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Abstract

Many industrial verification teams are developing suitable event sequence languages for hardware
verification. Such languages must be expressive, designer friendly, and hardware specific, as well as
efficient to verify. While the formal verification community has formal models for assessing the efficiency
of an event sequence language, none of these models also accounts for designer friendliness. We propose
an intermediate language for event sequences that addresses both concerns. The language achieves
usability through a correlation to timing diagrams; its efficiency arises from its mapping into deterministic
weak automata. We present the language, relate it to existing event sequence languages, and prove its
relationship to deterministic weak automata. These results indicate that timing diagrams can become
more expressive while remaining more efficient for symbolic model checking than LTL.

1 Introduction

The increasing adoption of formal verification has led to a flurry of research into property specification
languages for hardware verification. Large-scale efforts include Accellera’s standardization of Sugar [1],
Synopsys’ OVA [13], and Intel’s FTL [4]. Generally speaking, these are event sequence languages: they
allow designers to express sequences of events to monitor and check during verification. The proliferation of
work from industry on event sequence languages emphasizes that they must be designer friendly, expressive,
and specific to the hardware domain in addition to efficient to verify. Although practical experience and
theoretical results give insights into how to achieve these goals individually, few formal models attempt to
address usability and efficiency simultaneously.

In the space of event sequence languages, timing diagrams provide an appealing combination of usability
and efficiency. Designers have established their utility by regularly employing them as an informal design
tool. Mappings from formalized timing diagrams to deterministic weak automata [8] provide effectively
linear symbolic verification algorithms [5]. That timing diagrams are not more widely used as event sequence
languages suggests that they lack the expressiveness needed in industrial verification [3]. Their combination
of utility and efficiency, however, raises an interesting question: how expressive can we make an event
sequence language while retaining both diagrammability and efficiency?

This paper explores this question by proposing a (textual) intermediate language for capturing event
sequence languages. To target diagrammability, we design the core of the language around timing diagrams.
To target expressiveness, we extend the core language to capture constructs from other event sequence
languages. To target efficiency, we syntactically characterize which expressions in this language map to
deterministic weak automata. The results of this work are twofold: first, our language provides a framework
in which to assess both usability and efficiency of other event sequence languages; second, our characterization
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Figure 1: Expressing an event sequence in three languages.

proves that timing diagrams can be extended with several new features—such as partial orders between
events, interleaved environmental assumptions, escaping conditions, and event clocks—without losing their
mapping to deterministic weak automata. Our long-term goal is to develop formal models that simultaneously
characterize both usability and efficiency in event sequence languages. This paper focuses on the efficiency
of verifying our proposed language; future papers will treat formal models of diagrammability as a measure
of usability.

2 Preliminaries

2.1 Event Sequences and Timing Diagrams

Event sequences, as their name implies, capture sequences of events on signals in a design; they express
properties for verification or simulation. Regular expressions and linear temporal logic have similar goals,
but also some subtle differences. Event sequences often monitor transitions on signals in the design, rather
than just boolean values of propositions. In addition, event sequences generally capture timing constraints
between events. While both regular expressions and linear temporal logic can capture these features, the
resulting expressions can be rather cumbersome, especially in contrast to event sequences and timing dia-
grams. Figure 1 shows a simple example of the same event sequence expressed as a timing diagram, in linear
temporal logic (LTL), and in Sugar.

Although timing diagrams present event sequences somewhat intuitively, they are not as expressive
as some other event sequence languages. For example, textual event sequence languages easily express
disjunctions, while diagrams in general capture disjunctive information poorly. The mapping from timing
diagrams to weak automata, which does not hold for full LTL, demonstrates benefits to this limited expressive
power. The question, then, is how far we can push timing diagrams while retaining this mapping. The
timing diagram shown in Figure 2, for example, expresses some disjunction as the order of events is left
unspecified (a partial order rather than a total one). This extension adds expressive power without sacrificing
diagrammability or weakness. We are interested in similar extensions based on constructs from modern event
sequence languages.

2.2 Weak Automata

A Biichi automaton (@, X, g0, R, L, F) is weak if it has only one fair set and each of its strongly connected
components has either all states fair or no states fair [9]. Weak automata are attractive in verification
because symbolic cycle detection is effectively linear for weak automata, as opposed to quadratic for full
LTL [5]. Deterministic weak automata are particularly interesting for their properties under complementa-
tion. Automata-based verification approaches complement automata that capture properties. In the general
case, complementing a Biichi automaton can blowup the number of states exponentially. Complementing
a deterministic weak automaton, however, requires only complementing the fair set; the structure of an
automaton and its complement are otherwise identical. This represents a substantial savings in construction
time, and more importantly, in the size of automata used to represent complemented properties.
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Figure 2: A timing diagram with partial orders and its mapping into an event sequence.

3 An Intermediate Language for Event Sequences

This section presents a regular-expression-like notation for event sequences. We motivate the development of
the language using the example timing diagram shown in Figure 2. We explain the semantics of the diagram
informally; the formal details appear elsewhere [7].

To capture the diagram, the language must express transitions on signals and constraints (timing and
ordering) between these transitions. Let propositional literals (p, —q) denote boolean values and propositional
variables annotated with arrows (p |, p 1) denote falling and rising transitions, respectively. Let semicolons
denote concatenation (temporal sequencing) of events. Using these notations and reading off the timing
diagram from left to right suggests the expression (a 1;b 1;¢ 1;a ;b |). If we interpret semicolons as
implying order between events (a common interpretation of concatenation), this expression is inconsistent
with the semantics of the timing diagram. The rising transitions on a and b may occur in any order since no
constraint orders them (the falling events on a and b, in contrast, must occur in order). The event sequence
language must therefore support partial, rather than only total, orders between events.

