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Abstract

A graph G on n vertices is called a Dirac graph if it has minimum degree
at least n/2. The distance distg(u,v) is defined as the number of edges in a
shortest subpath of G joining u and v. In this paper we show that in a Dirac
graph G, for every small enough subset A of the vertices, we can distribute
the vertices of A along a Hamiltonian cycle C' of G in such a way that all but
two pairs of subsequent vertices of A have prescribed distances (apart from a
difference of at most 1) along C. More precisely we show the following. There
are g,ng > 0 such that if G is a Dirac graph on n > ng vertices, d is an
arbitrary integer with 3 < d < en/2 and A is an arbitrary subset of the vertices
of G with 2 < |A| = k < en/d, then for every sequence d; of integers with
3<d; <d,1<i<k—1, there is a Hamiltonian cycle C' of G and an ordering
of the vertices of A, ay,as,...,a, such that the vertices of A are visited in this
order on C and we have

\disto(ag, aiy1) —d;| <1, for all but one 1 <i<k—1.



1 Introduction

1.1 Notation and definitions

For basic graph concepts see the monograph of Bollobés [2].

+ will sometimes be used for disjoint union of sets. V(G) and E(G) denote the vertex-
set and the edge-set of the graph G. (A, B, E') denotes a bipartite graph G = (V, E),
where V.= A+ B, and E C A x B. For a graph GG and a subset U of its vertices, G|
is the restriction to U of G. N(v) is the set of neighbours of v € V. Hence the size of
N(v)is [N(v)| = deg(v) = dega(v), the degree of v. §(G) stands for the minimum,
and A(G) for the maximum degree in G. v(G) is the size of a maximum matching in
G. The distance distg(u,v) is defined as the number of edges in a shortest subpath
of G joining u and v. For A C V(G) we write N(A) = Nye4N(v), the set of common
neighbours. N(z,y, z,...) is shorthand for N({xz,y, z,...}). For a vertex v € V and
set U C V —{v}, we write deg(v, U) for the number of edges from v to U. When
A, B are disjoint subsets of V(G), we denote by e(A, B) the number of edges of G
with one endpoint in A and the other in B. For non-empty A and B,

e(A, B)

d(A, B) =
4B =118

is the density of the graph between A and B. In particular, we write d(A4) =
d(A, A) = 2|E(Gla)|/|AP.

Definition 1. The bipartite graph G = (A, B, E) is e-regular if
X CA YCB, |X|>c¢Al, |Y|>¢e|B| imply |d(X,Y)—d(A, B)|<e,
otherwise it is e-irreqular.

We will often say simply that “the pair (A, B) is e-regular” with the graph G implicit.
We will also need a stronger version.

Definition 2. (A, B) is (¢,0) super-regular if it is e-reqular and

deg(a) > 0|B| Ya € A, deg(b) > 6|A| Vb € B.

1.2 Distributing vertices along a Hamiltonian cycle in Dirac
graphs

Let G be a graph on n > 3 vertices. A Hamiltonian cycle (path) of G is a cycle
(path) containing every vertex of G. A Hamiltonian graph is a graph containing



a Hamiltonian cycle. A Hamiltonian-connected graph is a graph in which every
pair of vertices can be connected with a Hamiltonian path. A classical result of
Dirac [3] asserts that if §(G)) > n/2, then G is Hamiltonian. This result of Dirac has
generated an incredible amount of research, it has been generalized and strengthened
in numerous ways (see the excellent survey of Gould [4]).

In a recent, interesting strengthening of Dirac’s Theorem, Kaneko and Yoshimoto
[5] showed that in a Dirac graph small subsets of vertices can be somewhat uniformly
distributed along a Hamiltonian cycle.

Theorem 1. Let G be a graph of order n with §(G) > n/2 and let d be a positive
integer with d < n/4. Then for any vertexr set A with at most n/2d vertices, there
exists a Hamiltonian cycle C with distc(u,v) > d for every u and v in A.

Note that this result is sharp; the bound on the cardinality of A cannot be in-
creased.

In [4] Gould called for further studies on density conditions that allow the dis-
tribution of “small” subsets of vertices along a Hamiltonian cycle. In this paper we
show that with similar conditions we can not only achieve that the distance between
two subsequent vertices of A along C'is at least d, but actually we can prescribe the
exact distances (apart from a difference of at most 1) between all but two pairs of
subsequent vertices of A along C'. More precisely we show the following.

