WPI-CS-TR-03-30 June 2003

Cost-Driven View Maintenance over Distributed Data
Sources

by
Bin Liu and Elke A. Rundensteiner

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Cost-Driven View Maintenance over Distributed Data
Sources *

Bin Liu and Elke A. Rundensteiner

Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA 01609-2280
{binliu|rundenst } Qcs.wpi.edu

Abstract

Materialized views defined over distributed data sources are a well recognized technology for data integration,
e-business, and data warehousing. Many algorithms have been proposed to date for incrementally maintaining
materialized views. One improtant task of view maintenance is to reduce the time taken for updating the view
extent due to the constantly increasing size of the view and the rapid rates of source changes.

In this work, we investigate two of the key issues that affect the view maintenance performance in terms of total
processing time. First, the selection of maintenance strategy. Different maintenance strategies will exhibit different
performances based on the particulars of their methods being used. For example, a batch maintenance strategy is
usually more efficient compared with a traditional (sequential) algorithm given a lot of updates need to be maintained
due to less number of remote maintenance queries are required. However, not all maintenance strategies are obvious
in performance. Second, we study the data source related properties. In a distributed environment, various data
sources may show different response time for a maintenance query due to the network connection, data source
processing capability etc. Given such variations in the view maintenance environment, we propose a two-layer cost
model to analyze the view maintenance performance over distributed data sources. We introduce a framework
which is based on our cost model to generate maintenance plans for maintaining a given set of source updates. The
generated maintenance plans are tuned to the current environment settings to maintain updates efficiently. This
maintenance framework has been implemented in our TxnWrap view maintenance system. Experimental studies
illustrate that such cost-driven view maintenance optimization improves view maintenance performance especially
in a non-homogenous environment.

Keywords: View Maintenance, Cost Estimation, Distributed Query Processing.

*This work was supported in part by several grants from NSF, namely, the NSF NYI grant #IRI 97-96264, the NSF CISE Instru-
mentation grant #IRIS 97-29878, and the NSF grant #IIS 9988776.

1 Introduction

1.1 Materialized Views and Their Maintenance

Materialized views [6, 1] built by gathering data from possibly distributed data sources and integrating it into
one repository customized to users’ needs are a well recognized technology for data integration, e-business, data
warehousing and semantic web. One important task of a view manager is to maintain materialized views upon
source changes, since frequent updates are common for many applications. Unless the underlying data sources are
small, it is desirable to maintain view extents incrementally [2, 5]. That is, instead of recomputing the view extent
from scratch, the delta of the view extent is computed and committed to refresh the view extent. In this process,
the view manager needs to send maintenance queries [19] to the underlying data sources to determine the changes

of the view extent that related to the updates.

Many algorithms have been proposed in the literature [19, 1, 20, 3, 17, 14] for this task of incrementally main-
taining materialized view extents. In situations when a real-time refresh of the view content is not critical, changes
to the source can be buffered and propagated periodically to update the view extent. Two benefits can be reaped
from such batching. One, we may gain a better overall maintenance performance. Two, fewer conflicts with users’
read sessions upon the view extent may arise. Due to the constantly increasing size of data sources and thus view
extents as well as the rapid rates of source changes, there is an increasing pressure to reduce the time taken for
view maintenance in practical systems. However, most existing algorithms [19, 1, 3, 17] were not designed with
such optimization in mind. This urgency to improve the view maintenance performance given highly dynamic data

sources that experience high rate data changes is thus the main focus of our work 1.

In our view maintenance context, we assume that the view is defined over several distributed data sources, data
updates happen independently among these data sources, and all updates will be reported to the view manager for
keeping the view extent up to date. Complex optimization of view maintenance processes in a distributed environment
is a challenging and time consuming process. In this work, we thus propose a separation of concerns into two different
levels. First, at the logical level of view maintenance, we introduce the notion of strategy selection, i.e., of selecting
one maintenance strategy among possibly several to employ for the maintenance task at hand. For example, a batch
maintenance strategy is usually more efficient than sequentially maintaining one update at a time. This is so as
batching reduces the number of accesses to the underlying data sources. Thus we may choose a batch maintenance

whenever it is applicable, that is, when the real-time refresh of view extent is not needed by the application. However,

IThe mechanisms to decide when to maintain the materialized views are orthogonal to our work. As described in [14], a time-driven
or event-driven strategy can be applied to determine how many updates will be maintained together

not all maintenance strategies have such an obvious performance difference, rather it depends on a variety of factors
in the environment. Plus, there are several alternate batching algorithms that could be selected, each exploiting

possibly different query-optimization techniques in the generation of their query maintenance plans.

Second, at a physical level of view maintenance, we apply source dependent properties to further tune the
performance of a given maintenance strategy and then to generate an optimized maintenance plan. For example, we
select the optimal sequence of accesses to the data sources to improve the maintenance performance. Note that such
separation of concerns is not strict, as the underlying data source properties may also affect the first decision about

the selection of the maintenance strategy to begin with.

One could argue that standard distributed query processing techniques [8, 7, 15] may be able to be employed
to generate efficient maintenance plans. However, the following two key points distinguish the view maintenance
optimization from standard distributed query optimization: 1) Each step in a view maintenance process may change
the data source state, which in turn may affect the remaining steps. 2) All the maintenance queries in one maintenance
process have a similar query shape. Thus, this opens more opportunities for optimization tuned specifically for

maintenance. To our knowledge, a distributed query optimizer does typically not handle optimization at this level.