Timing diagrams consist of totally-ordered regions within which individual events are partially ordered.
For sake of generality, our event sequence language supports hierarchical combinations of ordered, unordered
and iterated groups of events. In the formal syntax and semantics that follows, we refer to these groups
of events as clusters. We capture partial orders within unordered clusters using a separate annotation for
transition (timing) constraints between events; a timing constraint specifies the events covered, lower and
upper bounds on the time between the events, and the clock against which the bounds are measured (true
specifies the system clock). This approach treats constraints between events uniformly, whether they occur in
ordered or unordered clusters. Figure 2 shows the resulting event sequence for our example timing diagram.

3.1 Syntax

The timing diagram example suggests the following syntax for event sequences:

Definition 1 Clusters are defined hierarchically as follows:

e An event is a conjunction of values of and transitions on variables that contains at least one transi-
tion. Propositional literals (p, —¢) denote boolean values; propositions with arrows (p |, p 1) denote
transitions.

e A cluster is either:

— a single event, or
— an unordered cluster {C1,...,Cy} where each C; is a cluster, or
— an ordered cluster {(Cy;...;Cy) where each C; is a cluster, or

— a repeating cluster CM where C' is a non-repeating cluster and M is a positive number, *, or +
(called a repetition marker; markers * and + are called unbounded).

An event sequence consists of a (top level) cluster and three kinds of modifiers. Temporal constraints,
already motivated, may be relative to a designer-specified event clock, as captured by a boolean expression
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Figure 3: A sample event sequence and an example of its semantics.

(this is a common feature in event sequence languages). To indicate that certain variables hold value
during regions (between events) in a diagram, holding patterns constrain variable values within clusters.
To allow portions of diagrams to serve as assumptions rather than requirements, escape conditions capture
circumstances under which the sequence should be immediately rejected or accepted.

Definition 2 An event sequence is a tuple (C, H,T,S) where C is a cluster, H (the holding patterns) is a
partial function from C to propositional formulas, T is a set of temporal constraints with no clock overlaps
and S is a set of escape conditions.

e A temporal constraint is a tuple (e1, e2,l,u, clk) where e; and ey are (uniquely identified!) events in C,
l is a positive integer, u is either an integer at least as large as [ or the symbol oo, and clk is a boolean
expression (the clock for the constraint; true indicates the system clock). Events e; and ey may lie in
different clusters, but then they must lie in the same repeated clusters.

e An escape condition has one of three types, where X is a boolean expression over events (the events
need not be in C) and C’ is a cluster within C":

— “accept if don’t complete C'”
— “reject if see X in C"”

— “accept if see X in C"”

Figure 3 illustrates an event sequence of some number of rising transitions on a, followed by rising
transitions on b and ¢ (in either order), followed by a rising transition on d. The transition on d must occur
between 2 and 5 ticks (inclusive) after the transition on ¢ (the timing constraint), signal ¢ must remain true
until the transition on d occurs (the holding pattern), and the rest of the sequence is only checked if the
transition on a occurs (the escape condition).

The language contains some redundancy for sake of clarity: ordered clusters, for example, can be viewed
as unordered clusters plus timing constraints. To simplify the semantics and proofs, we assume that all
sequences are in reduced form, in which all clusters Ct are replaced with (C;C*), all C™ for a concrete
number M are replaced with an ordered cluster of M copies of C, and all ordered clusters (Cy;...;Cy) are
replaced with unordered clusters and timing constraints that require an event from each C; to occur before
an event from each C;;1.

3.2 Semantics

The semantics of event sequences is defined in terms of languages over infinite words, where each character
in a word is an assignment of boolean values to variables. An infinite word models an event sequence if there
exists a mapping from the clusters in the sequence to ranges of indices into the word (herein called windows)
such that the windows assigned to each cluster preserve the cluster’s constraints; these mappings are called
inder assignments.

As an example, consider the event sequence and word shown in Figure 3. The word is divided into
windows per cluster (demarcated by solid lines), and subwindows as necessary for nested clusters (demarcated

LA numbering scheme could distinguish syntactically similar events.



by dashed lines). While an event sequence may contain unordered clusters, each such cluster appears in a
particular order within a given word. An ordering of an unordered cluster is called a schedule.

Definition 3 Given an unordered cluster C = {C4,...,Cy}, a schedule of C is a sequence COx,...,CO; of
non-empty subsets of C' such that

e COy,...,C0; partition C,

e In every CO; that contains multiple elements of C, all elements of CO; are single events (rather than
other complex clusters), and

e For each timing constraint (eq, e2,l,u, clk) such that e; € CO; and ez € CO;, i < j.
We begin with definitions about windows and the mappings from clusters to windows.

Definition 4 Given a word W, a window of W is a subword of W; a pair of indices into W, denoted [, j]
where i < j, defines a window. Furthermore,

e An individual index 7 defines a trivial window [z, 4].
e Window [i1,42] contains window [ig,i4] iff i3 < i3 and iy < da.
e Window [i1,42] is earlier than window [i3,44] iff 41 < i3 or i1 = i3 and iz < i4.

e Given a window w = [start,end], a sequence [s1,e1],...,[Sk,er] forms a non-overlapping covering
sequence of windows for w if s; = start, e, =end, and for all 1 < j <k, e; < 5541.

Definition 5 A (partial) index assignment for event sequence V and word W is a (partial) function from
the clusters in and nested within V' to non-empty sets of windows of W.

A window must meet certain requirements in order to capture the constraints of a cluster: for example,
windows assigned to single events must reflect the variable values within those events, each window assigned
to a cluster must contain subwindows satisfying the elements of the cluster, and the distance between windows
assigned to events must respect timing constraints. Two characteristics of index assignments capture these
constraints: structural validity requires that windows mapped from events satisfy those events and that the
index assignment respects structural features (such as cluster nesting); constraint validity requires that index
assignments respect timing constraints and holding patterns. The following three definitions formalize these
notions of validity.