Theorem 2. There are k,ng > 0 such that if G is a graph on n > ng vertices with
3(G) > n/2, d is an arbitrary integer with 3 < d < kn/2 and A is an arbitrary subset
of the vertices of G with 2 < |A| = k < kn/d, then for every sequence d; of integers
with 3 < d; <d,1 <i<k—1, there is a Hamiltonian cycle C' of G and an ordering
of the vertices of A, ay,as, ..., ay, such that the vertices of A are visited in this order
on C' and we have

disto(a;, aip1) — d;i| < 1, for all but one 1 < i<k —1.

We need the discrepancies by 1 between dists(a;, a;41) and d; because of parity
reasons. Indeed, consider the complete bipartite graph between U and V', where
|U| = |V| = n/2. Take A C U, then the distance between subsequent vertices of
A along a Hamiltonian cycle is even, and if we have an odd d; we cannot obtain a
distance with that d;.

To see that we might need an exceptional i for which |distc(a;, a;41) — di| > 1,
consider the following construction. Take two complete graphs on U and V with
Ul = V]| =n/2. Let A=A"UA" with A’ C U, A” C V and |A'| = |A"| = |A|/2,
and add the complete bipartite graphs between A’ and V', and between A” and U.
Clearly on any Hamiltonian cycle we will have two distances much greater than d.

We believe that our theorem remains true for greater |A|'s as well, but we were
unable to prove a stronger statement.



2 The main tools

In the proof the following lemma of Szemerédi plays a central role.

Lemma 1 (Regularity Lemma [15]). For every positive € and positive integer m
there are positive integers M and ny with the following property: for every graph G
with n > ny vertices there is a partition of the vertex set into | + 1 classes (clusters)

V=W+Vi+V+.+V
such that
e m<I<M
o [Vil=|=..=V
e |Vhl<en
e at most el? of the pairs {V;,V;} are e-irregular.
We will use the following simple consequence of Lemma 1.

Lemma 2 (Degree form). For every ¢ > 0 there is an M = M(e) such that if
G = (V. E) is any graph and 6 € [0, 1] is any real number, then there is a partition of
the vertex-set V into | + 1 clusters Vy, Vi, ..., Vi, and there is a subgraph G' = (V, E')
with the following properties:

o [ < M,

Vol <elV],

e all clusters V;, i > 1, are of the same size L < []|V]].
o dege(v) > dega(v) — (6 +¢)|V| forall veV,

o (¢

v, =0 (Vi are independent in G'),

e all pairs G’
exceeding 0.

vixvy, 1 <1< j <, are e-reqular, each with a density either 0 or

The other main tool asserts that if (A, B) is a super-regular pair with |A| = |B| and
x € A,y € B, then there is a Hamiltonian path starting with x and ending with .
This is a very special case of the Blow-up Lemma ([8], [9]). More precisely.



Lemma 3. For every 6 > 0 there are eq,no > 0 such that if ¢ < ¢ and n > no,
G = (A, B) is an (g,0) super-reqular pair with |A| = |B| =n and v € A, y € B, then
there i1s a Hamiltonian path in G starting with x and ending with y.

We will also use two simple Pdsa-type lemmas on Hamiltonian-connectedness.
The second one is the bipartite version of the first one.

Lemma 4 (see [1]). Let G be a graph on n > 3 wvertices with degrees di < dy <
... < dy such that for every 2 < k < 5 we have dy—y > k. Then G is Hamiltonian-
connected.

Lemma 5 (see [1]). Let G = (A, B) be a bipartite graph with |A| = |B] = n > 2
with degrees dy < dy < ...<d, from A and with degrees d| < d,, < ... <d! from B.
Suppose that for every 2 < j < ”TH we have d;j_y > j and that for every 2 < k < ”TH
we have dj,_; > k. Then G is Hamiltonian-connected.

Finally we will use the following simple fact.
Lemma 6 (Erdds, Pésa, see [2]). Let G be a graph on n vertices. Then

n—1

v(G) > min{é(G), 5

}.

In case we have a good upper bound on the maximum degree of G, we can
strengthen this lemma in the following way.

Lemma 7. In a graph G of order n

n n

V@) 20 s ae 2 Yiaa)r

In fact, let us take a maximal matching M with m edges. Then for the number
of edges F between M and V(G)\ M we get 6(G)(n — 2m) < E < 2mA(G), which
proves the lemma.