Our key contributions in this work are:

o We investigate key issues that affect the view maintenance performance and then propose a two-layer optimiza-
tion approach so to separate the concerns of maintenance into two separate tasks, namely, logical and physical

view maintenance optimization.

e We introduce and then enhance two alternative view maintenance strategies optimized to handle not just sin-

gleton source updates but also large sets of data updates,

e We design a cost model for view maintenance modeling the two view maintenance strategies. In particular, we
then can employ the model to cost out different maintenance plans that each view maintenance strategy would

generate. We analyze and identify the trade-offs inherent in these view maintenance alternatives.

e Based on the above strategies and cost model, we then propose a view maintenance optimization framework
which is able to generate efficient maintenance plans tuned to the current environmental settings. Thus, it
provides us with the needed adaptivity between different maintenance processes by allowing us to dynamically

select the most effective maintenance plan.

o We have implemented this maintenance framework in our TxnWrap view maintenance system. Qur experimental

study shows that our two-layered approach towards solving maintenance optimization, i.e., the generation of op-

timized maintenance plans, improves the maintenance performance significantly, compared to existing techniques

in the literature.

The rest of the paper is organized as follows. Section 2 describes the needed background and terminology, along
with the introduction of two different batch maintenance strategies. Section 3 introduces the proposed cost model
and cost-based optimization techniques. Section 4 discusses the experimental studies. Related work and conclusions

are given in Sections 5 and 6 respectively.

2 View Maintenance Strategies

A view maintenance strategy describes the way that a view manager maintains the materialized view at a logical level.
Various maintenance strategies have different maintenance performances due to the particulars in their methods being
used. For example, a batch maintenance strategy [10, 9]is usually much more efficient compared with a traditional
(sequential) algorithm when a large number of updates need to be maintained. This is so because the reduction in
the number of remote maintenance queries required. However, a maintenance strategy has less maintenance queries
may not always win. In this section, we describe two view maintenance strategies that incrementally maintain the
view extent using delta changes (one delta change describes changes made to a data source in a certain time period).
First, we introduce the concept of a wiew graph (VG) to represent a view definition, then we describe these two

maintenance strategies based on this view graph.

View Definition Model. We model the view definition using a view graph. Each node in the graph represents a
data source that appears in the view definition. An edge indicates a join condition in the view definition between
two data sources. For example, the view Tour-Customer is defined by a SQL query in Query 1 based on the data
source descriptions in Figure 1. Its view definition graph is depicted in Figure 2. Note that we put edges into the
graph if and only if there are join conditions between the data sources. Other operations in the view definition such
as projection and selection can be easily incorporated because they can be applied locally at the data source. Like
most maintenance strategies proposed in the literature [1, 20, 17, 14, 10, 9], we assume that the materialized views
are SPJ views that integrate data using joins across multiple data sources because SPJ views as a general form can
cover the core (and most expensive component) of view definitions. Moreover, a SPJ view can be easily extended,

i.e., to handle views with aggregrations [13].

R1: Customer(Name, Address, Phone)

Ry: FlightRes(Name, Age, FlightNo, Dest)

R3: Participant(Name, TourID, StartDate, Loc)
R4: Tour(TourID, Name, Type, Dest)

Figure 1: Description of Data Sources

CREATE VIEW Tour — Customer AS

SELECT C.Name, F.Dest, F.FlightNo,
T.TourID, P.StartDate

FROM Customer C, FlightRes F, Tour T
Participant P

WHERE C.Name = F.Name and F.Name = T.Name
and T.Name = P.Name and P.Loc = F.Dest
and F.Age <= '65

Figure 2: View Definition Graph

Batch View Maintenance. The basic idea of batch maintenance, as described in [9, 10, 14], is to process all
the updates from the same data source together. However, given a view definition that may contain multiple join
conditions among data sources, more issues need to be considered. For example, R, has join conditions both with R4
and R3 in Figure 2. Thus, once the join conditions between R3 and R4 have been evaluated, we can combine the join
conditions R4-Rs and R3- Rp together and evaluate them at Rz once. We prefer such combination in a distributed

environment because it reduces the number of accesses to remote data sources.

For simplicity, we use ><;; to represent the edge in the view graph which denotes the join condition between
data source R; and R;. We define D, as the collection of all data sources that have been visited up to now. For
example, D, = { initially, and if we have evaluated join condition R4-R3, then D, = {R4, R3}. We define < ; as
the collection of the all join conditions (edges) that have the following two properties: 1) Each t<;; in b<; is a valid
edge in the VG. 2) Each R; in q;; has R; € D,.. Here each < ; is only a abstract operator on source R;, the content
of this operator depends on the data sources that have been visited. Query 2 describes the batch view maintenance

strategy assuming the view is defined across n data sources (Ry, Ra,. .., R,). Here R; represents the underlying data

source, AR; (1 < < n) represents the delta change of a data source R;, and R, = R, + AR, (1 <i < n).

AV = ARl X9 R2 X3 R3 oo Xsp Rn
+R/1 |>4>1 ARQ N>3 R3 o N>n Rn
+...

+Rl1 X>1 RIQ X2 Ré Y s | ARn

We refer to each line in Query 2 as a maintenance step. Each maintenance step goes through all the underlying
data sources once except the one has the delta change to be maintained. We also refer to each join operation within
such a step as a maintenance query. Each maintenance query goes to one data source. Thus, to maintain the
view extent, we may have to send n*(n-1) maintenance queries (join operations) that involve two states of each
underlying data sources. Note that concurrent source updates could happen during this maintenance process. Thus

an additional concurrency control strategy 2 is nessary to keep the view extent consistent [20].

However, given a maintenance step having ; (1 < j < n), there are multiple valid instances of execution
because the order of visiting data sources will affect the content of the following <~ ; operations. For example, the
following two queries (Queries 3 and 4) are both valid instances of a maintenance step R} t<s; ARg X3 Rg x4 Ry

based on the view definition graph in Figure 2.