Definition 6 Let £ = v A...Avg where each v; is a proposition, its negation, or a rising or falling transition
on a proposition.? Let W be a word and 7 an index into W. Let W;(q) denote the value of proposition ¢ at
index ¢ into W. Index i satisfies E if for every v;, W;(p) = 0 if v; = —p, Wi(p) = 1if v; = p, W, _1(p) =0
and Wi(p) =1if v, =p1, and W,;_1(p) =1 and W;(p) =0ifv; =p|.

Definition 7 Let V be an event sequence, W a word, and I a partial index assignment for V and W. I is
structurally valid iff for every cluster C in V:

e If C is an event, then for every [i,1] € I(c), i satisfies C' (Defn 6).

e If C is a repeating cluster C'*, then for every wp in I(C"*) there exists a natural number m and some
sequence wpy, . . . , WPy, of non-overlapping covering windows for wp such that each wp; € I(C").

e If C is an unordered cluster {C1i,...,Cy}, then for every window w € I(C) there exists a schedule
COq,...,C0; for C and a sequence wy, ..., w; of non-overlapping covering windows for w such that
foralli <h <jandall e € CPy, wy € I(e).

Definition 8 Let V = (C, T, H, S) be an event sequence, let W be a word, and let I be an index assignment
for V and W. I is constraint valid for V and W iff

2E is more general than an event, which requires at least one transition.




1. I satisfies the holding patterns, in that for all clusters C’, every x € H(C") and every window [wy,w2] €
I(C"), every index w; < i < wso satisfies x, and

2. I satisfies the timing constraints, in that for every (e1,es,l,u,clk) € T and every t; € I(e1) and
to € I(t2) such that ¢; and ¢, fall in a common window for the smallest cluster containing both e; and
e2, the number of indices satisfying clk between ¢, and t5 (inclusive) is within the range [I,u].

The semantics generally requires index assignments to be both structurally and constraint valid. For sake
of conciseness, we use the single term wvalid for index assignments that satisfy both sets of criteria.

Constraint validity handles timing constraints and holding patterns, but not escape conditions. The
next two definitions handle escape conditions. Definition 12 relates words and event sequences based on the
existence of index assignments that may or may not invoke escape conditions. Given index assignment I, let
T be the inverse of I (mapping windows to sets of clusters).

Definition 9 Let V be an event sequence, W a word, and I a valid index assignment for V and W. Let E
be an escape condition of type “accept/reject if see X in C”. Index i into W invokes E under I if i € I(C),
i satisfies X, and I is defined for all clusters in the images of I for windows occurring before i. We also say
that I invokes an escape condition of V.

Definition 10 Let V be an event sequence, W a word, and I a valid index assignment for V and W. I loops
under escape condition E if E is of the form “accept if don’t complete C” and I is defined for all clusters in
the images of I for windows occurring before 4, but not for a window containing .

For the semantics to yield a deterministic procedure for checking whether a word satisfies an event
sequence, index assignments must assign the fewest and earliest possible windows to clusters (in particular,
this renders both * and scheduling of unordered clusters deterministic for a given word). We formally define
this notion of minimality by constructing a partial order over valid index assignments: intuitively, index
assignment [; occurs before I in this order if I assigns events to earlier windows than does I5.

Definition 11 Let V be an event sequence and let W be a word. Let I and I' be non-equivalent index
assignments for V and W. Let RgW (I) denote the union of the sets in the range of I (in other words,
RgW (I) yields the set of all windows that I assigns to events). I < I" iff

1. the earliest window in one but not both of RgW (I) and RgW (I') is in RgW (I), or
2. RgW(I) = RgW (I') but for w, the earliest window such that I(w) # I'(w), I'(w) C I(w).

An index assignment I is locally minimal if there does not exist an index assignment I’ such that I' < I.
Given a set X of index assignments, I € X is minimal in X iff for all I' € X, I <* I’, where <* is the
transitive closure of <.

Lemma 1 Let I and I' be different index assignments for the same event sequence V. and word W. At most
one of I < I' or I' < I holds.

Proof: If RgW(I) # RgW (I'), then the first case of the definition applies. There must exist an earliest
window that is not in both RgW (I) and RgW (I'), so at most one of I < I' or I' < I will hold. If
RgW(I) = RgW(I') but I # I' (by assumption), then I and I’ must distribute the windows in their
equivalent ranges differently across events. Let w be the smallest window that I and I’ assign to different
events. By choice of w, I(w) # I'(w), so at most one of I < I' and I’ < I, holds by the second case of the
definition; if neither I(w) C I’(w) nor I'(w) C I(w), then < does not order I and I’.

In general, the definition of < does not guarantee a unique minimal index assignment for a given V' and
W. Consider the event sequence {{a,b},{c,d}} and a word that satisfies both a and ¢ in indices 0 and 2,
and both b and d in indices 1 and 3. Two possible index assignments I; and I for this sequence and word
would be Il(a) = 0,[1(1)) = 1,[1(0) = 2711(d) = 3, and Ig(a) = 2,]2(1)) = 3,[2(6) = 0,[2(d) = 1. Schedules
of unordered clusters may only overlap individual events (but not more complex clusters); I; and I would
both be locally minimal, but incomparable to one another. The restrictions outlined in Section 5.2 for event



sequences to yield deterministic automata are sufficient to yield unique minimal index assignments, as we
prove in that section.
We now define when a word models an event sequence:

Definition 12 Let V be an event sequence and let W be a word. W =V if there exists a locally minimal
and valid index assignment I for V and W such that I is either defined for all clusters in V', or I loops under
some escape condition in V', or I invokes some escape condition in V.