3 Outline of the proof

In this paper we use the Regularity Lemma-Blow-up Lemma method again (see [6]-
[12], [14]). The method is usually applied to find certain spanning subgraphs in
dense graphs. Typical examples are spanning trees (Bollobas-conjecture, see [6]),
Hamiltonian cycles or powers of Hamiltonian cycles (Pdsa-Seymour conjecture, see
[10, 11]) or H-factors for a fixed graph H (Alon-Yuster conjecture, see [12]).



Let us consider a graph G of order n with

5(G) > =. (1)

We will assume throughout the paper that n is sufficiently large. We will use the
following main parameters

o3

I<h<Kegd<akl, (2)

where a < b means that « is sufficiently small compared to b. For simplicity we do
not compute the actual dependencies, although it could be done.
Let d be an arbitrary integer with 4 < d < kn/2 and let A be an arbitrary subset
of the vertices of G with
2 <|A| =k < kn/d, (3)

Consider an arbitrary sequence d = {d;|3 < d; < d,1 <i <k —1}. Acycle C'in G
(or a path P) is called an (A, d)-cycle (or an (A, d)-path) if there is an ordering of
the vertices of A, ay,as....,a;, such that the vertices of A are visited in this order
on C' (on P) and we have

\distc(ai,aiﬂ) — dz‘ S 1, 1 S 1 S k—1.

We must show that there is a Hamiltonian cycle that is almost an (A, d)-cycle, namely
we can have
|di$tc(ai, CLZ'+1) — dz‘ >1

foronly one 1 < <k —1.

First in the next section, in the non-extremal part of the proof, we show this
assuming that the following extremal condition does not hold for our graph GG. We
show later in Section 5 that Theorem 2 is true in the extremal case as well.

Extremal Condition (EC): There exist (not necessarily disjoint) A, B C V(G)
such that

o [Al=|B|=[3], and
e d(A, B) < a.

In the non-extremal case we apply Lemma 2 for GG, with ¢ and 0 as in (2). We
get a partition of V(G') = Up<i</V;. We define the following reduced graph G,:
The vertices of G, are the clusters V;, 1 < i <[, and we have an edge between two
clusters if they form an e-regular pair in G’ with density exceeding §. Since in G’,

6(G') > (3 — (6 + £))n, an easy calculation shows that in G, we have

5(G,) > (% - 35) I (4)
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Indeed, because the neighbors of u € V; in G’ can only be in V; and in the clusters
which are neighbors of V; in GG, then for a V;,1 <1 <[ we have:

1
<§ — (6 + s)> nL < Y dege (u) < enl + degg, (V;)L?.

ueV;

From this we get inequality (4):
1 n 1
d > (=—0—-2e)—=>(=—30])1
¢9a, (Vi) 2 <2 5) L= (2 k >

Applying Lemma 6 we can find a matching M in G, of size at least (% — 36) [.
Put |M| = m. Let us put the vertices of the clusters not covered by M into the
exceptional set Vj. For simplicity Vy still denotes the resulting set. Then

|Vo| < 66IL +en < Ton. (5)

Denote the i-th pair in M by (V{,VJ) for 1 <i < m.

The rest of the non-extremal case is organized as follows. In Section 4.1 first we
find an (A, d)-path P. Then in Section 4.2 we find short connecting paths P; between
the consecutive edges in the matching M (for i = m the next edge is i = 1). The first
connecting path P, between (V' V') and (V{#,V3?) will also contain P, the others
have length exactly 3. In Section 4.3 we will take care of the exceptional vertices
and make some adjustments by extending some of the connecting paths so that the
distribution of the remaining vertices inside each edge in M is perfect, i.e. there
are the same number of vertices left in both clusters of the edge. Finally applying

Lemma 3 we close the Hamiltonian cycle in each edge and thus giving a Hamiltonian
(A, d)-cycle.

4 The non-extremal case
Throughout this section we assume that the extremal case EC does not hold.
4.1 Finding an (A, d)-path

We are going to use the following fact several times.

Fact 1. If v,y € V(G) then there are at least on internally disjoint paths of length 3
connecting v and y.



Indeed, if we choose A C Ng(x) with [A] = |5 ]| and B C Ng(y) with |B| = |5, then
the fact that EC does not hold implies d(A, B) > « and Fact 1 follows.