D
ARy >ap3 R (34) Ry <4 Ry (3)
P24
, a3
ARy >19 R >4 Ry Rs (4)
D23

We refer to the collections of all valid instances that one for each maintenance step as a batch maintenance plan.
Thus, a lot of batch maintenance plans exist for one given view definition due to each maintenance step may have
multiple valid instances. These maintenance plans may exhibit different maintenance performances due to differences
among the join conditions and the data sources. Thus, the key to optimize batch maintenance performance is to find
an efficient maintenance plan with least estimated cost. In section 3, we will enhance our view definition model with

corresponding cost information along with search algorithms to generate such efficient batch maintenance plans.

2Either a compensation based or multiple version based approach can be applied, please refer to [4, 3] for more details.

Grouping View Maintenance. In our previous work [11], we proposed a grouping maintenance strategy that
maintains materialized views defined as joins across multiple data sources using 2*(n-1) maintenance queries. The
basic idea is to make use of the regularity in the maintenance steps. All the maintenance steps have a similar pattern
which always goes though all the underlying data sources based on the join conditions between them. For example,
assume the view is defined as follows: V = R 1 Ry < ... < R,,. Then the grouping maintenance strategy computes
the view extent incrementally using two phases (Figures 3 and 4). Each phase has n-1 maintenance queries given n

delta changes AR;,ARs,...,AR,.

— > —> —
AR, MR, | M| Ry [X|R,| ... XIR,
R AR, M| R4 || Ry| ... MR,
R, R, |AR; X |R, - MR,
R, R, R, [AR, ... xR,

.. . . . X R,
R, R, R, R, .. AR

Figure 3: Scroll Up Phase

AR, X R, X R, X R, ... X R,
R/'M|AR, X Ry 4 R, ...)X R,
R'M| RyM[AR;) R, ... M R,
R/'M| RyM| RyX|AR, ... X R,
x| |] e o MR,
R/ 'X| RyX| RyX| RyX ... AR,
«— <« <« -«

Figure 4: Scroll Down Phase

The scroll up phases calculates the upper part of the matrix along the main diagonal in n-1 queries (Figure 3).
For example, the first query in the scroll up will send AR; to data source Ry and evaluate the result AR; < Rs.
After we get the result, we then union the result of the first query with AR, and send them together to data source
R3. We have AR; 1 Ry 1 R3 and AR, <1 R3 as the second query result. Then we will union ARj3 into the second
query result and go on the processing until we reach the data source R, 3. While the scroll down phase computes

the remaining part of the computation matrix also in n-1 queries (Figure 4).
Thus, for a more general view definition defined by a view graph such as the one in Figure 2, the problem can
be reduced to find a path that goes through all the data sources once while each node only has a degree of two

3Note that there are a lot of issues need to be addressed such as how to union the deltas together, how to process such maintenance
combined maintenace queries etc. We ask readers refer to [11] for more detailed information.

except the start and the end node. We refer this as a grouping path. Thus, the grouping strategy is divided into two
steps: 1) Find a grouping path in the view graph and apply the scroll up and scroll down phases to calculate the
maintenance results based on the join conditions in the grouping path. 2) Apply the remaining join conditions (if
any) to the result calculated in the first step. Thus, we will have 2*n-1 maintenance queries to calculate the AV (If
we evaluate the remaining join conditions on the result of the first step at the view site, the number of maintenance
queries will still be 2*(n-1) because these join conditions can be evaluated locally). However, such a grouping path
may not exist in all (general) view graphs. For example, a star-shape view graph doesn’t have such a path that
goes through all nodes with a degree less or equal to two. For these view definitions, the grouping strategy is not

available.

As an example, both the following two queries (Queries 5 and 6) are valid instances of the grouping strategy for
the view defined in Figure 2. Query 5 chooses the grouping path Ry — R3 — Ry — R;, while Query 6 uses the path
Ry — Ry — R4y — R3. The super script represents the remaining join condition(s) that need to be evaluated after

we get the maintenance result after the scroll up and scroll down phases.

AR4 >3 R3 pxgp Ry o1 Ry
R}, <43 AR3 Xi39 Ry >y Ry
Rf; D43 R'g >za ARy 91 Ry

! ! /
R4 PXly3 R3 Xi39 R2 X1 ARl

ARy 15 Ry >y Ry g3 R
R'l 1o ARy g Ry 43 R3

! !
Ry >12 Ry >aq ARy 43 R3

/ ! ’
Rl DG D) R2 >X<lo4 R4 D<ly3 AR3

Similarly, we refer to each valid instance of the grouping maintenance strategy as a grouping maintenance
plan. As seen from above discussions, the basic difference between these two maintenance strategies is that the
the number of maintenance queries vs. the complexity of each query. Typically, in a distributed environment, the
smaller the number of maintenance queries, the better the maintenance performance. However, given the diversities

of maintenance plans even for a given maintenance strategy, we expect cost changes between maintenance strategies.

In the following sections, we discuss our proposed view maintenance optimization framework which both explore
the differences between maintenance strategies and the lower (physical) level properties in a view maintenance

environment. We first enhance the view definition model to incorporate the related cost information. Then we

develop search algorithms to generate efficient maintenance plans for a given set of source updates.

3 VM Optimization Framework

3.1 View Maintenance Cost Model

We extend the view definition graph to incorporate the related cost information. We add the following two functions

to each node in the view graph to describe some basic information about the corresponding data sources.

e (C;: The cardinality of the source relation R;.

e A;: The number of attributes in relation R;.

We note that a lot more cost information (factors) related to a data source can be reported to get a more
precise or more specific cost model. The examples of additional factors may include the average tuple length, the
number of used disk blocks etc. However, in our maintenance framework, we only use the above two factors. As
we will illustrate in Section 4, we have found these two factors to be rather effective already in estimating the view

maintenance cost. In general, any arbitrary cost information can be incorporated into the framework.

