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Abstract

Materialized views defined over distributed data sources are a well recognized technology for data integration,
e-business, and data warehousing. Many algorithms have been proposed to date for incrementally maintaining
materialized views, typically processing one update at a time. In situations when a real-time refresh of the view
extent is not critical, changes to the sources are combined and maintained periodically such as once a day to improve
the maintenance performance and to reduce the conflicts with user’s read sessions upon the view extent.

In this work, we explore the key factors that affect the performance of view maintenance, in particular the
number of maintenance queries and their complexity. We present four alternative strategies. First, we describe
an algorithm for batching all updates from the same data source. This reduces the total number of maintenance
queries to O(n?) where n is the number of data sources that the view is defined upon, regardless how many source
updates are being maintained. Second we enhance this batching strategy by sharing common subexpressions in
the different maintenance processes. This further reduces the number of maintenance queries. Third, we propose
two grouping strategies, namely, maximal grouping and conditional grouping, which both reduce the number of
maintenance queries to O(n). The reduction in the number of maintenance queries comes as a trade-off in terms
of an increase in the complexity of these queries. A cost model to analyze and compare these four strategies is
provided. These maintenance strategies have been implemented in our TxnWrap materialized view maintenance
system. Experimental studies illustrate the trade-offs between the different design choices for realizing maintenance
strategies. Our experiments reveal an additional dimension of this design space, namely the impact of the cooperation

of the remote sources in the maintenance process on the performance of such maintenance strategies.

*This work was supported in part by several grants from NSF, namely, the NSF NYI grant #IRI 97-96264, the NSF CISE Instru-
mentation grant #IRIS 97-29878, and the NSF grant #IIS 9988776.



1 Introduction

1.1 Materialized Views and Their Maintenance

Materialized views [6, 1] built by gathering data from possibly distributed data sources and integrating it into one
repository customized to users’ needs are a well recognized technology for data integration, e-business, and data
warehousing. One important task of a view manager is to maintain materialized views upon source changes, since
frequent updates are common for many applications. Unless the underlying data sources are small, it is usually
desirable to maintain view extents incrementally [2, 5]. That is, instead of recomputing the view extent from scratch,
the delta of the view extent is computed and committed to refresh the view extent. In this process, the view manager
needs to send maintenance queries [19] to underlying data sources to determine the changes of the view extent that

related to the updates.

Many algorithms have been proposed in the literature [19, 1, 20, 3, 18, 16] that incrementally maintain the
materialized view extent, typically processing one update at a time. In situations when a real-time refresh of the
view content is not critical, changes to the source can be buffered and propagated periodically to update the view
extent. Two benefits can be reaped from such batching. One, we may gain a better overall maintenance performance.
Two, fewer conflicts with users’ read sessions upon the view extent may arise. However, most existing algorithms
[19, 1, 3, 18] were designed to handle the maintenance for a single source update one at a time. They were not
optimized for maintaining multiple source updates together in one process. In this work, we instead focus on how to
incrementally maintain materialized views more efficiently for a given set of source updates. First, we review a batch
algorithm [10, 8] using delta changes (one delta change describes changes made to a data source in a certain time
period). Then, exploring the trade-off between the number of maintenance queries and their complexity, we propose

a series of algorithms to optimize the overall performance of maintaining a given set of source updates.

1.2 State-of-the-Art in Materialized View Maintenance

The example below is used to illustrate state-of-the-art incremental view maintenance algorithms.

Example 1 Assume we have three data sources with one relation each, as shown in Figure 1. A view Asia-Customer

is defined by the SQL depicted in Query 1.

Sequential Maintenance. The SWEEP algorithm introduced in [1] maintains a view extent incrementally for one

source update at a time in a distributed environment. We illustrate this algorithm on Example 1. Assume one data



CREATE VIEW  Asia — Customer AS

R1: Customer(Name, Age, Address, Phone) SELECT C’.Nq,me, C.Age, F.Dest
R3: Tour(TourID, TourName, Type, NoDays) F.FlightNo, T'TQUTID
R3: FlightRes(Name, FlightNo, Source, Dest) FROM Customer C, FlightRes F, Tour T (1)
WHERE C.Name = F.Name
. .. AND F.Dest = ‘Asia’
Figure 1: Description of Data Sources. AND F.Name — T.TourName

update “DU}%1 = insert into Customer values (‘Ken’, 27, ‘MA’, 5857)" happened at R;. The subscript “R;” in
DU }%1 denotes the data source where this update happened, while superscript “1” represents the ith (i > 1) update
in this source (the sequential number in order of occurance). In order to determine the delta effect on the view
extent, this requires us to send maintenance queries [19] to sources Ry and R3. Queries 2 and 3 represent these two

maintenance queries due to update DU }217 assuming the result of Query 2 is (‘Ken’, 28, 69).