We construct an (A, d)-path P = Q,U...UQy in the following way. Let aq, ..., a
be the vertices of A in an arbitrary order (so note that here actually we can prescribe
the order of the vertices of A as well). First we construct a path @; of length d;
connecting a; and as. For this purpose first we construct greedily a path @) starting
from a, that has length d; — 3 ((1) makes this possible). Denote the other endpoint
of Q) by a)j. Applying Fact 1, we connect a} and ay by a path @Y of length 3 that is
internally disjoint from Q7. Then @, = Q) U QY is a path connecting a; and a, with
length d;.

We iterate this procedure. For the construction of (), first we greedily construct
a path @), starting from a, that is internally disjoint from ); and has length dy — 3.
Denote the other endpoint of @, by a). Applying Fact 1, we connect a), and az by a
path @} of length 3 that is internally disjoint from ¢y U Q. Then @y = Q) U Q5 is
a path connecting as and az with length d.

By iterating this procedure we get an (A, d)-path P. (1), (2), (3) and Fact 1 imply
that we never get stuck since

k-1
V(P) =Y di <(k-1)d < kn < én.

i=1

Observe that here in the non-extremal case there is no discrepancy between
dist(a;, a;11) and d; for all 1 < i < k — 1, and furthermore we can specify the order
of the vertices of A as well.

4.2 Connecting paths

For the first connecting path P; between (V! V3l) and (V2 V), first we connect a
typical vertex u of V3! (more precisely a vertex u with deg(u, Vi!) > (6 — £)|V;!], most
vertices in V' satisfy this) and a; with a path of length 3, and then we connect a,
and a typical vertex w of Vi (so deg(w, Vi) > (6 — ¢)|V5|) with a path of length
3. To construct the second connecting path P, between (V2 V}) and (V2 V3}) we
just connect a typical vertex of V> and a typical vertex V;® with a path of length 3.
Continuing in this fashion, finally we connect a typical vertex of V" with a typical
vertex of Vi with a path of length 3. Thus P; has length at most xkn + 6, all other
P;-s have length 3.

We remove the vertices on these connecting paths from the clusters, but for sim-
plicity we keep the notation for the resulting clusters. These connecting paths will
be parts of the final Hamiltonian cycle. If the number of remaining vertices (in the
clusters and in V}) is odd, then we take another typical vertex w of V;? and we extend



P, by a path of length 3 that ends with w. So we may always assume that the number
of remaining vertices is even.

4.3 Adjustments and the handling of the exceptional vertices

We already have an exceptional set V of vertices in G. We add some more vertices
to Vj to achieve super-regularity. From V) (and similarly from VJ') we remove all
vertices u for which deg(u, Vy) < (8 — )|V3|. e-regularity guarantees that at most
e|V}| < €L such vertices exist in each cluster V.

Thus using (5), we still have

Vol < 76n + 2en < 96n.

Since we are looking for a Hamiltonian cycle, we have to include the vertices of V{, on
the Hamiltonian cycle as well. We are going to extend some of the connecting paths
P;, so now they are going to contain the vertices of V4. Let us consider the first vertex
(in an arbitrary ordering of the vertices in Vg) w in V;. We find a pair (V{, V3) such
that either

deg(w, Vi) > 6|V, (6)

or

deg(w, Vi) = 3|V;|. (7)

We assign w to the pair (V}, V). We extend P, ; (for i = 1, P,,) in (V,V{) by a
path of length 3 in case (6) holds, and by a path of length 4 in case (7) holds, so
that now the path ends with w. To finish the procedure for w, in case (6) holds we
add one more vertex w' to P,_; after w such that (w,w') € E(G) and w' is a typical
vertex of V{, so deg(w', V) > (6 —)|V3|. In case (7) holds we add two more vertices
w', w" to Py after w such that (w,w'), (w',w") € E(G), w' is a typical vertex of Vy
and w" is a typical vertex of V.