We attach a cost function to each edge in the view graph to estimate the cost of a join operation. In our view
maintenance framework, the view manager is responsible of collecting delta changes and intermediate results, and
sending maintenance queries to data sources. While the data source is responsible for reporting source updates
and answering maintenance queries. Compared with data source relations, the delta changes and the corresponding
intermediate results are relatively small. That is, the view manager will always starts from the delta change to
evaluate the corresponding maintenance step . Thus, for each edge (<;;) defined in VG, the cost of having the
left operand ready in the view manager and evaluating at R; may different with having the right operand ready
in the view manager and evaluating at R;. Correspondingly, we have two cost estimation functions for each edge.

Moreover, a selectivity estimation function S;; is also necessary for each edge <;; in the view graph.

In summary, the functions to be added to the view graph can be described as follows.

e J;;(...) estimates the processing time that the view manager sends the left operand to data source R;, evaluates

the join condition 4;; and returns the result to the view manager.

4There are other processing models, reader may refer to [12] for more detailed discussions.

e J;;(...) estimates the processing time that the view manager sends the left operand to data source R;, evaluates

the join condition 4;; and returns the result to the view manager.

e S;; estimates the selectivity of the join operation t<;; bewtween data sources R; and R;.

The input parameters to an edge cost function (J;;) depend on the methods being used to develop the function
for a specific environment. In our framework presented here, we use the cardinality and the number of attributes of
operand tables. A linear regression technique will be applied [18] to build the cost functions for each join operation
defined in the view graph. More details will be discussed in Section 3.4. Thus, the VG described in Figure 2 extended

with appropriate cost functions is depicted in Figure 5.

Figure 5: Extended View Definition Graph

3.2 Maintenance Strategy Cost

We propose the following computational model to calculate the query processing time of a maintenance strategy
based on a view definition graph and its corresponding cost functions. As described in previous sections, we assume
the view is defined upon n data sources R, Rs, ..., R, and has updates AR, AR5, ...,AR, need to be maintained.
For simplicity, we use |AR;| to represent the cardinality of the delta change AR;, while we use ||AR;|| to denote
the number of attributes of AR; (1 < ¢ < n). For a maintenance step ¢ (1 < ¢ < n) in batch maintenance stategy
which calculates the changes on the view extent due to a delta change AR;, we assume ky, ko, ..., k, is a sequence
that the view manager will use to maintain the AR; with k; always equals 7. Here, 1 < k,,, < n, and Vk,,,, ks m # s
< km # ks (1 <m,s <n). That is, a sequence for AR; is one of the permutations of 1..n with k; equals i. A k,,
(1 < m < n) in sequence means the view manager will visit the data source Ry, at (m-1)th step. Given that, the

batch maintenance strategy cost Cp can be calculated as listed below.

Attri, = ||AR||+ > Ci,
2<s<m

Card,, = |AR;|* H Skakaa
1<s<m—1

ci = Z T ks (Cardl,, Attrt)

1<m<n-—-1

G, = Y C
1<i<n
Attrt, records the total number of attributes at the mth maintenance query for maintenance step i. Card:, denotes

the cardinality of the mth query. C} represents the cost of the maintenance step i. The batch maintenance strategy

cost Cy is the sum of the cost of each maintenance steps.

For the grouping maintenance strategy, we assume ki, ko, . .., ky is the grouping path found in the view graph.

Thus, the cost can be expressed by the following formulae.

%

n—1 4 i
Tup = Z Jk,-,ki_,_l (Z |ARkJ.| * H S}gs_l’ks,z ij)
=1 j=1 =1

J=1

2 n n n
Tdoum = ZJki’ki_l(Z |AR}9]| * HSkJi_hkiaZCk:j)
i=n j=1 j=i j=1

n n—1 n
Trm = COStT(Z |AR]<:,| * H Ski,ki+1) Z C/‘u‘z)
=1 =1 =1

T = Tup + Thown + Trm

Typ calculates the cost of the scroll up phase, while T30, computes the scroll down phase cost. The function Cost,
computes the cost of evaluating the remaining join conditions on the result of the grouping maintenance strategy.

While the cost of grouping strategy 7' is the sum of these three parts.

3.3 Selecting View Maintenance Plans

As we described in the previous sections, each maintenance strategy may have multiple maintenance plans with a
different processing time due to the differences in the properties such as the join conditions, network connection cost
etc. How to find an efficient maintenance plan given a set of source updates is the key to optimizing the maintenance
performance. For views to have both batch and grouping maintenance strategies available, we could choose the
better one from the most efficient maintenance plans for each individual strategy. While for views that only have

batch maintenance strategy, we select the most efficient one from all available batch maintenance plans.

Selecting Optimal Batch Maintenance Plan. One straightforward way to select the optimal batch maintenance
plan is enumeration. For each maintenance step, we enumerate all the valid execution instances and estimate their

correponding cost. Given each smallest maintenance step cost, the cost of the maintenance plan also reaches minimal.

10

Figure 7 illustrates a recursive algorithm that enumerates all the possible ways of evalulating a maintenance step

which has a delta AR;.

The algorithm is easy to understand by itself. The only thing that needs to be mentioned is in step 5. As we
described in the batch view maintenance strategy in Sectoin 2, we prefer to combine all the join edges that have
the same ending node while the start nodes of these edges have been visited (It is already in the Node_List). This
is because such join conditions can be combined and evaluated at data source together instead of sending them
individually. In a distributed environment, reducing the number of accesses to remote sources usually can result in a
performance improvement. That is, this algorithm doesn’t generate the valid execution instance that evaulates join
conditions one by one. As an example, Figure 6 shows all the three possible execution orders for the maintenance
step has delta change ARy for the view defined in Figure 2. The number on each edge indicates the execution order
of join conditions. As mentioned earlier, we only enumerate the instances having one access to each source node.
For simplicity, we use the sequence of the data source index to indicate the valid maintenance step instance. Thus,

the sequences 4-3-2-1, 4-2-3-1 and 4-2-1-3 will be used to represent the three valid instances in Figure 6 respectively.