SELECT 'Ken' as Name, 28 as Age, F.Dest
F.FlightNo, 69 as TourlD
(2) FROM FlightRes F (3)
WHERE F.Name = 'Ken’
AND F.Dest = 'Asid

SELECT 'Ken' as Name, 28 as Age, T.TourlD
FROM Tour T
WHERE T.TourName = 'Ken'
Thus, to maintain one source update using SWEEP, we may have to traverse all the underlying data sources besides
the one where the source update originated from to compute the incremental effect on the view extent. If multiple

source updates need to be maintained at the same time, we would repeat this process for each update until all

updates have been processed 1.

Batch View Maintenance. In our earlier work [10], we have proposed a batch maintenance strategy which
maintains the view extent using source-specific delta changes. For example, assume within a certain period, five
updates happened on the data sources defined in Example 1 and are reported for maintenance in the order listed in
Figure 2. Instead of maintaining these five source updates individually as described above, we first construct delta
changes specific for each source. Thus, AR; = { +(‘Ben’, 28, ‘MA’, 6136), -(‘Ken’, 27, ‘MA’, 5857) } 2, ARy =
{ +(63, ‘Ben’, ‘L’, 10) }, and AR3 = { +(‘Ben’, 168, ‘MA’, ‘Aisa’), +(‘Tom’, 169, ‘CA’, ‘Aisa’) }. Thereafter, we
compute the incremental view extent for all these updates in three steps. Within each step, one source-specific delta

traverses the underlying data sources once to compute the maintenance result.

Batch view maintenance is usually more efficient than sequential maintenance in terms of the total processing
time for a given set of source updates [10, 8]. Sequential maintenance involves many maintenance queries (depending
on both the number of source updates and data sources) to be sent to the data sources with each maintenance

query reflecting a single source update. In batch maintenance, however, we have a small number of maintenance

IConcurrent source updates could happen during the maintenance process. Thus an additional concurrency control strategy is
necessary to keep the view extent consistent [20], as further discussed in Section 4.3.

2For simplicity, we use ‘4’ to represent an insert operation and ‘-’ to denote a delete operation.



DU}:LI: Insert(‘Ben’, 28, ‘MA’, 6136) into Customer
DUfh: Insert(‘Ben’, 168, ‘MA’, ‘Aisa’) into FlightRes
DU%I: Delete(‘Ken’, 27, ‘MA’, 5857) from Customer
DU;EQ: Insert(63, ‘Ben’, ‘L’, 10) into Tour

DU}522: Insert(‘Tom’, 169, ‘CA’, ‘Asia’) into FlightRes

Figure 2: Sequence of Source Updates.

queries (depending only on the number of data sources) with each maintenance query corresponding to a set of
source updates. This now opens the opportunity to combine several updates and construct a combined maintenance
query that may outperform handling each individual update one by one. The study of this trade-off between the
number for maintenance queries and their complexity in view maintenance performance is the main issue that this

work addresses.

1.3 Contributions of this Work

Our key contributions in this work are:

1. We study state-of-the-art materialized view maintenance algorithms and illustrate the trade-offs between the

number of maintenance queries and their complexity.

2. We propose one strategy to exploit the common subexpressions typically found in a maintenance process. This

improves maintenance performance by reducing the number of maintenance queries.

3. We propose two grouping strategies, namely, mazimal grouping and conditional grouping, which both reduce the
total number of maintenance queries to O(n) where n is the number of data sources that the materialized view

is defined upon, regardless how many source updates need to be maintained.

4. We provide a cost model to analyze and identify the trade-offs that affect the maintenance performance for a

given set of source updates.

5. We have implemented these maintenance strategies in our TxnWrap view maintenance system. Our experimen-
tal study shows the trade-offs between the different design choices for realizing maintenance strategies. Our
experiments reveal an additional dimension of this design space, namely the impact of the cooperation of remote

sources on the maintenance performance.

The rest of the paper is organized as follows. Section 2 describes the trade-offs in the view maintenance processes.
Sections 3 and 4 describe the proposed strategies. A cost model is provided in Section 5. Section 6 discusses the

experimental results, while related work and conclusions are given in Sections 7 and 8 respectively.



2 View Maintenance Trade-offs

For simplicity and without loss of generality, we simplify the representation of view definitions and maintenance
queries using > 2. Thus, the view defined in Example 1 can be represented by R; < Ry 4 Rz where R; (1 <1 < 3)
represents the extent of the corresponding data source. The incremental view effect (AV') due to a source update
DU}%1 described in Section 1.2 can be represented by the formula “AV = DU}21 < Ry > R3”. While for the batch
maintenance strategy described, we represent the process as follows: AV = (AR; <t Ry 1 R3) + (R} < ARy 1<
Rs3) + (R} < R, < AR3). Here AR, represents the delta change of source R; and R, = R; + AR; (1 <14 < 3). Note
that concurrency control strategies (either compensation based [1, 19] or multiversion based [3]) are needed in case

of additional source updates happening concurrently to the process of evaluating above formulae.