The semantics captures one occurrence of an event sequence, rather than the multiple occurrences needed
to treat an event sequence as an invariant. The one-occurrence semantics offers two benefits: it provides
a foundation for defining different multiple occurrence semantics [7], and it enables the mapping to weak
automata. Two multiple occurrence semantics appear common in practice: an invariant semantics in which
a word must match an event sequence starting from every index, and an iterative semantics in which the
event sequence must be matched repeatedly, as if it were enclosed in a repetition cluster. Although the
syntax and semantics here directly capture the iteration semantics, Section 5.3 shows that iteration generally
breaks weakness; for this reason, we find it advantageous to define the semantics such that iteration at the
outermost level can be handled separately from the core sequence being iterated over. In addition, separating
the definition of sequences from their behavior over multiple occurrences lends a certain cleanliness to the
definitions and proofs.

Constructing automata for a single occurrence would seem fairly limiting, however, as verification al-
gorithms usually require an automaton or monitor for the entire property, including multiple-occurrences;
for verification, algorithms actually need the negation of automaton for multiple occurrences. Fortunately,
the restriction to single occurrences is not as limiting as it might seem: for those sequences that map to
deterministic weak automata, we can construct the automaton for the negation of the sequence as an invari-
ant by complementing the fair states and adding self-loops at the initial states [8]. We can handle iterative
semantics directly in the logic as just described. This restriction therefore supports our theoretical results
without much cost in utility or expressiveness.

4 Relationship to Existing Event Sequence Languages

To motivate the intersection between our simultaneous goals of diagrammability and efficiency, this sec-
tion shows how several features of existing event sequence languages do or do not map into the proposed
intermediate language.

4.1 Timing Diagrams

Section 3 illustrated the connection between timing diagrams and our proposed event sequence language.
The language presented here extends our previous results on the relationship between timing diagrams and
weak automata [8] in two ways. The previous result held for timing diagrams with a total order on their
transitions and a prefix of the diagram as an environmental assumption (as in, “if the rising transition on a
occurs, then match the whole diagram”). As a corollary to the results in this paper, timing diagrams with
partial event orders and multiple non-contiguous assumptions on the environment also map to deterministic
weak automata. We view environment assumptions as events that are only constrained if they occur [6];
unlike other events, their failure to occur does not violate the diagram’s requirements. For the diagram in
Figure 2, we could treat the two transitions on a as environment assumptions by rewriting the event chain
using nested clusters (as ({a 1,01, ¢ 1,a l}; b)) and adding “accept-if-don’t-complete” escape conditions on
the two clusters for a.

The proposed language is more expressive than our current timing diagram formalization. Consider the
cluster (a 1*;b1). The timing diagram semantics requires all depicted transitions to occur unless an escape
condition matches, so this expression (without escape conditions) is currently not expressible as a timing
diagram (since a 1 might not occur). Similar examples involving repetitions also exist. Furthermore, timing
diagrams cannot handle the arbitrary cluster nesting allowed in the current language. Enriching the timing
diagram notation, as Amla et al. have done [3], could resolve some of these issues; this remains an issue for
future work.
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Figure 4: Automata for two LTL formulas: the one on the left is weak while the one on the right is not.

4.2 LTL, Sugar, and FTL

Sugar and FTL are similar in that each extends conventional LTL. Since there exist LTL formulas that
cannot be captured by weak automata, certain FTL and Sugar formulas will not map into our intermediate
language. Weakness primarily characterizes the location of fair sets in automata. In LTL, fairness constraints
arise from combinations of eventualities and cycles (the operators U and G). Figure 4 shows automata that
capture two formulas: (p U ¢) U r and p U(G(q U r)). The first example yields a weak automaton and
corresponds to cluster {(p*;q)*;r). The second corresponds to cluster {p*; (¢*;r+)*) with escape condition
“accept if don’t complete r1”; this expression violates our syntactic restrictions for weakness presented in
Theorem 5 (Section 5.3).

One key difference between these two formulas is that the second contains a repetition within its last
cluster, while the first does not. This same difference characterizes the automata for the regular expressions
(aa)* and (aa)*b, the first of which cannot be captured by a deterministic weak automaton while the second
one can. An automaton can recognize a nonrepeating final pattern without creating a fair set. This motivates
our characterization of weakness: the final cluster cannot end with an unbounded repetition marker.

Certain other features of Sugar and FTL do not adversely impact weakness. FTL’s change_on and
reject_on constructs indicate when a sequence should be immediately accepted or rejected; escape conditions
capture such scenarios in the proposed intermediate language. For example, augmenting (p U ¢) U r with
escape condition “accept if see reset in ¢” would introduce a new state labeled reset with an incoming edge
from the state for ¢; this automaton is also weak.

4.3 OVA

Of the recent event sequence languages discussed in this paper, OVA most closely matches the proposed
language. Unlike Sugar and FTL, OVA does not explicitly support LTL or CTL operators. The OVA istrue
construct maps into holding patterns, and their non-overlapping event clocks map into ours. Unlike the
proposed language, however, OVA can express disjunction among sequences and negation of sequences. Our
language does not support negation because negated sequences generally cannot be realized diagrammatically.
Our language does, however, still support constructing deterministic weak automata for the negations of event
sequences, as outlined at the end of Section 3.

5 Relationship to Deterministic Weak Automata

This section characterizes which sequences in our language map to deterministic weak automata; almost all
do, with the exception of those with particular interactions between escape conditions and repeated clusters.
We construct an automaton corresponding to the semantics, prove the construction sound, then characterize
when the resulting machine is both weak and deterministic.