Figure 6: Maintenance Step 4 Enumerations

The cost of each maintenance step can be computed whenever a valid execution instance is found by the
enumeration algorithm based on the computation model given in Section 3.2. For these edges that can be combined,
we simply use the average cost of each individual estimated cost. For the combined join selectivity, the worst case
will be the samllest one in all these individual estimations, while the best case will be the production of all these
individual estimations (in case that all these join conditions are independent). Other cost estimation strategies can
be applied for these join edges being combined. However, these low level changes on the cost estimation model will
not change the search strategy itself, we can plug in any cost estimation function in general. As can be seen, the
complexity of such enumeration algorithm can be exponential to the number of nodes in the view graph. It will be

expensive for a large number of data sources.

However, the complexity of finding an optimal maintenance step execution instance is the same with the typical
join sequence optimization problem, which is proven to be NP-hard [16] in general. Thus, no efficient algorithms
have been found yet to solve such problem. A Greedy Search Algorithm can be built (in Figure 8) to leverage the

optimization cost. Thus, we always select the most profitable edge from all the candidate edges as the next step to

11

Procedure EnumerateBatch()
/*Enumerate all possible ways of evaluating a maintenance step has ARi */
Input: Node_List /The nodes that have been visited
Candidate_Edge //The edges that can be selected for next step
Edge_Left /Edges that have not been processed
Output_Sequence //The output sequence of evaluating edges
/* Initialization: Node_List only contains Ri, Candidate_Edge has the edges
that starts from Ri, Edge_Left has all the edges except those in
Candidate_Edge Output_Sequence is empty */
WHILE (Candidate_Edge != Empty) {
1. Get an edge from Candidate_Edge and remove it;
2. Put new nodes into Node_List or continue;
3. Delete the edge from Edge_Left that has been removed in 1.;
4. Check edges in Edge_Left that can be put into Candidate_Edge;
5. Combine edges in Candidate_Edge if applicable;
6. Call EnumerateBatch() recursively;
1
IF (sizeof (Node_List) equals # of graph nodes) {
Calculate and output estimated cost;

}

Figure 7: Enumeration Algorithm

proceed. However, the greedy search can’t guarantee the global optimal due to the cost of each edge will change

dynamically based on previous steps.

Procedure GreedyAlgo()
/*selecting most profitable edges at each step for ARi*/
Input: Node_List /The nodes that have been visited
Candidate_Edge //The edges that can be selected for next step
Edge_Left /Edges that have not been processed
Output_Sequence //The output sequence of evaluating edges
/* Initialization: Node_List only contains Ri, Candidate_Edge has the edges
that starts from Ri, Edge_Left has all the edges except those in
Candidate_Edge Output_Sequence is empty */
WHILE (Candidate_Edge != Empty) {
1. Get most profitable edge from Candidate_Edge and remove it;
2. Put new nodes into Node_List or continue;
3. Delete the edge from Edge_Left that has been removed in 1;
4. Check edges in Edge_Left that can be put into Candidate_Edge;
5. Combine edges in Candidate_Edge if applicable;

}

Output sequence and cost;

Figure 8: Greedy Search Algorithm

Selecting Optimal Grouping Plan. For views that have grouping maintenance strategy avaialable, the first step
is to find the grouping path that goes through each node exactly once. However, it is a Hamiltonian Path problem,
and known to be NP-Complete. Similar with that of selecting maintenance plans for the batch strategy, we can build
a recursive algorithm to enumerate all the possible grouping paths in a view graph (if it is existed). The algorithm

will be very simiar with that of in Figure 7. As an example, Figure 9 shows all possible grouping maintenance plans

12

generated by the enumeration algorithm given the view defined in Figure 2. For simplicity, we also use source node
index sequence to represent a grouping plan. For example, the sequence 1-2-3-4 denotes the first plan in Figure 9.

The dashed line denotes the remaining edge need to be processed after the scroll up and scroll down phases.

Figure 9: Grouping Plan Enumerations

Once we find a grouping path in the view graph, the total maintenance cost of its grouping plan can be calculated
as we described in Section 3.2. The outout grouping maintenance plan will be the plan with the smallest estimated
cost. Given that the number of nodes in a view graph is usually not large, such algorithms are still acceptable for

most practical cases.

Verification vs. Optimization However, in a relatively stable environment, we may not have to search the
complete space to get an optimal sequence whenever we get a new set of source updates that needs to be maintained.
For example, if the selectivity S;; are almost the same in the previous five runs, the cost function J;; is close to linear
and hasn’t been changed since last run, then the optimal sequence found from previous runs will have a high chance
to be the optimal sequence for the current set of updates. To reduce the optimization cost, we apply the following

two strategies:

e Specify a threshold for the changes on cost function J;; and S;;, and always use the same sequence whenever
the changes are below the threshold. For example, we will re-optimize the maintenance plan whenever there
are more than 25% difference on selectivities between previous two runs or 20% of the cost functions have been

changed compared with the last run.

e For the batch maintenance plans, we can compare the cost estimation on previous sequence using the current
set of source updates with the estimated value from the greedy search algorithm. We optimize the sequence

whenever the cost estimation on the previous sequence is worse than that of the greedy search.

However, such simplification may result in sub-optimal and some extra space and processing time are necessary

for recording and comparing information on previous runs.