To see the difference between the sequential and batch maintenance approaches, we abstract these two processes
as follows. Assume a materialized view V is defined upon n distributed data sources denoted by Ry <t Ra ... < R,,.
Given a certain period, k source updates have happened and are reported for maintenance, DUy , DU% , DU, ,
..., DU 1’3“. The subscript R; (1 < i < n) represents in which source the update has happened. If we maintain
these updates sequentially, we have k steps with each one submitting n-1 maintenance queries (join operations) to
the corresponding data source (depicted by Query 4). For batch maintenance, we first prepare AR; = > i>1 DU }J%
(1 << n). Then we use n steps with each step possibly having n-1 join operations to the underlying data sources

(depicted by Query 5) *.

AV=DU11311><1R2D<1R3...><1R,1 AV =AR; xRy < R;... xR,

+DU}, >Ry R3... xR, +Ry < ARy < R3... < R,

+... (4) +... (5)
+DUf, <Ry < Ry...>< Ry y +Ri < Ry Ry ... AR,

Typically, the number of source updates £ is much larger than the number of data sources n. Thus, this opens the
opportunity to combine several updates and construct a combined maintenance query that may outperform handling
each individual update one by one. A maintenance plan, generated by one of the maintenance strategies, specifies
how to maintain a given set of source updates at an abstract level. We call each “line” in the maintenance plan a
maintenance step. Such a step traverses all the data sources (except the one where the update(s) has originally
happened) to compute the maintenance result. The term maintenance step granularity refers to the number of
source updates being combined. Thus, we have £ maintenance steps with each maintenance step granularity being

1 in a sequential maintenance plan. While in a batch maintenance plan, we have n maintenance steps with each

3Like most algorithms proposed in the literature [1, 20, 18, 16, 10, 8], we assume that the materialized views are SPJ views that
integrate data by joins across multiple data sources.

4As we mentioned early, more compensation queries are needed in both approaches if we choose a compensation-based concurrency
control strategy. Without loss of generality, we only focus on the maintenance queries here.



maintenance step granularity typically being larger than 1. We end up computing k(n-1) maintenance queries () for
sequential maintenance and n(n-1) for batch maintenance. Batch maintenance reduces the number of maintenance
queries to distributed data sources by combining multiple source updates. However, two questions remain. First,
is it possible to further reduce the number of maintenance queries, say to less than O(n2?). Second, does a lower
number of maintenance queries imply a reduction in total maintenance time. Or, put differently, what are the key

factors that affect the maintenance performance. The remaining sections of this paper now explore these questions.

3 Shared Common Subexpressions

One way to reduce the number of maintenance queries is to identify and then share any common subexpressions
between different maintenance steps of an overall maintenance plan. Studying the batch maintenance plan (See
Query 5), we observe that a large number of common subexpressions do exist between different maintenance steps
due to the regularity of the view definition structure. For example, the first two maintenance steps of the formula
have the common subexpressions Rz < ... R,,, while the second and the third steps have Rj and Ry >< ... R,
in common. If we share such common expressions, the total number of maintenance queries (join operations) would

be reduced.

AP R R, R,

R, Ry Ry ». R,

R, R, A R, ... R,
< T

R, R, LR, .. R,

. R,

R, R, R, R, AR

Figure 3: Group Adjacent Steps to Share Common Expressions

Our depiction of the batch maintenance plan highlights the common expressions between adjacent maintenance
steps. In Figure 3, we illustrate one possible heuristic for sharing such common expressions. Namely, we can divide
the maintenance steps equally and group the adjacent steps along the main diagonal. Then we share the rest of the
expressions in grouped steps. For example, if we group steps by two, then the first two steps become (AR; <t Ry +
R <1 ARy) 4 Ry < ... X R,,. The total number of maintenance queries for these two steps is reduced from 2(n-1)
to n. While for the third and the fourth steps, we rewrite it to R b1 R) > (AR3 < Ry + Ry > ARy) < ... < Ry,

and so on. If we divide steps equally, i.e., we group m adjacent steps together along the main diagonal, then the



total number of join operations can be described by Equation 6.
n n
[ 1m(m =1) + (n —m)) + R, R = (n— | [m)(n—1). (6)

R includes the leftover factors for the n that can’t be divided by m. By simple calculation, we know that when
m is around +/n, then the total number of join operations will reach its minimum. Other grouping criteria are
also possible, i.e., grouping maintenance steps unevenly based on the estimated delta size. By sharing common

expressions, we can reduce the total number of maintenance queries to O(n?/2).