Given an event sequence V', we construct a Biichi automaton that accepts all words with a prefix that
models V; this captures the “single occurrence” nature of the semantics, as discussed in Section 3.2. Figure 5
illustrates the intuition behind the expansion. The construction recursively expands states corresponding to
clusters until all states correspond to individual events. Holding patterns, escape conditions, and the ordering
aspects of timing constraints are incorporated as this expansion proceeds. The durational aspects of timing
constraints are handled in a final phase once all states correspond to individual events. Each intermediate
machine during the computation abstracts the final machine, in that if there is no path from one abstract
state to another, then there is no path from any state in the expansion of the first to the expansion of the
second in the final machine.
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Figure 5: Overview of the automaton construction algorithm.

The construction creates edges between abstract states based on which clusters can precede or follow
other clusters; it also relies on notions of the first and last subclusters that could be encountered in a cluster.
These concepts match intuition and examples of all four notions follow the definition. The theorem in
Section 5.2 also refers to first and last events, which are obtained by iterating the first and last computations
on clusters until they contain only events. We present examples first, followed by the formal definitions.

Ezamples: Given event sequence (C1;Cy;C5;Cy ), next(Cy)=next(C3)={C3,C4} and prev(C3)={Cs,C3}.
Given an event sequence (C1;{Ca1,C35};{C31,C32}";Cy) that has a timing constraint from C; to Cas,
next(Cy1)={Ca2, Cs1, Cs2,C4}. For the first and last sets, first({C21, C59})={C21}, last({C21, C55})={C55},
and ﬁI‘St({C31, 052}) = laSt({C31,C§2}) = {031, C;Z}

Definition 13 Let C be a cluster immediately contained in a cluster C¥ (if C' has no enclosing cluster,
next(C) is empty). If C¥ = (Cy;...;Cy) and C = C; for i < k, then next(C) is Cyyq if Ciy; is not an
repeating-* cluster and {C;y1}U next(C;1) if Ciy1 is an repeating-* cluster. If C = Cf, then next(C) is
next(CF). If C is an repeating-* cluster, next(C) also includes C. The case for unordered clusters unions
similar results over all possible schedules, and repeated clusters C' have next(C) as {C}U next(CT).

Definition 14 Let C be a cluster immediately contained in a cluster C* (if C' has no enclosing cluster,
prev(C) is empty). If C¥ = (Cy;...;C%) and C = C; for i < k, then prev(C) is C; 1 if C;_; is not an
repeating-* cluster and {C;_1}U prev(C;_1) if C;_; is an repeating-* cluster. If C = Cp, then prev(C) is
prev(CT). If C is an repeating-* cluster, prev(C) also includes C. The case for unordered clusters unions
similar results over all possible schedules, and repeated clusters C' have prev(C) as {C'}U prev(CF).

Definition 15 Let C be a cluster. If C is a repeating cluster C'™ | then first(C) is first(C'). If C is an
unordered cluster, then first(C) is the union of all Cy in valid schedules Cy,...,Cy of C. If C is a single
event, then first(C)={C}.

Definition 16 Let C be a cluster. If C is a repeating cluster C'M, then last(C) is last(C’). If C is an
unordered cluster, then last(C) is the union of all C}, in valid schedules Cyp,...,Cy of C. If C is a single
event, then last(C)={C}.

Definition 17 Let e be an event with parent cluster C. The nezt events of e, denoted next-e(e), is the set
of first events of all clusters in next(C). The previous events of e, denoted prev-e(e), is the set of last events
of all clusters in prev(C).

The construction algorithm appears in Figures 6 through 8. We capture timing constraints with additional
automata that run concurrently (via a cross product) with the automaton for the core of the sequence. In
order to preserve weakness, our construction must create one copy of the constraint automaton for each



Algorithm 1 To construct an automaton for event sequence (C,T, H, S):
1. Create a state Final with a self loop and mark it fair.
2. Create a state for C' and mark it initial, final, and unexpanded.
3. Repeatedly select an unexpanded state N for some non-event cluster C' and

¢ Add holding patterns and edges for the escape conditions for C' to N (Figure 7).
e Expand N according to the type of C and remove N.

e If N was marked initial (resp. final), mark the new states for all first (resp. last) clusters of C
initial (resp. final). Copy all other propositional annotations (including fair) from N to the new
states from the expansion.

e Handle the timing constraints (Figure 8).

e Define the fair states of the automaton to be all those in the cross product of the core automaton
and the timing constraints such that either (1) the core machine is in a fair state and all timing
constraints are in their initial or final states, or (2) the core machine is in a fair state arising from
an accepting escape condition and none of the timing constraint automata are in the error state.

4. Add an edge from each state marked final to the state Final.

Expand Repeated Clusters: For a state N for repeated cluster C*, add an edge from the state for each
previous cluster of C* to that for each next cluster of C* and mark N as capturing C instead of C*.

Expand Unordered Clusters: For a state N for unordered cluster C = {C},...,Cg}:

e For every schedule COy,...,COy of C, create a chain of abstract states CONy,...,CON,,. For every
non-self-loop edge coming into N, add an edge from the same source to CON;. For every non-self-loop
edge leaving N, add an edge from C'ONj, to the target of the original edge.

e Eliminate unnecessary nondeterminism by merging states with the same incoming transitions and
labels into single states (this shares common prefix states across the various permutations).

e If N had an edge to itself, add an edge from each sink state in the subgraph that expands N to each
source state in the subgraph that expands N.

Expand Events: For a state NV corresponding to an event E, replace N with two states, one that searches
for the first half of the event and one that searches for the second half of the event. Figure 9 shows the
transitions to generate, where el — 1 and el — 2 are the two states that expand the state for e;; el — 1
captures having seen the first half of e1, while el — 2 captures having seen the second half of e;. The labels
el/1 and el/2 on the transitions refer to the two sets of propositional values required to satisfy e;; for a
rising transition on a, el/1 would require @ = 0, while e1/2 would require a = 1.

Figure 6: The algorithm for constructing an automaton from an event sequence.