After handling w, we repeat the same procedure for the other vertices in V4.
However, we have to pay attention to several technical details. First, of course in
repeating this procedure we always consider the remaining free vertices in each cluster;
the vertices on the connecting paths are always removed. Second, we make sure that
we never assign too many vertices of V4 to one pair (V{,V4). It is not hard to see
(using (1) and § < 1) that we can guarantee that we always assign at most /5|V/|
vertices of Vg to a pair (V/, V;). Finally, since we are removing vertices from a pair
(Vi, V4), we might violate the super-regularity. Note that we never violate the e-
regularity. Therefore, we do the following. After handling (say) |§°n| vertices from
Vo, we update Vj as follows. In a pair (V}, V3') we remove all vertices u from V; (and
similarly from V3) for which deg(u,Vy) < (6 — €)|V4| (again, we consider only the



remaining vertices). Again, we added at most 2en vertices to V5. In Vy we handle
these vertices first and then we move on to the other vertices in Vj.

After we are done with all the vertices in Vj, we might have a small discrepancy
(< 2v/6|V7|) among the remaining vertices in V{ and in VJ in a pair. Therefore, we
have to make some adjustments. Let us take a pair (V/,V)) with a discrepancy > 2
(if one such pair exists), say |V}| > |V| + 2 (only remaining vertices are considered).
Using the fact that EC does not hold we find an alternating path (with respect to
M) in G, of length 6 starting with V and ending with V. Let us denote this path
by

‘/Yf? ‘/221’ ‘/1Z17 ‘/vllz’ ‘/;27 ‘/117 ‘/QZ

(the construction is similar if the clusters in (V;*, V') or in (V{?,V,?) are visited in
different order). We remove a typical vertex from V} and we add it to V', then we
remove a typical vertex from Vi and we add it to Vy?2, finally we remove a typical
vertex from V52 and we add it to VJ. When we add a new vertex to a pair (Vlj, VZj),
we extend the connecting path P;_; by a path of length 4 in the pair so that it now
includes the new vertex.

Now we are one step closer to the perfect distribution, and by iterating this pro-
cedure we can assure that the discrepancy in every pair is < 1. We consider only
those pairs for which the discrepancy is exactly 1, so in particular the number of
remaining vertices in one such a pair is odd. From the construction it follows that we
have an even number of such pairs. We pair up these pairs arbitrarily. If (V/, V) and
(V{, Vi) is one such pair with [V}| = |V{|+1 and |[V/| = [V{| + 1 (otherwise similar),
then similar to the construction above, we find an alternating path in G, of length
6 between V] and sz, and we move a typical vertex of V; through the intermediate
clusters to VQj.

Thus we may assume that the distribution is perfect, in every pair (V/,VJ) we
have the same number of vertices left. In this case Lemma 3 closes the Hamiltonian
cycle in every pair.

5 The extremal case

First we assume that we have the following special case.

Case 1: There is a partition V(G) = A; U A, with [4;| = [2] and d(A;) < o'/,

Note that in this case from (1) we also have d(A;, Ay) > 1 — o'/, Thus, roughly
speaking in this case we have very few edges in G|4,, and we have an almost complete
bipartite graph between A; and A,.

A vertex v € A;,i € {1,2}, is called exceptional if it is not connected to most of
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the vertices in the other set, more precisely if we have
deg(v. Av) < (1—a'/%) |Ay], {i.d'} = {1.2}.
Note that (1) implies that if v € A; is exceptional, then
deg(v, A;) > a'/%| 4;].

But then since d(A;, Ay) > 1 — a'/3, we get that the number of exceptional vertices
in A; is at most oz%\AZ-|. We remove the exceptional vertices from each set and add
them to A, if they have more neighbors in A;, and add them to A; if they have
more neighbors in A,. We still denote the resulting sets by A; and A;. Assume that
|Ay| < |As], s0 |As] — |Ay| = 7, where 0 < r < 226/ Ay|. In G4, x4, apart from at
most 27| A,| exceptional vertices all the degrees are at least (1 — 3a!/%)|A4,[, and
the degrees of the exceptional vertices are at least |As|/3.
Our goal is to achieve r = 0. If there is a vertex x € Ay for which

deg(x, Ag) > a1/7|A2|, (8)

then we remove = from A, and add it to A;. We iterate this procedure until either
there are no more vertices in A, satisfying (8) or |A;| = |Ay|. Assume that we have
the first case. Since we have A(G|a,) < a'/7|Ay], (1) and Lemma 7 imply that G|,
has an r-matching M denoted by {uy,vi},..., {u,, v,.}. Furthermore, for every edge
in M we can guarantee that at least one of the endpoints (say u;) is not in A. This
matching M will be used to balance the discrepancy between |A;| and |As|.