4 Grouping Strategies

In the above strategy, we combine different deltas together if and only if they have the same schema. We now relax
this constraint and introduce two new approaches that reduce the total number of maintenance queries to O(n)
by combining more delta changes together. To simplify the discussion, we assume that the view is defined upon n
distributed data sources denoted by R; < Ry ... > R, and has the corresponding delta changes ARy, AR, ...,

AR, need to be maintained 5.

4.1 Maximal Grouping

We now introduce the mazimal grouping strategy maintains a view extent incrementally in n combined maintenance
queries. Assume we have one global vector T at the view manager to hold the temporary results. We use T,j (1 >0,
1 < k < n) to represent the value of the kth element in T corresponding to the data source Ry, after the ith query.
Initially, we have T = ARy, (1 < k < n). We define R}, = R, + ARy, (1 < k < n). That is, R}, represents the current

state of the data source Ry, ©.

Query 1. As the first query, we send TQ (2 < k < n) to data source R; and evaluate the result of Rj b< TP
(2 < k < n). The result is sent back to T for the next process (See Figure 4). Note that several issues need to be
considered for this process, i.e, how to send these delta changes together as a combined query. These issues will be
discussed in Sections 4.3 and 4.4. Here we simply investigate the feasibility of doing this at a logical level. Thus,

after the first query, T} = TP = Rf = ARy < R} (2<k<n), T} =T = AR;.

5Tt also can be extended to handle more general SPJ views. We discuss this extension with more details in [11].

6The concurrency issue will be discussed in Section 4.3.



R, =R; + AR
— 1 1 1 —
Figure 4: Sending Deltas to Source 1 Figure 5: Sending Deltas to Source 2

Query 2. In the second query, we send T}t (1 <k < n,k # 2) to data source Ry and evaluate the result of T} st R),
(1 <k <n,k # 2). However, we should evaluate the result for data sources that have been visited in previous steps
based on R, instead of R,. Thus, T2 = T\ < RS (T?) - T} < ARy. We refer to this as the compensation operation.
This overall process is depicted in Figure 5. The bold-dashed box in 7 indicates that necessary compensation work
may have to be done before the next query. After the second query, we have T? = ARy < Ry, T2 = ARy = R},
T2 = ARy =< Ry = R}y (3 <k <n).

Figure 6: Sending Deltas to Source i Figure 7: Sending Deltas to Source n

Query i. Let’s generalize the process for any ith query (2 < i < n). In query 4, we send T{ ' (1 < k < n,k #9) to
R; and get the result to be T} = T,j_l >a R]. After that, we compensate the results T,:' using AR, for 1 <k <i-—1.
Thus, T{ = T 'R (i <k <n), T} =T, ' R; (1 <k <i—1). This process is depicted in Figure 6. The bold-
dashed box again indicates the necessary compensation work. After this query, T = AR; < R s Ry ... R]_;,

Ti=AR, <R Ry<a...x R (i<k<n), Tf =R Ry<t...0q ARy <4 Ry ... < Ry (1 < k < d).

Query n. As described in Query i, we send 7;"~' (1 < k < n —1) to R, and compensate the result using AR,,.
This is depicted in Figure 7. Thus, we have T]* = ARy i Re < Rz ... X Ry, T9' = Ry M ARy X R3 ... X< Ry, ..,
T = R} < Ry > R ... > AR,,. Clearly, the union of T} (1 < k < n) is equal to the formula we have developed for

the batch maintenance plan (Query 5).

Thus, we end up with n maintenance queries using delta changes to calculate the incremental view extent which

traverse each data source once. However, one weakness of maximal grouping is the possible large intermediate



result size caused by the lack of a join condition between some of the intermediate results and the data source. For
example, we will send ARs, AR3, ..., AR, to data source R; in the first query. Only R2 has the join condition with
R; given the view is defined by Ry > Ra < ... > R,. Thus, to evaluate the result ARy < R} (3 < k < n), we may
have to compute the cartesian product instead. Given that the size of each data source may be huge, this approach

is thus likely not to be feasible for many practical settings.

4.2 Conditional Grouping

To address the above shortcoming, we propose a conditional grouping algorithm, which makes use of join conditions
in the view definition to group deltas. We divide the conditional grouping algorithm into two phases, called Scroll
Up and Scroll Down. As in Section 4.1, vector T holds the temporary results. T} represents the value of the kth
element in the vector T corresponding to data source Ry, after the ith query. The initial value of vector T is T =

AR, T =0 (2< k <n).

Scroll Up Phase. There are n - 1 queries in this phase. First, we send TP (AR;) to Ry and get the result
T! = AR; < R). We then compensate the result using ARs. Thus, T = TP 0 Ry — TP a1 ARy = TY > Ry. After
that, we set T) = ARy. We have T} = AR; < Ry, and T} = AR after the first query.

In the second query, we send T} and T} to Rs and get the result T2= T} < R}, T2 = T4 < R}. We then
compensate the results using AR3. Thus, T2 = T} > R3, T2 = Ty > R3. After that, we set T = AR;. We have

T? = AR; < Ry 4 R3, T = ARy < R3 and T = ARj after the second query.