10



Handle Escape Conditions and Holding Patterns:

e For each escape condition E of the form “reject if see X in C”, create a new abstract state Ng for F,
label Ng with X, add an edge from each state corresponding to C' to Ng and add a self-loop at Ng.

e For each escape condition E of the form “accept if see X in C”, create a new abstract state Ng for F,
label Ng with X, add an edge from each state corresponding to C' to Ng, add a self-loop at Ng, and
mark Ng as fair (with a new fairness constraint).

e For each escape condition E of the form “accept if don’t complete C”, mark every abstract for C' as
fair (with a new fairness constraint).

e For each holding pattern h for cluster C' and each abstract state N¢ corresponding to or expanded
from C, add h as a propositional label to N¢.

Figure 7: The algorithm for handling holding patterns and escape conditions.

appearance of the constraint’s events in the reduced form of the original sequence; this is necessary because
a single automaton would need to include an edge from the final state shown in the example (after the
detection of e2) back to the initial state, and the cycle that this back edge creates could break weakness.
New propositional labels annotating occurrences of the events in the automaton from Algorithm 1 distinguish
between machines. Having multiple machines will not lead to substantial state explosion, as the transitions
from their initial states are enabled only when the events to be monitored occur.

The results on determinism and weakness that follow apply to those event sequences that end with a
repetition-free cluster (for reasons motivated in Section 4.2). We call such sequences event chains.

Definition 18 An event sequence (C,T, H, S) is an event chain if the iterative expansion of last(C') contains
no repeated clusters.

5.1 Soundness

The soundness theorem relates runs through the constructed automaton to the locally minimal index assign-
ments by which a word satisfies an event sequence. In developing this relationship, we will find it useful to
refer to the specific instances of event sequences embodied in index assignments and automaton runs. We
begin by formalizing this concept.

Definition 19 Let V' be an event sequence. An instance of V is an event sequence V' with the same
hierarchical structure, timing constraints, holding patterns, and escape conditions as V, but in which every
repetition operator * is replaced with a natural number and each unordered cluster C is replaced with an
ordered cluster C’ that corresponds to a schedule of C.

Ezample: Event sequence (Cy; {Ca1,C3s };{C31,C32}"; C4), has sequence (Cy; (Cay, Ca1); Cy) as an instance.

The constructions of both index assignments and the automata that capture event sequences use schedules
of unordered clusters and concrete numbers of repetitions (the same specializations that yield instances of
event sequences). We can therefore talk meaningfully about the instances that correspond to individual
index assignments and paths through the automaton. We rely on both notions in the rest of this section.
We can also prove that the automaton for a sequence contains paths corresponding to each of its instances.

Lemma 2 Let V be an event sequence and M the automaton constructed to accept V. For every instance
V' of V, M contains a path that expects events in the order specified in V'.
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Handle Timing Constraints: For each timing constraint (e, es,l, u, clk), construct an automaton tem-
plate as follows:

1. (create core states) Create n + 1 states, so,...,Sn, where n is w if u is a number or ! if u = oo.
Intuitively, these states track how many times clk has occured since e; occurred.

2. (create clock-counting transitions) For each state s; for 0 < i < n — 1, add a self-loop labeled !see-
eaNlclk, and a transition labeled !see-ex A clk from s; to Sj41-

3. (create an initial state) Create a state s;n;z with a self-loop labeled !see-e;, a transition to sg labeled
see-e1 Alclk, and a transition to s; labeled see-eq Aclk. Mark s;,;+ as the initial state of the automaton.

4. (create a violation state) Create a state s, with a self-loop labeled true.

5. (account for lower bound) For each s;, where 0 < i < [, add a transition see-e; from s; to Serr; for
s;—1, augment the label on this transition to also require !clk.

6. (create a final state) Create a state sgone With a self-loop labeled true.

7. (account for upper bound) Add a self-loop at s,; if u is a number, label this transition !see-eaAlclk,
otherwise label it !see-es. Add a transition from s,, to Sgone labeled with see-esAlclk. If u is a number,
add a transition from s,, to s.,, labeled clk.

8. (account for intermediate time values) For each state s; where [ — 1 < < n, add a transition from s;
t0 Sgone labeled see-eq; for s;_1, augment this transition to also require clk.

For each expansion of the smallest cluster containing e; and ez in the core machine, create new labels for
see-e; and see-ey, add them to the states that satisfy e; and e; within that expansion, and create an instance
of the template automaton that uses these labels for see-e; and see-es.

Figure 8: Algorithm for constructing automata for timing contraints. Figure 10 shows examples of the
output from this algorithm.

Proof: This result is evident in the construction algorithm because each possible schedule of an unordered
sequence is expanded into a path that follows that schedule; furthermore each repeated cluster yields a cycle
in the automaton that can repeat any number of times.

Theorem 1 Let {eq,ea,l,u,clk) be a timing constraint and M be the automaton template for that constraint
according to the algorithm in Figure 8. Let W be a word such that every index that satisfies e; has the propo-
sition see-e; and every index that satisfies es has the proposition see-eo. W satisfies the timing constraint
iff M reaches its done state when run on W.

Proof: Let i1 be the first index into W that satisfies e; (labeled see-e1) and let es be the first index larger
than e; that satisfies e2 (labeled see-e2). The definition of constraint validity requires that the number of
indices between e; and ez (inclusive) that satisfy clk lie between [ and u (inclusive). The transitions in M
guarantee that if M is in state s; (as named in the algorithm), then clk has occurred i times since see-eq
occurred (and see-e; has not yet occurred); the examples in Figure 10 illustrate this claim.