Note that in G|4,xa, the degrees of the exceptional vertices are still much more
than the number of these exceptional vertices. These degree conditions and (2) imply
the following fact (similar to Fact 1).

Fact 2. If x,y € Ay then in G|a,xa, there are at least on internally disjoint paths
of length 4 connecting v and y. If v,y € Ay then in G|a,xa, there are at least on
internally disjoint paths of length 2 connecting x and y. If x € A;, y € Ay then in
G| a,xa, there are at least on internally disjoint paths of length 3 connecting x and y.

Let A be an arbitrary subset of the vertices of G satisfying (3). In this case we
construct the desired Hamiltonian cycle in the following way. First by using Fact 2
and a similar procedure as in Section 4.1 we find in G|4,x4, an (A, d)-path

P:P(al,ak):Qlu...UQk

connecting the vertices a; and ai. The only difference from Section 4.1 is that here
because of parity reasons we might have distc(a;, a;11) = d; + 1. Indeed, first we

11



construct a path )y of length d; or dy + 1 connecting a; and as. If ay is covered by
an edge of M, say a; = v;, then we start Q1 with the edge {v;, u;} (note that u; ¢ A).
If d; = 3, then to get ()1 we connect u; and ay in G|4,x4, by a path of length 2 in
case ay € Ay, and by a path of length 3 in case ay € A;. If dy > 3, then we greedily
construct a path @ that has length d; — 3, starts with the edge {v;, u;} and continues
in G|, x4, Denote the other endpoint of )} by a}. Applying Fact 2, we connect a}
and ay by a path QY of length 3 in case they are in different sets, and by a path of
length 4 in case they are in the same set. Then @ = Q) U @7 is a path connecting
a; and ay with length d; or dy + 1.

We iterate this procedure; we construct Qs,...,Q similarly and thus we get
P =@Q,U...UQ. Say the remaining edges of M which are not traversed by P are

{wi,vi}, oo w0, ) for 0 <’ <o

Then we connect the endpoint a; of P and w;, by a path (); of length 2 or 3,
connect vy, and wu;, by a path @, of length 2, etc. Finally connect v; , and u;, by a
path @, of length 2. Consider the following path.

P/ - (P7 le{uinvil}vQQv{uizvvig}a <. '7Qr’a {uirzvvirz})-

In case a; € Ay, add one more vertex from A; to the end of the path. Remove P’
from G|4, x4, apart from the endvertices a; and v; ,. From (2), (3) and the degree
conditions we get that the resulting graph satisfies the conditions of Lemma 5 and
thus it is Hamiltonian-connected. This closes the desired Hamiltonian cycle. For this
purpose we could also use Lemma 3, the remaining bipartite graph is super-regular
with the appropriate choice of parameters, but here the much simpler Lemma 5 also
suffices. Note also that here we have no exceptional i, so we have

‘di3t0<ai,ai+1) — d7‘ S 1 for all 1 S 1 S k—1.

Case 2: Assume next that we have a partition V(G) = A; U A, with |4,] = 5]
and d(A;, Ay) < o'/ Thus roughly speaking, G|4, and G|4, are almost complete
and the bipartite graph between A; and A, is sparse.

Again we define exceptional vertices v € A;, i € {1,2}, as

deg(v, Ay) > o'%| Ay, {i,i'} = {1,2}.

Note that again the number of exceptional vertices in A; is at most a!/%|4;[. We
remove the exceptional vertices from each set and add them to the set where they have
more neighbors. We still denote the sets by A; and As. Thusin G|a,,i € {1, 2}, apart
from at most 2a'/%| A;| exceptional vertices all the degrees are at least (1 —2a'/%)|A4;|,
and the degrees of the exceptional vertices are at least |A;|/3. These degree conditions
and (2) imply the following fact (similar to Facts 1 and 2).

12



Fact 3. Ifx,y € A, then in G| 4, there are at least on internally disjoint paths of length
3 connecting x and y. Furthermore, if at least one of the vertices x and y 1s non-
exceptional then there are at least on internally disjoint paths of length 2 connecting
x and y.

Assume that |A;] < |Ay]. Let A be an arbitrary subset of the vertices of G
satisfying (3). Put

A= AN AL A" = AN Ay k' = |A] K" = |A"),

d={d|1<i<k —1}andd" ={d; | K +1<i<k—1}.