To generalize the process, in any ith query, we do the following four operations. First, we send all T,j_l
(1 < k < i) to Ryy1. Second, we evaluate the result T{ = Tli_l > R, (1 <k <4). Third, we compensate
the result using AR;. Thus, T} = T} - T,i_l < AR;+1 (1 < k < 4). Finally, we set Tii-',-l = AR;y1. We have

Ti=ARp < Ry ... < Ry (1 <k <4), T}y = ARy4 after ith query.

K3

After the (n-1)th query, we get the scroll up phase result T)" ' = ARy < Ryy1... < Ry, (1 <k < n).

Scroll Down Phase. There are also n-1 queries in this phase. For simplicity, we use another vector W to hold the
temporary result. Initially, we have Wy = T,;‘_l (1 < k <n). In the first query, we send W,, to source R, 1, and
get the result W, 0 R,_;. That is W,, = AR, Rl,_;, W), = V"'(1 <k <n —1). Note that no compensation is

necessary in this phase.

In second query, we send W,,_; and W,, to R,_2 and evaluate the result. Thus, W,,_; = W,,_; < R! W, =

n—29

Wy Ry, W =TP ' (1< k<n—2).
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Figure 8: Scroll Up Phase Figure 9: Scroll Down Phase

In general, in any ith query (2 < i <n—1), we send Wy (n —i < k < n) to R,—; and get the result W, =
Wi R, (n—i <k <n). After the (n-1)th query, Wi, = AR; M Ra < R3... < Ry, Wo = R{ M ARy <R3 ... 1<
Ry, ..., Wp, = R < R, > R ... > AR,,. Thus, the union of these Wj;(1 < k < n) equals the batch maintenance

plan result.

The overall process of these two phases is depicted in Figures 8 and 9. That is, the scroll up phase calculates
the upper part along the main diagonal in n-1 queries, while the scroll down phase computes the remaining part of

the computation matrix in n-1 queries.

4.3 Handling Concurrent Updates

In the algorithms proposed thus far, we assume that there is no concurrency interfering with the current view
maintenance plan. This can be easily achieved by a multi-version based system [3] because we can always retrieve
the right data source states from versioned data. However, if a compensation based approach is being used such as
[4], concurrent updates have to be considered. To address this, we propose the following method to maintain the

view extent under concurrent environments.

We use two vectors to hold source updates: the current vector (CV) holds the delta change per source that
currently is being maintained, while the concurrent vector (CONYV) holds all updates that occur concurrently to
the current maintenance plan. Initially, CONV is empty because all source updates will be put into CV. After we
begin to maintain the deltas in CV, newly incoming updates will be put into CONV. As usual, we use R; (1 <1< n)
to represent its original data source state. While R} (R} = R;+AR;, 1 < i < n) represents the state that incorporates
the effect of source updates in vector CV (AR;). We use Rf (R{ = R + AR{, 1 <i < n) to represent the current

state, where AR¢ denotes the corresponding delta changes accumulated in CONV.

Figure 10 illustrates the process of putting source updates into the two vectors. As done in the literature

[1, 3, 18], we assume that all messages transfer between sources and the view manager using a FIFO scheme. That



Concurrent Updates Vector Current Updates Vector

] ARl‘;‘ | ARi | | ARC; | | AR,i | ’ AR/H | AR | | AR, | | AR ‘

R, -> R R, _>R2c

AR,¢ AR.S ARf AR,¢

Figure 10: Concurrent Communications between Sources and the View Manager

is, all updates happen on a data source R; (1 < i < n) after we have evaluated the maintenance query upon this data
source (R;) will also arrive at the vector CONV after the view manager gets the result of this maintenance query.
That is, we can use delta changes in both vectors (AR;, ARS) to restore the right data source states, either R} or
R;, when the view manager gets the result of a certain maintenance query. As an example, the conditional grouping

algorithm in a concurrent environment is revised as follows:

Scroll Up Phase. In ith query, we send all T,i_l (1 < k < i) to Riy1 and get the result T} = T,i_l > Rf
(1 < k < 14). We then compensate the result using AR; + ARY locally in the view manager, that is, Tf = T} -

T ' 0a (AR; 4+ AS) (1 < k <i). After the compensation, we set T}, ; = AR;41.

Scroll Down Phase. There is no need to compensate in the scroll down phase if there are no concurrent updates.
However, given any concurrent updates, then we use AR§, (1 < k < n) to compensate the result. Thus, in any ith
query (1 <i<n-—1), wesend Wy (n—1i < k <n) to R,_; and set the result Wj, = Wy, 0x RS_, - Wy, x ARS,_,

(n —i < k < n) for the next query.