Recall that the algorithm defined n to be either the lower bound [ if the upper bound is co or the upper
bound wu if w is a number; the number of appearances of clk between see-e; and see-ey (inclusive) must be
at least n if n = and at most n if n = u. If n = u, then any occurrence of clk in state s, sends M to the
error state (step 7); this is consistent with violating constraint validity. The only transitions into the done
state come from states s; where 4 is at least [ — 1 (step 8). The guards on each of these transitions guarantee
that the clk count remains between [ and wu, inclusively. If n # u, then n = [ and u = oo. In this case, M
contains only two transitions to the done state (steps 7 and 8): one from s,_; which requires see-e3 and clk
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Figure 9: Example of expanding a transition between intermediate states representing events. This example
shows only how to handle the events themselves; it does not illustrate handling holding patterns or escape
conditions. Separate automata account for timing constraints.
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Figure 10: Realizing a timing constraint as an automaton.

to occur simultaneously, and one from s, which requires only see-e5. In either case, this restricts the number
of clk occurences to lie between [ and wu inclusively. M therefore reaches the done state iff W satisfies the
definition of constraint validity for this timing constraint.

Theorem 2 Let V be an event sequence and let M be the automaton obtained for V' from Algorithm 1. Let
W be an infinite word. M accepts W iff W V.

Proof: Assume that M accepts W. Then there exists a fair path P through M that corresponds to the
run of M on W. We will construct an index assignment I from P and argue that [ is locally minimal, valid
and either total or uses (invokes or loops under) an escape condition. For each state s in P at which M
recognized event e, add window [i, 5] to I(e), where i is the (0-based) index of s in P and j is one index before
that containing a next event of e. For each maximal subpath s1,...,s; of P whose states all correspond
(were expanded from) a cluster C, assign window [4, j] to I(C'), where i is the position of s; and in P and j
is one index prior to that assigned to the next event after state sy.

I is structurally valid by construction: every path through M corresponds to an instance of V' by
construction, so P must consist of subpaths (which yield sequences of windows) that capture repeated and
unordered clusters; furthermore, constructing I around maximal subpaths guarantees that all subclusters of
each cluster have been assigned windows. I is constraint valid because P is fair: if a timing constraint were
violated, the automaton for that constraint would have reached its error state (by Theorem 1) thus rendering
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P unfair (by the definition of the fair states in Algorithm 1). I is locally minimal because by construction
M advances through states at the first occurrences of events (non-determinism may govern which schedule
of an unordered cluster is followed, but does not delay matching events). Since M accepts W, M must visit
some fair state infinitely often. If that fair state uses the state Final, then I must be total because Final is
not reachable until all clusters in V' are recognized. If that fair state arises from an “accept if see” escape
condition, then some index ¢ into P must have invoked that escape condition and all prior indicies into P
satisfied V; in this case, I would invoke an escape condition at i. If the fair state arises from a looping escape
condition, then by construction P does not reach the state for some event, but satisfied all requirements for
prior events; I therefore loops on an escape condition. I is therefore sufficient to establish that W = V.

For the other direction, assume that W |= V. To prove that M accepts W, we will argue that the index
assignment I that witnesses W |= V' generates a fair path through M. Let V' be the instance of V that
corresponds to I. By Lemma 2, M contains a path P that also corresponds to I. To complete the proof, we
must argue that P is fair. We first argue that P satisfies the fairness requirements on the timing automata.
By definition, I satisfies all timing constraints of V'; By Theorem 1, all timing constraints on pairs of events
within I are in their done states. Timing constraints on pairs of events not captured within I are still in
their initial states. If I invokes or loops under an escape condition after seeing the first event in a timing
constraint but not the second, the corresponding automata will be in an intermediate (non error) state. In
each of these cases, the timing constraint automata are (and remain) in states that satisfy the definitions of
fair states from Algorithm 1.

Since W =V, I is either total or uses an escape condition. If I is total, then the path satifies all events
in V; by construction, M transitions to the fair state Final after recognizing all events in V', so the theorem
holds in this case. If I invoked an escape condition at index ¢ while processing cluster C, the theorem also
holds because by construction, M must have a transition from each state it could be in while processing C
to a fair state for the escape condition. If I loops under an escape condition, then that cycle is also marked
fair, which is sufficient to render the entire run fair. The theorem therefore holds in this direction.

5.2 Characterization of Determinism

Theorem 3 Given an event chain, Algorithm 1 produces a deterministic automaton if all of the following
conditions are satisfied:

e For every unordered cluster {C1,...,Ck}, the first events of each C; are pairwise logically inconsistent
with those of each C; # C; unless a timing constraint orders C; and C;.

e For each repeated cluster C*, the first events of C' are pairwise logically inconsistent with the first events
of each next cluster of C* (other than C).

e For each “accept/reject when see X in C” escape condition, X is logically inconsistent with all holding
patterns for C.

Proof: The machine is deterministic if the choice among multiple next states is deterministic. The con-
struction yields multiple next states in four cases: possible transitions to the Final state, when choosing
between schedules for an unordered cluster, possible skips of repeated clusters, and when invoking escape
conditions. The restriction to event chains guarantees that states with transitions to Final have no other out-
going transitions. By construction, transitions into the states that expand clusters occur when a first event
is recognized for that cluster. If these events are logically inconsistent, then the corresponding transitions
must be deterministic. This covers the remaining cases.

To approach this result from another perspective, we also prove that these conditions are sufficient to
yield a unique minimal index assignment.

Theorem 4 Let V be an event sequence, W be a word, and X be the set of index assignments for V and
W that are valid and either total or use an escape condition. ¥ has a unique minimal index assignment I
under <.
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Proof: We prove that for every non-equivalent I; and I» in ¥ that are unordered under <, there exists
another I in ¥ such that I < I1 and I < I». This is sufficient to guarantee the existence of a unique minimal
element of X.

The proof is by construction: we define I from I; and I, then argue that I must lie in ¥. The proof
of Lemma 1 shows that I; and I, are potentially unordered only if RgW (I;) = RgW (I3) (this condition
captures cases in which I; and I, assign different events to the same set of windows). Let w be the earliest
window such that Ij (w) # Ir(w). Define I(w) to be Ij(w) U Ir(w); for all other windows w' in RgW (Iy),
define I(w') to be I (w').