We show that we can find two vertex disjoint edges (called bridges) {uy, v},
{uz,va} in G|a,xa, such that for both of these bridges at least one of the endpoints
(say u;) is non-exceptional and it is not in A. This is trivial if |A;| < |As|, since then
for every u € A; we have deg(u, Ay) > 2. Thus we may assume that |A;| = |A,|.
But then for every u € A; we have deg(u, As) > 1 and for every v € A, we have
deg(v, A7) > 1, and thus again we can pick the two bridges.

We distinguish two subcases.

Subcase 2.1: u; and uy are in different sets, say u; € A; \ A’ and uy € Ay \ A”.
Here we construct the desired Hamiltonian cycle in the following way. First by using
Fact 3 and a similar procedure as in Section 4.1 we find in G|4, an (A4’ d')-path
P' = P'(ay,vy) with endpoints a; € A and v, (if v9 € A’ then this is just the last
vertex vs = ay from A on the path, otherwise we connect the last vertex a, and vy
by a path of length 3). Similarly we find in G|, an (A”,d")-path P" = P"(a 41, v1)
with endpoints ap 41 € A and v;. Then in G|4, we remove the path P" apart from
the endvertex a;. From (2), (3) and the degree conditions we get that the resulting
graph satisfies the conditions of Lemma 4 and thus it is Hamiltonian-connected.
Take a Hamiltonian path P; = P;(uq, a;) with endpoints u; and a;. Similarly in G|,
we remove the path P” apart from the endvertex a;,; and we find a Hamiltonian
path Py = Py(us, ap 1) with endpoints us and ag 1. Then in this case the desired
Hamiltonian cycle C' is the following.

C = (Pl, {UQ,UQ}, PQ, P”, {Ul, Ul}, Pl)
Note that here actually in C' we have
distc(ai,a;41) =diforall1 <i<k' —land k' +1<i<k-—1

However, distc(ay, agy1) could be very different from dj.
Subcase 2.2: u; and uy are in the same set (say A;). Here we do the following.
We may assume that vy,vs € A”, since otherwise we are back to Subcase 2.1. We
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denote vy by a1 and vy by ag. First we find in G4, again an (A’ d')-path P' =
P'(ay,ap) with endpoints a; and ap. We connect ap and uy with a path @ =
Q(ag,us) of length dy — 1 that is internally disjoint from P’ and w;. The degree
conditions guarantee that this is possible (even if dj = 3, since uy is non-exceptional).
Then we remove P’ and @ from G|, apart from the endvertex a; and we find a
Hamiltonian path P; = Pj(uy,a;) with endpoints u; and a;. Define

A" = A\ {apy and d” = {d; | K +1<i<k—2} =d"\ {dp_,}.

We find in G|, an (A", d")-path P" = P"(a 41, a;_1) with endpoints a1 and ay_;.
We remove P" from G|4, apart from the endvertex a;_; and we find a Hamiltonian
path P, = Py(a_1,v1) with endpoints a;_; and v; = a,. Then in this case the
Hamiltonian cycle C' is the following.

C= (Pla Q, {U2,U2}; P, P, {Uh Ul}, Pl)-
Note that here actually in C' we have
distc(ai,aiﬂ) = dz for all 1 S 1 S k— 2,

but distc(ay_1,a;) could be very different from dj,_;.
Case 3: Assume finally that the extremal case EC holds, so we have A, B C V(G),
|A| = |B| = |%] and d(A, B) < a. We have three possibilities.

2

e |AN B| < y/an. The statement follows from Case 2. Indeed, let A; = A,
Ay = V(G)\ Ay, then clearly d(Ay, Ay) < o!/? if a < 1 holds.

o Jan < |[ANB| < (1 —y/a)j. This case is not possible under the given
conditions. In fact, otherwise we would get

|AOB\g§ > dega(u) = > dege(u, AU B)

u€eANB u€ ANB
+ > dega(u, V(G)\ (AUB)) <
u€e ANB

<2an’+|ANB|(|ANB|+1),

or
AN B (g AN B 1) < 2am?,

a contradiction under the given conditions.

o |[ANB| > (1 —+/a)j. The statement follows from Case 1 by choosing A, = A,
Ay = V(G)\ Ay, and then d(A4;) < o'/3.

This finishes the extremal case and the proof of Theorem 2.
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