After these two maintenance phases, the vector W contains the effects on the view extent which exactly only
incorporates the source updates in the CV. After we refresh the view extent, we simply dump the delta changes in
the CONV to the CV and set R, = R}, (1 < k < n). Thereafter, we can repeat the maintenance process for the next

set of collected updates.

4.4 Grouping Deltas Together

Up to now, we haven’t indicated how we combine different deltas and use such heterogeneous deltas to evaluate
the maintenance result. For example, consider building a combined maintenance query containing delta changes
ARy > Ry and AR». If the query engine at the data source were advanced, it could exploit the similarity among

the queries to scan the source relation once when processing all these deltas. However, data sources may not be that

10



advanced. Thus, we instead propose a non-intrusive method to address this issue of unifying different deltas that
are from different data sources. The basic idea is to construct one large table that contains the schema of different
deltas and fill the respective unrelated fields with default values. We ship this table to the data source as one large
delta and evaluate the result together. After we get the result, we split the large query result back into different
deltas per source at the view manager. We may even append certain identification related information to the delta
so we can split the query result back into deltas more easily. As shown in Figure 11, instead of sending delta tables
ARy < Ry and AR5 to the data source R3 separately, we build a union table which contains the information of both

deltas and send them together to R3 to evaluate the maintenance result in one pass.

ARIMRZ ARZ Al | A2 | Bl | B2

Al | A2 | BI | B2 Bl | B2
1|2 |3 |4 U |4 |6 =
2 |3 |4 |5 5 |7

A

|
Bl > L

Figure 11: Example of Unifying Different Deltas

5 Cost Model Analysis

We provide a cost model to analyze the maintenance performance in terms of total processing time. We mainly
focus on two key variables in this analysis: the network cost of transferring data between the view manager and
the distributed data sources, denoted by Cie:, and the cost of evaluating a maintenance query (join operation),
represented by Cjoin. To simplify the description of the cost model, we don’t consider the compensation cost in our
cost model. In fact, no compensation cost would exist if we were to apply a multiversion based concurrency control
strategy. This happens indeed to be the view environment we have at our disposal for our experimental study (See

Section 6). We use the following assumptions to simplify the formula we develop:

o We assume all sources are identical in terms of the cost of answering similar maintenance queries. That is, the
cost of A ba R; equals the cost of A > R; given a delta change A (1 <4,j < n). Thus, we use R to represent a

data source R; (1 <i < n).

e We assume k updates evenly distributed among n data sources. Thus, each source experiences k/n updates. We

assume that the cost of AR; >4 R equals the cost of AR; < R (1 <4,j <n).

11



For simplicity, we use As to represent a single source update, and AS to denote the delta changes of each source.
To represent the maintenance query result, we define AS;;; = AS; x R with AS; = AS (1 <i<n-—1). For a

single source update, we also define As;11 = As; < R with As; = As.

For a sequential maintenance plan, the view manager takes one source update at a time, sends maintenance
queries to the sources one by one and collects the result. This process is repeated until all £ source updates have been
maintained. Thus the total cost for maintaining & source updates can be represented by Equation 7. Similarly, the
cost of the basic batch maintenance (Section 1.2) is given by Equation 8. Cjet(As;) or Cpet(AS;) represents the cost
of sending the maintenance query while Cpet(As;y1) or Chret(AS;+1) denotes the cost of transferring maintenance

result. Cjoin denotes the cost of answering the corresponding maintenance query.

n—1 n—1

Ts =k Z[Cnet (Asi) + Cjoin (Asi) + Cnet (Asi+1 )] Tb =n Z[Cnet (Asz) + Cjoin (Asz) + Cnet (A5i+1)]
1=1 =1

(7) (8)

For the shared common expression approach, we assume that we divide the maintenance steps evenly into a group

of size m. Then the cost can be measured by Equation 9. mAS; denotes the union of m AS;s.

m—1 n—1
T, = %{m Z [Cnet (ASZ) + Cjom (ASz) + Chret (ASi+1 )] + Z[Cnet (mASz) + Cjom (mAS’z) + Chret (mASiH)]} (9)
1=1 i=m

Based on the same assumptions, the cost of conditional grouping is given in Equation 10.

n—1 1 [ i+1 n—1
Ty = [Coet(D_AS)) + Ciom (D AS)) + Crer (D AS)+ D [Cret (1AS:) + Cloin(iAS:) + Crer(iASi1)] (10)
i=1 j=1 j=1 j=2 i=1

The trade-off between these maintenance strategies is that as we reduce the number of maintenance queries to
distributed sources, we do increase the message size in each Cper and Cjoip,. To accentuate this difference, we further
simplify the cost model by assuming that AS;;; = AS;. That is, the maintenance query result equals in size with
that of the maintenance query. In Figure 12, we depict that trade-off based on the simplified model. If the cost of
Cioin and Cre; on a delta change with size k (combining & updates) is much smaller than % times the cost of Cjgp,
and Che; with size 1 (one update), performance improvements are expected by reducing the number of maintenance

queries.
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Figure 12: Simplified View Maintenance Cost Model

6 Experimental Evaluations

6.1 Experimental Testbed

We have implemented these proposed maintenance strategies within the TxnWrap system developed at WPI [3].
TxnWrap is a multiversion-based view maintenance system which removes concurrency control concerns from its
maintenance logic. Thus, it is not necessary to apply compensation for handling concurrent source updates in our
setting. The basic TxnWrap system maintains one single source update at a time using the known SWEEP algorithm
[1]. The batch TxnWrap [10] combines the updates from the same data source and maintains the view extent using

the delta change for each source.