13

3.4 Cost Function Regression

The cost computation model we have developed in Section 3.2 is heavily dependent on the cost estimation function
for each join condition (J;;) in the view graph. In general, we can plug any cost estimation function into the cost
computation model. In this work, we select the linear regression model [18] to develop the cost estimation function
for each join edge defined in the view graph. The basic idea of the regression cost analysis is to derive cost model
based on measured costs of several sample queries. A major benefit of using regression model is its local autonomy.
That is, we may not have to know any details regarding the remote data sources to estimate the cost, which is
convenient in a distributed environment. And in fact, it may simply not be possible to get internal information on

a data source, thus externally observing its cost characteristics with probing queries is a practical solution.

As described in Section 3.1, a cost function J;; will be used to estimate the cost that the view manager sends
the current intermediate result to the data source R;. There are two input parameters to a cost function J;;, namely,
Card; to represent the cardinality of the operand table and Attr; to denote its number of attributes. We propose

the following basic formula to model the processing time of a maintenance query 5.

Jij = Bo + (By + Ba * Card;) * Attr; (@)

This model is based on some existing cost models for a DBMS. The parameters By can be intepreted as the
initialization cost. By + ByxCard; estimates the cost of processing all tuples in the delta table on the source relation,

while (By + By * Card;)* Attr; incorporates some effect of the number of attributes in each tuple on the total cost.

We have run several sample queries for each J;; defined in view graph in our environment to measure the actual
cost of queries on different inputs (a combination of different number of tuples and number of attributes). Based
on the observed values and the basic cost model, we apply the linear regression least squares fit method to find the

parameters By, By, and B, for each J;; join condition.

4 Experiments

To verify the feasibility and effectness of our cost-driven view maintenance optimization framework, we have imple-
mented the proposed strategies and the search algorithms based on our TxnWrap [3] system. We employ four data

sources with one relation each as described in Figure 10 through a local network. Each relation has two attributes

5We can build other cost models for different join edges in the view graph, for simplicity but without loss of generality, we only describe
one model to illustrate how it works.

14

and 100,000 tuples. As seen from Figure 10, different data sources have different processing capabilities due to the
machine configurations. The materialized view defined over these four data sources can be expressed by the view

graph in the upper conner in Figure 10. An index is built on DS5 along the join condition between DS and DSs.

m View Manager: | View Graph: @ @
2.4GHz XEON
i Server with 1G
| Memory |
Local Network

600MHz Pentium ITT 300MHz Pentium IT NT 800MHz Pentium IIT PC with 512M
PC, 256M Memory. Server, 256M Memory. | Memory. DS3 has Index on Join

DS?2 has no index. || DS1 has no index. | Conditions. DSO has no index.

Figure 10: Experimental Environment

Cost Function Regression. Before we estimate the query processing time for a given maintenance strategy, we
have to establish the cost function for each edge (join condition) defined in the view graph. Figure 11 shows the
regression function we built for data source DSy along the join condition between DSy and DS; using least squares
fit (its parameters are By = 755.37, By = 16.04 and B> = 0.108). The three solid lines from lower to higher record the
measured query processing time (on the y-axis) for maintenance queries with 2, 4, 6 attributes respectively with the
number of tuples in the maintenance query changing from 100 to 1000 (on the x-axis). Three dashed lines illustrate
the estimated query processing cost given the input parameters (the number of attributes and the number of tuples).
Seen from Figure 11, the cost function captures the basic trends of actual query processing costs. However, the lower
the total processing cost, the more inaccurate the estimation in our model, this is because the smaller processing

time can be more easily affected by random events.

1600

1400

1200

1000

800 1

600 4

---o--- Regression (A#=2) ---m--- Regression (A#=4)
400 ---4--- Regression (A#=6) —x— Measured (A#=2)
—sx— Measured (A#=4) —e— Measured (A#=6)

Processing Time (ms)

200 4

1 2 3 4 5 6 7 8 9 10
Updates (x100)

Figure 11: Cost Function Regression

15

Maintenance Plan Cost. Figures 12 and 13 show the cost differences between various maintenance plans. In
Figure 12, the line ‘Worst Measured’ records the total maintenance query processing time measured using the batch
maintenance plan generated (with the highest estimated query processing cost) by the search algorithm when main-
taining source updates from 400 to 4000 (on the x-axis) ®. While the line ‘Best Measured’ records the corresponding
measured times for the best batch maintenance plan (with the lowest estimated cost). The two dashed lines in Figure
12 show the corresponding estimated total query processsing times for these two plans. The estimated cost reflects
the measured cost trends fair accurately. However, it only accounts around 80% of the real cost in general for the
following reasons: 1) The accumulated errors caused by each individual join cost function. 2) The measured cost
includes extra processing time in the view manager such as converting the query results and composing maintenance

queries which have not been incorporated into our cost model simplicity reasons.

55000 -

50000 - W
B

45000 4 DU
P it A -+ - -

& 40000 -
= 7 W
< 35000 A
B 80000 { gueoenee e
2 25000 -
3 20000 -

---o-- Worst Estimated —=s— Worst Measured
15000 -

10000 -
5000

---a--- Best Estimated =~ ——«— Best Measured

400 800 1200 1600 2000 2400 2800 3200 3600 4000
of Updates

Figure 12: Cost of Batch Maintenance Plans

Figure 13 enumerates all four grouping maintenance plans available for the view definition (in Figure 10). Four
solid lines record the measured costs and the dashed lines show the corresponding estimated costs. For the same
reasons as those with the batch maintenance cost estimation, the estimated grouping maintenance plan cost is also
below that of the real measured cost. However, it again keeps the trends well and thus support the usage of our

proposed cost estimation approach.

