
e otherwise we are ba
k to Sub
ase 2.1. We13



denote v2 by ak0+1 and v1 by ak. First we �nd in GjA1 again an (A0; d0)-path P 0 =P 0(a1; ak0) with endpoints a1 and ak0 . We 
onne
t ak0 and u2 with a path Q =Q(ak0; u2) of length dk0 � 1 that is internally disjoint from P 0 and u1. The degree
onditions guarantee that this is possible (even if dk0 = 3, sin
e u2 is non-ex
eptional).Then we remove P 0 and Q from GjA1 apart from the endvertex a1 and we �nd aHamiltonian path P1 = P1(u1; a1) with endpoints u1 and a1. De�neA000 = A00 n fakg and d000 = fdi j k0 + 1 � i � k � 2g = d00 n fdk�1g:We �nd in GjA2 an (A000; d000)-path P 00 = P 00(ak0+1; ak�1) with endpoints ak0+1 and ak�1.We remove P 00 from GjA2 apart from the endvertex ak�1 and we �nd a Hamiltonianpath P2 = P2(ak�1; v1) with endpoints ak�1 and v1 = ak. Then in this 
ase theHamiltonian 
y
le C is the following.C = (P 0; Q; fu2; v2g; P 00; P2; fv1; u1g; P1):Note that here a
tually in C we havedistC(ai; ai+1) = di for all 1 � i � k � 2;but distC(ak�1; ak) 
ould be very di�erent from dk�1.Case 3: Assume �nally that the extremal 
ase EC holds, so we have A;B � V (G),jAj = jBj = bn2 
 and d(A;B) < �. We have three possibilities.� jA \ Bj < p�n. The statement follows from Case 2. Indeed, let A1 = A,A2 = V (G) n A1, then 
learly d(A1; A2) < �1=3 if �� 1 holds.� p�n � jA \ Bj < (1 � p�)n2 . This 
ase is not possible under the given
onditions. In fa
t, otherwise we would getjA \ Bjn2 � Xu2A\B degG(u) = Xu2A\B degG(u;A [ B)+ Xu2A\B degG(u; V (G) n (A [ B)) �� 2�n2 + jA \ Bj (jA \ Bj+ 1) ;or jA \ Bj�n2 � jA \ Bj � 1� � 2�n2;a 
ontradi
tion under the given 
onditions.� jA \Bj � (1�p�)n2 . The statement follows from Case 1 by 
hoosing A1 = A,A2 = V (G) n A1, and then d(A1) < �1=3.This �nishes the extremal 
ase and the proof of Theorem 2.14
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