I < I, because RgW(I) = RgW (I) and I;(w) C I(w) by construction (since Ir(w) # I,(w), the C
relation must hold). I < I, for similar reasons (since w is also the smallest window on which I and I
disagree).

It remains only to show that I must lie in 3. Since I and I are valid, I is also valid because every
window it assigns to an event is assigned by one of I; or I, while respecting all timing constraints. I
therefore lies in ¥ by definition.

5.3 Characterization of Weakness

We call a cluster C fair if there exists an escape condition of the form “accept if don’t complete C”. A
cluster is all-fair if it is either fair or all of its sub-clusters are all-fair. A cluster is non-fair if neither it nor
any of its sub-clusters is fair.

Lemma 3 If an event sequence contains no all-fair repeated clusters, then the automaton from Algorithm 1
requires only one fair set.

Proof: If no cycle contains states from more than one fair set, then a single fair set suffices. Cycles can
contain states from multiple fair sets under two conditions. First, two “accept don’t complete” conditions
could exist for clusters C; and Cy where C contains Cy. In this case, a cycle that satisfies Cy satisfies Cf,
so only one fairness constraint is required. Second, a repeated cluster could have all sub-clusters fair, thus
creating a cycle that visits each sub-cluster then self-loops for the repeated cluster. The theorem statement
rules out this case.

Theorem 5 Given an event chain, Algorithm 1 produces a weak automaton iff every repeated cluster in the
chain is non-fair.

Proof: Non-trivial strongly-connected components (SCCs) arise from abstract states with self-loops, which
in turn arise from expanding states for repeated clusters. With the exception of the Final state and the
states for “accept/reject if see” escape conditions (which form their own SCCs), states are marked fair only
if they correspond to or expand from clusters that have “accept if don’t complete” conditions. If a repeated
cluster is non-fair, then it has no fair SCCs embedded within self-loops (other, larger SCCs). If a repeated
cluster is all-fair, it requires multiple fair sets and is not weak by definition. All other repeated clusters
contain cycles with both fair and non-fair states.

Our mapping to deterministic weak automata is not complete; in other words, our language does not
logically characterize deterministic weak automata. Consider the regular expression ab*+bc*: a deterministic
weak automaton accepts it, but it is not expressible in our language due to the use of disjunction.

6 Related Work

We are unaware of logical characterizations of weak automata, much less ones that account for diagramma-
bility or other forms of usability. The original work on the efficiency of verifying weak automata is due to
Bloem, Ravi and Somenzi [5]. Other timing diagram formalizations have supported some of the language ex-
tensions discussed here [2, 6, 12], but none related the diagrammatic features of these languages to efficiency
in verification.
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Amla et al.’s work on modular timing diagrams has much in common with this work [3]. Their work makes
timing diagrams more expressive by combining them through non-diagrammatic operators for conjunction,
iteration, and deterministic choice. Expressions in their language encompass several timing diagrams, while
our work pushes the limits of a single timing diagram. At a technical level, our work uses standard Biichi
automata as a semantic model, while their work uses V-automata [11]. The V-automata provide a more
natural and computationally efficient formalism for non-deterministic modular timing diagrams than Biichi
automata. Our work targets the class of event sequences recognizable by deterministic weak automata be-
cause we are interested in understanding when a particular algorithmic optimization applies to verification
of event sequences; V-automata don’t offer benefits in our context due to our restriction to deterministic
systems. Overall, the core differences between our works appear to be philosophical; ours focuses on under-
standing the interplay between diagrammability and efficiency, while theirs focuses on building a practical
verification framework around timing diagrams. Our two works are complementary, and both provide use-
ful insights for developing verification frameworks around timing diagrams. Understanding the interplay
between these two sets of results is an interesting open question for future work.

7 Conclusions and Future Work

The relationships between timing diagrams and deterministic weak automata suggest that there exist formal
models of event sequences that simultaneously address both usability and efficiency. A traditional theoretical
approach to designing languages towards efficiency would be to find a syntactic (logical) characterization of
weak automata. This approach, however, fails to account for the usability of that logical characterization.
This is perhaps justifiable, as ”usability” is an inherently informal notion. If we refine our notion of usability
to mean diagrammapbility, however, formal models become possible. Formal characterizations of diagramma-
bility usually rely on topological or spatial arguments [10]; appropriate characterizations for discrete linear
events remain an open problem.

The event sequence language proposed in this paper targets diagrammability by allowing only a restricted
form of disjunction; in particular, disjunction governs the ordering of events, but not their occurrence. This
is consistent with diagrams’ tendency to imply that all depicted items actually exist (maps, for example,
indicate that all depicted features are actually there). Such nuances in the different uses of logical operations
appear fundamental to formal models of diagrammability. This limited nature of disjunction also targets
efficiency by supporting our criteria for deterministic automata. Restricted forms of iteration enable the
mapping to weak automata. Single timing diagrams support limited forms of iteration, and hence satisfy
the criteria for weakness. Overall, the generality of our language substantially enriches the set of features
our timing diagrams can support while retaining efficiency for verification.

Several avenues remain open for future work. Given that the proposed language is more expressive than
our current timing diagrams, characterizing diagrammability is an important next problem in this project.
We expect restrictions on cluster nesting similar to those in timing diagrams to be key to such a charac-
terization. We also plan to explore formal relationships between other event sequence languages and ours;
this would help identify subsets of other languages that could be visualized and verified efficiently through a
mapping to weak automata. Finally, many general questions remain regarding the nature of diagrammatic
representations and their relationship to computational concerns such as efficiency and decidability that are
so important in verification. We hope that our work will contribute to better understanding of these issues.
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