In our experimental study, we have conducted our experiments on four Pentium IIT PCs with 256M memory,
running Windows NT and Oracle 8i. We employ six data sources with one relation each that are evenly distributed
over three PC machines. Each relation has two attributes and 100,000 tuples. One materialized join view is defined

upon these six source relations residing on a separate (the fourth) machine.

6.2 Impact of Source Dependent Properties

We first investigate the impact of source dependent properties (cooperative versus non-cooperative in particular)
on the maintenance performance. A non-cooperative source only answers maintenance queries (SQL queries), but
offers no other services or controls to the view manager. A cooperative data source would cooperate with the view
manager by allowing to synchronize processes or lock its data. This means to evaluate the operation AR; < R;
against a non-cooperative data source, we have to use a composite SQL query which unions maintenance queries for
a single source update to evaluate the result. While a cooperative source would allow the view manager to build a

temporary table directly at the data source, ship the delta data, evaluate it locally and send the result back. These
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two methods of evaluating maintenance queries are different. In Figures 13, 14 and 15, we vary the number of data
updates from 10 to 150 (and then from 500 to 2000) with all updates from the same source (on x-axis). The y-axis

represents the maintenance time.
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Figure 13: Batch a Small Number of Updates Figure 14: Performance Ratio of Bat. over Seq.
From Figure 13, the processing time of batch maintenance using a composite query increases slowly. For the
temporary table approach, the increase of the total cost is even slower than that of using a composite query. This is
due to the fact that the setup cost (create temporary table and populate its extent) dominates the actual maintenance
expenses for small cases. This also explains that with a small number of updates, batch processing using a temporary

table is even more expensive than sequential maintenance.

Figure 14 displays the ratio of the sequential processing time divided by batch processing using the data gotten
from Figure 13. The higher the ratio, the larger a performance improvement is achieved. We observe that when the
number of updates is around 50 in our current setting, the composite query batch processing approach is the most

efficient. While for batch maintenance using temporary tables, the ratio increases steadily.
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Figure 15: Batch Large Number of Updates
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Figure 16: Grouping Small Number of Updates

We see that the larger the number of source updates being grouped, the lower the improvement of the mainte-
nance cost when using the composite query approach. In Figure 15, if we increase the number of source updates,

then the cost of batch maintenance using composite query approach becomes even worse than sequential processing,.
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A composite query composed of the union of a large number of queries will result in a cost increase compared to
the cost of sequential processing. Thus, for this composite query approach, we instead suggest to divide such a large
number of updates into smaller subbatch queries of size k£ based on the ratio measured in Figure 14. The cost of the
sum of these subqueries will be smaller than that of the one large composite query. As seen in Figure 15, when we
choose k equal 50, the total maintenance cost using a composite query approach will reach its optimum in our setting.
However, if we use the temporary table approach, the total cost is even lower than that of the optimized composite
query approach. This is because the ratio of the increase of each such batch maintenance query to the increase in
the number of source updates is very low. Without loss of generality, we utilize this more efficient temporary table

approach as batching representive when comparing our new proposed strategies.

6.3 Change the Number of Source Updates

Figure 16 shows the average maintenance cost (on the y-axis) by varying the number of source updates from 100 to
1000 (on the x-axis). These updates are evenly distributed among six data sources. From Figure 16, batch processing
takes less processing time than sequential processing due to the reduction in the number of maintenance queries by
grouping source updates together. If we further group deltas, then the total maintenance time can be even more
reduced. We see such maintenance cost relationship: ‘conditional grouping < shared common expressions < batch
processing’. Given that the shared common expressions approach is a medium perfomer between the batch and

conditional grouping, we will focus on comparing in more depth the batch and conditional grouping strategies below.
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Figure 17: Grouping Large Number of Updates Figure 18: Change the Distributions of Updates

Figure 17 measures the performance changes for both strategies for an increasing number of source updates. The
maintenance cost of both approaches increases steadily as the size of each delta increases. The conditional grouping
outperforms batch maintenance due to the size of delta not being a major factor on the Oracle query cost if we use

the temporary table approach and the conditional grouping has a smaller number of maintenance queries.
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6.4 Change the Distribution of Source Updates

We examine the impact of the distribution of 1,000 updates among the data sources on the maintenance performance
(Figure 18). On the x-axis, a distribution of 1 denotes that all 1000 updates come from one source, while 6 indicates
that these updates are evenly distributed over six data sources. Figure 18 presents the cost ratio (batch maintenance
cost divided by grouping maintenance cost). Clearly, the more data sources are involved, the higher the performance
improvement. This is because the total number of maintenance queries in batch maintenance changes from 5 to 30
queries if we increase the distribution from 1 to 6 sources, while the conditional grouping only changes from 5 to 10

correspondingly. Thus more improvement is achieved by further reducing the number of maintenance queries.