Batching vs. Grouping. In the above two cases (Figures 12 and 13), we see that even the cost of the best batch
maintenance plan is still worse than the worst grouping maintenance plan. This is because the grouping maintenance
plans have a smaller number of accesses to the remote data sources. However, this is not true in general cases. To
illustrate this, let assume that we have 2000 updates both in DSy and DS, respectively, and 10 updates in DS and
DS3. We set up that each large delta will have an approximate 4.0 join factor which will return 4 times the number

of input tuples as the result due to the join conditions between DSy-DSs and DS;1-D.S, respectively. While the join

8For simplicity, we assume all the updates are evenly distributed among these four data sourcs.

16

35000 -

30000 -

25000 -

20000 -

Query Time (ms)

15000

—e—Plan (0123) —=—Plan (1023)
10000 —a— Plan (3201) ——Plan (3210)
1 ---+--- Estimated (0123) -+ -- Estimated (3201)

5000

400 800 1200 1600 2000 2400 2800 3200 3600 4000
of Updates

Figure 13: Cost of Group Maintenance Plans

factors of other edges is around 1.0.

Figure 14 illustrates the costs of five different batch maintenance plans given the above settings 7. Figure 15
shows the costs of four grouping maintenance plans. Seen from these two figures, at least two batch maintenance
plans are more efficient than even the best grouping maintenance plan. This is because in each grouping maintenance
plan, we have to have one of the high join factor edges (either DSy-DS; or DS1-DSs) in the grouping path. Thus,
the intermediate result will be amplified by the high join factor of such join edge. For example, if we use the
grouping path 0-1-2-3, then the second query of the scroll up phase may return 4000*4 tuples. However, in the
batch maintenance plan, we always apply as many join conditions as possible in each maintenance query. Thus, the
intermediate result of each maintenance query will be much smaller. In this case, a batch maintenance plan would
have a large number of maintenance queries (in this example, it has 12 queries) yet will be still more efficient than a
grouping maintenance plan (with 7 queries) because some large maintenance queries in the grouping plan overtake

the benefits gained by the smaller number of maintenance queries.

30000

25000

20000 @ P-1023/0123/3201/2013
m P-1023/0123/3210/2103
0 P-1203/0213/3210/2031
0 P-1230/0231/3201/2130
m P-0231/1230/2301/3201

15000

Query Time (ms)

10000 =

5000

Batch Maintenance Plans

Figure 14: Batch Maintenance Plans

In the above experiments, the difference between maintenance plans is around 40% of the total cost. However, in

7A lot more other batch maintenance plans are available, here we only select a small part of them as examples.

17

30000

25000

20000 Il —

@ Plan-3201
| Plan-1023
O Plan-0123
0 Plan-3210

15000

Query Time (ms)

10000 Il —

5000

Group Maintenance Plans

Figure 15: Group Maintenance Plans

a more diverse environment, the cost difference between maintenance plans may change dramatically. The following

experiment illustrates the impact of the netwrok delay on the total maintenance cost.

Impact of the Network Cost. To evaluate the impact of different data transfer rates of the network, we insert
the delay factors before evaluating each maintenance query. The delay is generated based on the average time to
transfer one tuple. For example, if we assume that the average time to transfer a tuple with 2 attributes is 7,
then it takes 100*2*7 to transfer one delta with 100 tuples with 4 attributes per tuple. Figure 16 shows the batch
maintenance plan query time given 7 equal to 10 (ms) while all the other settings are the same as in the experiment
in Figure 14. Seen from Figure 16, the difference between the maintenance plans can be more than 100% of the total
processing time. This is because the slower the network, the more the effect of processing extra intermediate query

results due to a bad maintenance plans will become apparent.

1000000

900000

800000

700000

@ P-1023/0123/3210/2103
m P-1023/0123/3201/2013
500000 O P-1203/0213/3210/2031
O P-1230/0231/3201/2130
m P-0231/1230/2301/3201

600000

400000

300000

Query Processing Time (ms)

200000

100000

0

Batch Maintenance Plans

Figure 16: Batch Plans with Network Delay

Optimization Overhead. Due to the inherent complexity of the query optimization problem, there is no efficient

algorithm available yet to find the optimal plan. The cost of the enumeration algorithm is small for a small number

18

of data sources, a common situation for many views that integrate 10 or less data sources. For example, the batch
enumeration algorithm for the four node view graph defined in Figure 10 takes less than 30 ms. While the grouping
path search algorithm takes less than 15 ms to enumerate the paths. As expected, when the number of nodes in the
view graph increases, the enumeration time also increases dramatically. A view graph with 9 nodes and 12 join edges
needs 12,228 ms to enumerate using the batch enumeration algorithm in our environment. Given that the number
of nodes in a view graph is usually not large, such enumeration algorithms are still acceptable for a large number
of cases. In addition, a greedy search algorithm can be used to reduce the optimization time when needed. The
algorithm described in Figure 8 for selecting batch maintenance plans takes 63 ms for the above 9 nodes 12 edges
view graph. However, such reduction in optimization time is no longer guaranteed to find the optimal plan. Figure
17 shows result plan using the greedy search on the view defined in Figure 10. Thus, the greedy search maintenance

plan has high estimated cost than the optimal one.

35000

30000

25000 ——

20000 @ Worst-0231/1230/2301/3201
m Greedy-0123/1023/2013/3201
15000 O Best-0123/1203/2103/3210

10000

Query Processing Time (ms)

5000

Maintenance Plans

Figure 17: Greedy Search Estimated Cost

5 Related Work

Maintaining materialized views under source updates is one of the important issues in information integration and
data warehousing [19]. A lot of algorithms have been proposed to maintain materialized views incrementally by
issuing maintenance queries to the underlying data sources either using a compensation-based or a multiple version

based approach [19, 20, 1, 3, 4].