6.5 Impact of the Join Ratio

We use 200 updates on six sources and vary the join ratio from 0.5 to 3.0 (on x-axis). We define the join ratio as
the average number of tuples affected by a source change. For example, a join ratio equals to 2 means that a single
update which changes a tuple in the source may cause 2° tuples to be updated in the view extent. From Figure 19,
we see that the higher the join ratio, the higher both maintenance costs. A high join ratio increases the size of each
temporary maintenance result, which in turn increases the time to answer the maintenance query. Both maintenance
costs increase rapidly when the join ratio increases. This is because the result size is exponential based on the join
ratio in our setting. Also, the higher the join ratio, the closer these two maintenance costs become (Figure 19).
Clearly, any change in the temporary result size will be amplified by a exponential factor based on the join ratio.

Thus, the benefit of having a smaller number of maintenance queries is overtaken by the increase of each query cost.
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Figure 19: Change the Join Ratio in the View Figure 20: The Impact of Network Delay
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6.6 Impact of the Network Delay

To evaluate the impact of different data transfer rates of the network, we insert delay factors before evaluating each
query. The delay is generated based on the average time to transfer one tuple. For example, if we assume that the
average time to transfer a tuple with 2 attributes is ¢, then it takes 100*2*¢ to transfer one delta with 100 tuples
with 4 attributes per tuple. We use 1000 data updates on six sources and vary ¢ from 0 ms to 80 ms. On Figure
20, both maintenance costs grow steadily as the network cost of each maintenance query is increasing. In a typical
network environment where the transfer time of one tuple with 2 attributes (<20 characters) is less than 30 ms,
conditional grouping is more efficient than the batch method because we have a smaller number of maintenance
queries. However, in a slow network, i.e, when the average transfer time for one tuple is larger than 60 ms, then the
gain gotten by reducing the number of maintenance queries is overtaken by the increase in the network cost of each
query. In conditional grouping, we may have some extra data (null values) transferred on the network. This extra

data becomes a burden in a slow network.

7 Related Work

Maintaining materialized views under source updates is one of the important issues in information integration [19].
Initially, some research has studied incremental view maintenance assuming no concurrency [5, 12]. In approaches
that need to send maintenance queries to the data sources, especially in a distributed environment with autonomous
data sources, concurrency problems can arise. [19] introduces a compensation-based algorithm, called ECA, for
incremental view maintenance under concurrent source data updates restricted to a single source, while Strobe
[20] handles the concurrency which comes from multiple data sources. SWEEP [1] applies local compensation of

maintenance over distributed sources.

In situations where the real time refresh of the view extent is not critical, changes to the sources can be buffered
and propagated periodically to maintain the view extent to gain better maintenance performance. [13, 15, 5, 16, 8]
propose algorithms to maintain materialized views incrementally using grouped source updates. In our previous work
[10], we have proposed a batch view maintenance strategy that works even when both data and schema changes may
happen on data sources. However, these existing approaches are only concerned with batching updates from the
same source. [9] introduces a delta propagation strategy that reduces the number of maintenance queries to data

sources. However, it only focuses on sharing common subexpressions in maintenance steps.

Distributed query processing [7] is well studied which focuses on query optimization in a distributed environment.
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It provides techniques such as in what order to compute a sequence of joins which orthogonal to what we explore
here. Making use of shared common expressions is well studied in multiple query optimization area [17]. In the
context of optimizing maintenacne plans, common subexpressions could possibly be manually identified because the
maintenance queries are relatively fixed given a view definition. [14] discusses how to send maintenance queries to
data sources. It is also orthogonal to our proposed strategies because it only focuses on how to optimize the execution

of one single maintenance query.

8 Conclusion

In this paper, we have taken a fresh new look at how to realize a given view maintenance plan by exploring the
trade-off between the number of maintenance queries and their complexity. These maintenance strategies have
been implemented in our TxnWrap view maintenance system. Qur experimental studies illustrate that maintenance
performance can be greatly improved by reducing the number of maintenance queries. Our experiments also reveal
an additional dimension of this design space, namely the cooperation of the data sources in the maintenance process.

This is shown to have a significant impact on the performance of such maintenance plans.
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