In situations where the real time refresh of the view extent is not critical, changes to data sources can be
buffered and propagated periodically to optimize the maintenance performance given a large number of updates. [14]
proposed an asynchronous view maintenance algorithm using delta changes of data sources. [9] proposed a batch
maintenance algorithm which can be applied to maintain a set of views. [10] introduced maintenance algorithms when

both source data and schema changes are present. In our recent work [11], we explored the trade-off of the number

19

of maintenance queries and the complexity of the query. There we have proposed the basic grouping maintenance
strategy also employed by our current work. However, none of the above incorporates the dynamic nature of the
real environment to further optimize the view maintenance process. Similar with [9], Posse [12] introduced a view
maintenance optimization framework which only focuses on the order in which these delta changes are to be installed
and maintained. While in our work, we explore the optimizations at an even lower level. That is, given a delta

change, we study how to compose maintenance queries to calculate the maintenance result more efficiently.

Distributed query processing [8] is well studied also in particular for distributed environments. Garlic’s op-
timizer [7] employs a rule-based approach which produces optimized plans using cost information provided by the
corresponding wrappers. Various optimization techniques also have been proposed in the multiple query optimization
work [15]. However, as we discussed earlier, more optimizations are available in a view maintenance framework due to
the regularity of all (generated) maintenance queries that are dictated by the chosen maintenance strategy. Work on
providing cost information and on developing cost models for data sources is also relevant. [18] proposed a regression

algorithm to develop cost model for data sources. These works can be applied into our framework independently.

6 Conclusion

In this work, we explore two levels of trade-offs in the view maintenance strategies. That is, besides the inherent
differences between maintenance strategies, such as the total number of maintenance queries vs. the complexity of
each query, other factors such as the environmental settings including the network connection cost and the data
source processing capabilities also will affect the view maintenance performance. We propose a cost-based view
maintenance optimization framework by extending view maintenance strategies with corresponding cost models to
generate efficient maintenance plans dynamically. The framework has been implemented in our TxnWrap view
maintenance system. Experimental studies show that our framework generates efficient maintenance plans that

optimize the view maintenance performance in terms of the total processing time significantly.

Although a lot of optimization techniques have been proposed both in distributed query processing and view
maintenance areas, they were largely developed independently. Our work brings these two areas one step closer
together and introduces a promising approach to further optimize the view maintenance performance given a non-
homogenous environment. As one future step, a more adaptive view maintenance optimizer can be built by gathering

cost information in a more timely manner.

20

References

[1]
[2]
[3]
[4]

[5]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]

D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient View Maintenance at Data Warehouses. In
Proceedings of SIGMOD, pages 417-427, 1997.

J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently Updating Materialized Views. In C. Zaniolo, editor,
Proceedings of SIGMOD, pages 61-71, Washington, DC, May 1986.

J. Chen, S. Chen, and E. A. Rundensteiner. A Transactional Model for Data Warehouse Maintenance. In
ER’02, pages 247-262, Sep 2002.

J. Chen, X. Zhang, S. Chen, K. Andreas, and E. A. Rundensteiner. DyDa: Data Warehouse Maintenance under
Fully Concurrent Environments. In Proceedings of SIGMOD Demo Session, page 619, 2001.

L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for Deferred View Maintenance.
In Proceedings of SIGMOD, pages 469480, 1996.

A. Gupta and I. Mumick. Maintenance of Materialized Views: Problems, Techniques, and Applications. IEEFE
Data Engineering Bulletin, 18(2):3-19, 1995.

L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing Queries Across Diverse Data Sources. In
International Conference on Very Large Data Bases, pages 276-285, 1997.

D. Kossmann. The State of the Art in Distributed Query Processing. ACM Computing Surveys (CSUR),
32(4):422-469, 2000.

W. J. Labio, R. Yerneni, and H. Garcia-Molina. Shrinking the Warehouse Updated Window. In Proceedings
of SIGMOD, pages 383—-395, June 1999.

B. Liu, S. Chen, and E. A. Rundensteiner. Batch Data Warehouse Maintenance in Dynamic Environments.
In CIKM’02, pages 68-75, Nov 2002.

B. Liu, E. A. Rundensteiner, and D. Finkel. Optimizing View Maintenance Plans over Distributed Data Sources.
In Submission to CIKM’03, Nov 2003.

K. O’Gorman, D. Agrawal, and A. E. Abbadi. Posse: A framework for optimizing incremental view maintenance
at data warehouse. In Data Warehousing and Knowledge Discovery, pages 106—115, 1999.

D. Quass. Maintenance Expressions for Views with Aggregation. In Proceedings of the Workshop on Materi-
alized Views: Techniques and Applications, June 1996.

K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay. How To Roll a Join: Asynchronous Incremental View
Maintenance. In SIGMOD, pages 129-140, 2000.

T. K. Sellis. Multiple-query Optimization. ACM Transactions on Database Systems (TODS), 13(1):23-52,
1988.

C. Wang and M.-S. Chen. On the Complexity of Distributed Query Optimization. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 8(4):650-662, 1996.

X. Zhang, E. A. Rundensteiner, and L. Ding. Parallel Multi-Source View Maintenance. VLDB Journal, 2003.
to appear.

Q. Zhu, Y. Sun, and S. Motheramgari. Developing Cost Models with Qualitative Variables for Dynamic Multi-
database Environments. In Proceedings of IEEE International Conference on Data Engineering, pages 413-424,
2000.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a Warehousing Environment.
In Proceedings of SIGMOD, pages 316327, May 1995.

Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. The Strobe Algorithms for Multi-Source Warehouse Consistency.
In Parallel and Distributed Information Systems, pages 146-157, 1996.

21

